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Overall Objectives of 
Model Predictive Control

1. Prevent violations of input and output constraints.
2. Drive some output variables to their optimal set 

points, while maintaining other outputs within 
specified ranges.

3. Prevent excessive movement of the input variables.
4. If a sensor or actuator is not available, control as 

much of the process as possible.
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Model Predictive Control:  Basic Concepts

1. Future values of output variables are predicted using a dynamic 
model of the process and current measurements.

• Unlike time delay compensation methods, the predictions are 
made for more than one time delay ahead.

2. The control calculations are based on both future predictions and 
current measurements.

3. The manipulated variables, u(k), at the k-th sampling instant are 
calculated so that they minimize an objective function, J.

• Example: Minimize the sum of the squares of the deviations 
between predicted future outputs and specific reference trajectory. 

• The reference trajectory is based on set points calculated using
RTO.

4. Inequality &  equality constraints, and measured disturbances are 
included in the control calculations. 

5. The calculated manipulated variables are implemented as set 
point for lower level control loops. (cf. cascade control).
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Model Predictive Control:  Calculations

1. At the k-th sampling instant, the values of the manipulated 
variables, u, at the next M sampling instants, {u(k), u(k+1), …, 
u(k+M -1)} are calculated.

• This set of  M “control moves” is calculated so as to minimize 
the predicted deviations from the reference trajectory over the 
next P sampling instants while satisfying the constraints.

• Typically, an LP or QP problem is solved at each sampling 
instant.

• Terminology: M = control horizon, P = prediction horizon

2. Then the first “control move”, u(k), is implemented. 
3. At the next sampling instant, k+1, the M-step control policy is 

re-calculated for the next M sampling instants, k+1 to k+M, and 
implement the first control move, u(k+1).

4. Then Steps 1 and 2 are repeated for subsequent sampling 
instants.
Note: This approach is an example of a receding horizon 

approach.
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Figure 20.2  Basic concept for Model Predictive Control
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When Should Predictive Control be Used?

1. Processes are difficult to control with standard PID 
algorithm  (e.g., large time constants, substantial time 
delays, inverse response, etc.

2. There is significant process interactions between u
and y. 

• i.e., more than one manipulated variable has a significant effect on 
an important process variable.

3. Constraints (limits) on process variables and 
manipulated variables are important for normal control.

Terminology:

• y ↔ CV, u ↔ MV, d ↔ DV
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Model Predictive Control Originated in 1980s

• Techniques developed by industry:
1. Dynamic Matrix Control (DMC)

• Shell Development Co.: Cutler and Ramaker (1980),
• Cutler later formed DMC, Inc.
• DMC acquired by Aspentech in 1997.

2. Model Algorithmic Control (MAC)
• ADERSA/GERBIOS, Richalet et al. (1978) in France.

• Over 5000 applications of MPC since 1980 
Reference: Qin and Badgwell, 1998 and 2003).
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Figure A.  Two processes exhibiting unusual dynamic behavior. 
(a) change in base level due to a step change in feed rate

to a distillation column. 
(b) steam temperature change due to switching on soot blower

in a boiler.
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Dynamic Models for 
Model Predictive Control

• Could be either:
1. Physical or empirical (but usually empirical)
2. Linear or nonlinear (but usually linear)

• Typical linear models used in MPC:
1. Step response models
2. Transfer function models
3. State-space models

• Note: Can convert one type of linear model 
(above) to the other types.
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Discrete Step Response Models

Consider a single input, single output process:

where u and y are deviation variables (i.e., deviations 
from nominal steady-state values).

u yProcess
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Prediction for SISO Models:
Example: Step response model

1

0
1

1 1 1 (20-1)
N

i N
i

y(k + ) y S u( k i ) S u( k N )∆
−

=
= + − + + − +∑

Si =  the i-th step response  coefficient
N =  an  integer (the model horizon)  
y0 = initial value at k=0

Figure 7.14. Unit Step
Response
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Prediction for SISO Models:
Example: Step response model

• If y0=0, this one-step-ahead prediction can be obtained from 
Eq. (20-1) by replacing  y(k+1) with

1

0
1

1 1 1 (20-1)
N

i N
i

y(k + ) y S u( k i ) S u( k N )∆
−

=
= + − + + − +∑

1

1
ˆ( 1) ( 1) ( 1) (20 6)

