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Dynamic Behavior

In analyzing process dynamic and process control systems, it 1s
important to know how the process responds to changes in the
process inputs.

A number of standard types of input changes are widely used for
two reasons:

1. They are representative of the types of changes that occur
in plants.

2. They are easy to analyze mathematically.



1. Step Input

A sudden change 1n a process variable can be approximated by
a step change of magnitude, M:

U A 0 r<0 (54)
Sl M 20

The step change occurs at an arbitrary time denoted as ¢ = 0.
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» Special Case: If M =1, we have a “unit step change”. We
give it the symbol, S(7).

o Example of a step change: A reactor feedstock 1s suddenly
switched from one supply to another, causing sudden
changes in feed concentration, flow, etc.




Example:

The heat mput to the stirred-tank heating system in Chapter 2 1s
suddenly changed from 8000 to 10,000 kcal/hr by changing the
electrical signal to the heater. Thus,

O(t)=8000+2000S5(¢z),  S(¢)= unitstep

nd (1) =0-0=20008(r), O =8000keal/hr

2.

Ramp Input
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 Industrial processes often experience “drifting

disturbances”, that 1s, relatively slow changes up or down
for some period of time.

» The rate of change 1s approximately constant.
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We can approximate a drifting disturbance by a ramp input:

U (1) {O t<0 (5.7

at >0

Examples of ramp changes:

1. Ramp a setpoint to a new value. (Why not make a step
change?)

2. Feed composition, heat exchanger fouling, catalyst
activity, ambient temperature.

. Rectangular Pulse

It represents a brief, sudden change 1n a process variable:



(0 for <0
Ugp(t)=1h for 0<r<i, (5-9)
0 for t>1¢,

A Xpp
h

0 T, Time, ¢
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Examples:

1. Reactor feed is shut off for one hour.
2. The fuel gas supply to a furnace is briefly interrupted.
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Figure 5.2. Three important examples of
deterministic inputs.



4. Sinusoidal Input

Processes are also subject to periodic, or cyclic, disturbances.
They can be approximated by a sinusoidal disturbance:

- N 0 for <0 514
ain (1) = Asin(wt) for t20 (5-14)

where: A =amplitude, © = angular frequency
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Examples:

1. 24 hour variations in cooling water temperature.
2. 60-Hz electrical noise (in the USA)




S. Impulse Input

 Here, U;(t)=5(2).
e It represents a short, transient disturbance.

Examples:

1. Electrical noise spike 1n a thermo-couple reading.
2. Injection of a tracer dye.

« Useful for analysis since the response to an impulse input
1s the 1inverse of the TF. Thus,
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Here,

Y(S):G(S)U(S) (1)




The corresponding time domain express is:

y(1)=] g(t-t)u(t)dr 2)
where:
g(r)= €[ G(s)] (3)
Suppose u(¢)=5(t). Then it can be shown that:
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y(t)=2g(?) (4)

Consequently, g(7) 1s called the “impulse response function”.
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First-Order System

The standard form for a first-order TF is:

Y(S) K
U(S)_’CS-I—I

(5-16)

where: R .
K = steady-state gain

A .
T = time constant

Consider the response of this system to a step of magnitude, M:

U(t):MfortZO :U(S)ZM
S
Substitute into (5-16) and rearrange,
KM
Y(s)= 5-17
(S) S(TS +1) ( )

10
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Take £ (cf. Table 3.1),

y(t)= KM(I—e_t/T)

(5-18)

Let y, = steady-state value of y(¢). From (5-18), y,, = KM.

1.0 -
i t
0

05|
T
2T

O | 1 | | ]

0O 1 2 3 4 5 3t
A 41'
T 51

v
Ve
0
0.632
0.865
0.950
0.982

0.993

Note: Large t means a slow response.

11
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Integrating Process

Not all processes have a steady-state gain. For example, an
“Integrating process” or “integrator” has the transfer function:

_K (K = constant)
s

Consider a step change of magnitude M. Then U(s) = M/s and,

KM £!
Y(s)=——=y(t)= KMt
S
Thus, y(¢) 1s unbounded and a new steady-state value does not
exist.

12



Common Physical Example:

Consider a liquid storage tank with a pump on the exit line:

Qj l

o h
o A
- SSUmece. Y
5 CJ
(] 1. Constant cross-sectional area, A.
i -
O 2. g# f (h)

dh _
- Mass balance: AE=Q,-—6](1) = 0=¢q,—q (2)

- Eq. (1) - Eq. (2), take £, assume steady state 1nitially,
1 / _ /
-2 [

H'(s)=—|

- For Q'(S) = 0 (constant g), O (S) As

13
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Second-Order Systems

e Standard form:

- (5-40)
U(s) t%s*+2Cts+1

which has three model parameters:

K = steady-state gain
T = "time constant" [=] time

{ = damping coefficient (dimensionless)

1
e Equivalent form: (a)n = natural frequency = —j
T

Y(S) Ka),%

U(s) s*+2lw,s+o?

14



» The type of behavior that occurs depends on the numerical
value of damping coefficient, C :

It 1s convenient to consider three types of behavior:

Damping Type of Response Roots of Charact.
Coefficient Polynomial

'2 {>1 Overdamped Real and #

Q

'E_ (=1 Critically damped Real and =

©

S 0<C<l Underdamped Complex conjugates

e Note: The characteristic polynomial 1s the denominator of the
transfer function:

’s? + 2Cts +1

 What about { < 0? It results in an unstable system 15
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Figure 5.8.

Step response of underdamped second-order processes.
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Figure 5.9. Step response of critically-damped and overdamped second-order processes.
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Several general remarks can be made concerning the
responses show in Figs. 5.8 and 5.9:

1. Responses exhibiting oscillation and overshoot (/KM > 1) are
obtained only for values of C less than one.

2. Large values of C yield a sluggish (slow) response.

3. The fastest response without overshoot 1s obtained for the
critically damped case ({=1).
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Figure 5.10. Performance characteristics for the
step response of an underdamped process.
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Rise Time: ¢, 1s the time the process output takes to first
reach the new steady-state value.

Time to First Peak: ¢, 1s the time required for the output to
reach its first maximum value.

Settling Time: ¢, 1s defined as the time required for the
process output to reach and remain inside a band whose width
is equal to £5% of the total change in y. The term 95%
response time sometimes 1s used to refer to this case. Also,
values of £1% sometimes are used.

Overshoot: OS = a/b (% overshoot 1s 100a/b).

Decay Ratio: DR = c/a (where c is the height of the second
peak).

Period of Oscillation: P 1s the time between two successive
peaks or two successive valleys of the response.
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