N

i N
i

y k S u k i S u k N∆
−

=
+ = − + + − + −∑

• Equation (20-6) can be expanded as:

ˆ( 1)y k +

1

1
2

ˆ( 1) ( ) ( 1) ( 1)
N

i N
iEffect of current

control action Effect of past control actions

y k S u k S u k i S u k N∆
−

=
+ = ∆ + − + + − +∑��	�


��������	�������
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Prediction for SISO Models:
(continued)

Define the predicted unforced response as:

and can write Eq. (20-10) as:

Similarly, the j-th step ahead prediction is Eq. 20-10:
1

1 1
ˆ( ) ( ) ( ) ( )

j N

i i N
i i j

Effects of current and Effects of past
future control actions control actions

y k j S u k j i S u k j i S u k j N∆ ∆
−

= = +

+ = + − + + − + + −∑ ∑
����	���
 ���������	��������


1

1
ˆ ( ) ( ) ( ) (20 11)

N
o

i N
i= j+

y k j S u k j i S u k j N∆
−

+ + − + + − −∑�

1
ˆ ˆ( ) ( ) ( ) (20 12)

j
o

i
i

y k j S u k j i y k j∆
=

+ = + − + + −∑
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Vector Notation for Predictions

Define vectors:

1 1 (20-18)∆ (k) col [ ∆u(k),∆u(k + ), ,∆u(k + M - )]� "U

1 1 2 (20-16)ˆ ˆ ˆ ˆ(k + ) col [ y(k + ), y(k + ), , y(k + P)]� …Y

1 1 2 (20-17)ˆ ˆ ˆ ˆ(k + ) col [ y (k + ), y (k + ), , y (k + P)]� …o o o oY

The model predictions in  Eq. (20-12) can be written as:

1 1     (20-19)ˆ ˆ(k + ) = ∆ (k) (k + )                 + oY S U Y
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Dynamic Matrix Model

where S is the P x M dynamic matrix:

The model predictions in  Eq. (20-12) can be 
written as:

1 1     (20-19)ˆ ˆ(k + ) = ∆ (k) (k + )         + oY S U Y

0 0
0

0
      (20-20)

1

2 1

M M -1 1

M+1 M 2

P P-1 P-M+1

S
S S

S S S
S S S

S S S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

# # %
� "

"
# # % #

"

S
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Bias Correction

• Similarly, adding this bias correction to each prediction in 
(20-19) gives:

• The model predictions can be corrected by utilizing the 
latest measurement, y(k).

• The corrected prediction is defined to be:

                  (20-23)ˆ ˆy(k + j) y(k + j)+ [y(k) - y(k)]         � �

1 1  (20-24)ˆ ˆ(k + ) = (k) (k + )+ [y(k) - y(k)]∆ +� oY S U Y 1    

1 [ 1 2 ] (20-25)(k + ) col y(k + ), y(k + ), , y(k + P)       � � � �� …Y

where 1  is defined as:(k + )�Y
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EXAMPLE 20.4
The benefits of using corrected predictions will be illustrated by a simple 
example, the first-order plus-time-delay model of Example 20.1: 

Assume that the disturbance transfer function is identical to the 
process transfer function, Gd(s)=Gp(s). A unit step change in u
occurs at time t=2 min and a step disturbance, d=0.15, occurs at 
t=8 min. The sampling period is ∆t= 1 min.
(a) Compare the process response y(k) with the predictions that 
were made 15 steps earlier based on a step response model with 
N=80. Consider both the corrected prediction 
(b) Repeat part (a) for the situation where the step response coefficients 
are calculated using an incorrect model: 

-24                (20-27)
20 1

sY(s) e=
U(s) s +

25                     (20-26)
15 1

- sY(s) e=
U(s) s +
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Figure 20.6 Without model error.
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Figure 20.7 With model error.
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Figure 20.10 Input blocking.
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Figure 20.9  Flow chart for MPC calculations.
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Figure 20.8.  Individual step-response models for a distillation column 
with three inputs and four outputs.  Each model represents the step 
response for 120 minutes.  Reference:  Hokanson and Gerstle
(1992).
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Reference Trajectory for MPC
Reference Trajectory

• A reference trajectory can be used to make a gradual transition
to the desired set point. 

• The reference trajectory Yr can be specified in several different
ways.  Let the reference trajectory over the prediction horizon P
be denoted as:

1 [ 1 2 ]  (20-47)r r r r(k + ) col (k + ), (k + ), , (k + P)     � …Y y y y

where Yr is an mP vector where m is the number of outputs. 

Exponential Trajectory from y(k) to ysp(k)

A reasonable approach for the i-th output is to use:

yi,r (k+j) =  (ai) j yi (k) + [1 - (ai) j] yi,sp (k) (20-48) 

for i=1,2,…, m and  j=1, 2, …, P.
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MPC Control Calculations

• The control calculations are based on minimizing the predicted 
deviations between the reference trajectory.

• The predicted error is defined as:

o

               1 1 1  (20-50)

where 1  is the corrected prediction defined in (20-37).  
Similarly, the , 1  is defined as: 

             

ˆ (k + ) (k + ) (k + )           

(k + )
ˆpredicted unforced error (k + ),

ˆ

− ��

�
rE Y Y

Y
E

o o1 1 1  (20-51)(k + ) (k + ) (k + )           − �� rE Y Y
• Note that all of the above vectors are of dimension, mP.
• The objective of the control calculations is to calculate the control 

policy for the next M time intervals:

[ 1 1 ] (20-18)∆ (k) col ∆ (k),∆ (k + ), ,∆ (k + M - )� "U u u u
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MPC Performance Index

• The rM-dimensional vector ∆U(k) is calculated so as to minimize: 

a. The predicted errors over the prediction horizon, P.

b. The size of the control move over the control horizon, M.

• Example: Consider a quadratic performance index:

1 1      (20 - 54)T T

( k )

ˆ ˆmin           ( k ) ( k ) ( k ) ( k )     
∆

= + + + ∆ ∆
U

J E Q E U R U

where Q is a positive-definite weighting matrix and R is a 
positive semi-definite matrix. 

Both Q and R are usually diagonal matrices with positive 
diagonal elements. 

The weighting matrices are used to weight the most important 
outputs and inputs (cf. Section 20.6).
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MPC Control Law: Unconstrained Case

•The MPC control law that minimizes the objective function in
Eq. (20-54) can be calculated analytically,

o 1           (20-55)
   where  is the dynamic matrix defined in (20-41).

T -1 T ˆ(k)= ( ) (k + )              ∆ +U S Q S R S Q E
S

• This control law can be written in a more compact form, 
o 1                                        (20-56)c

ˆ(k)= (k + )∆U K E
where controller gain matrix Kc is defined to be:

                           (20-57)T -1 T
c ( )+�K S Q S R S Q

M mP×

• Note that Kc can be evaluated off-line, rather than on-line, provided 
that the dynamic matrix S and weighting matrices, Q and R, are 
constant. 

• The calculation of Kc requires the inversion of an rM x rM matrix 
where r is the number of input variables and M is the control horizon. 
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MPC Control Law:
Receding Horizon Approach

• Note that the controller gain matrix, Kc, is an rM x mP matrix. 

o 1                                        (20-56)c
ˆ(k)= (k + )∆U K E

where:

• In the receding horizon control approach, only the first step of the 
M-step control policy, ∆u(k),  in (20-18) is implemented.

• MPC control law:

[ 1 1 ] (20-18)∆ (k) col ∆ (k),∆ (k + ), ,∆ (k + M - )� "U u u u

where matrix Kc1 is defined to be the first r rows of Kc. 
Thus, Kc1 has dimensions of r x mP.

r mP×
.

1                            (20-58)1
ˆ(k)= (k + )o

cu K E∆
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Selection of Design Parameters

Model predictive control techniques include a number of 
design parameters:

N: model horizon
∆t: sampling period
P: prediction horizon (number of predictions)
M: control horizon (number of control moves)
Q: weighting matrix for predicted errors (Q > 0)
R: weighting matrix for control moves (R > 0)
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Selection of Design Parameters (continued)
1. N and ∆t

These parameters should be selected so that N ∆t > open-loop 
settling time.  Typical values of N:

30 < N < 120

2. Prediction Horizon, P
Increasing P results in less aggressive control action

Set P = N + M

3. Control Horizon, M
Increasing M makes the controller more aggressive and increases 
computational effort, typically: 

5 < M < 20

4. Weighting matrices Q and R
Diagonal matrices with largest elements corresponding to most 
important variables
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Example 20.5: set-point responses

                                  
-seG(s)=

(10 s +1)(5s +1)
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Example 20.5: disturbance responses


