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Real-Time Optimization (RTO)

In previous chapters we have emphasized control system
performance for disturbance and set-point changes.

Now we will be concerned with how the set points are
specified.
In real-time optimization (RTO), the optimum values of the set

points are re-calculated on a regular basis (e.g., every hour or
every day).

These repetitive calculations involve solving a constrained,
steady-state optimization problem.

Necessary information:
1. Steady-state process model
2. Economic information (e.g., prices, costs)
3. A performance Index to be maximized (e.g., profit) or
minimized (e.g., cost).
Note: Items # 2 and 3 are sometimes referred to as an
economic model.



@))
i
| -
D
i
O
qv]
L
O

Process Operating Situations That Are Relevant to

o a0 A~ W N PE

Maximizing Operating Profits Include:

Sales limited by production.

Sales limited by market.

Large throughput.

High raw material or energy consumption.
Product quality better than specification.

Losses of valuable or hazardous components through
waste streams.



Common Types of Optimization Problems

1. Operating Conditions
e Distillation column reflux ratio

3 « Reactor temperature
2. Allocation

o 0

5 e Fuel use

f__ﬁ e Feedstock selection

@) 3. Scheduling

* Cleaning (e.g., heat exchangers)
* Replacing catalysts
e Batch processes
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(days-months )

(hours-days )

(minutes-hours )

(seconds-minutes )

(< 1second)

(< 1 second)

5. Planning and
Scheduling

| A
Y

4, Real-Time

Optimization

v |

3b. Multivariable
and Constraint
Control

v 1

3a. Regulatory
Control

v |

2. Safety, Environment
and Equipment
Protection

{1

1. Measurement
and Actuation

v

Process

Figure 19.1 Hierarchy of
process control activities.
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BASIC REQUIREMENTS IN REAL-TIME
OPTIMIZATION

Objective Function:
P= ZFSVS _ZFrCr -0C (19'1)
S r

where: P =operating profit/time
Z F.V, =sum of (productflowrate) x (product value)
S

Y FC, =sumof (feedflowrate) x (unitcost)
-

OC = operating costs/time

Both the operating and economic models typically will
Include constraints on:

Operating Conditions
Feed and Production Rates
Storage and Warehousing Capacities

> W N

Product Impurities



The Interaction Between Set-point Optimization
and Process Control

Example: Reduce Process Variability

« Excursions in chemical composition => off-spec
products and a need for larger storage capacities.

 Reduction in variability allows set points to be moved
closer to a limiting constraint, e.g., product quality.

fimit limit
-3 - - average

C -|- =k = = average C
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time ——P time ——§p

a) Before improved b) After improved
control control
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Control
system

data
Process

Process

>

Updated
setpoints

Data

reconciliation

Steady-state
optimization

Updated model
parameters

Reconciled
data

Y

Parameter
estimation

Figure 19.2 A block diagram for RTO and regulatory feedback control.



The Formulation and Solution
of RTO Problems

1. Theeconomic model: An objective function to
be maximized or minimized, that includes costs
and product values.

2. The operating model: A steady-state process
model and constraints on the process
variables.
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The Formulation and Solution
of RTO Problems

Table 19.1 Alternative Operating Objectives for a Fluidized
Catalytic Cracker

1. Maximize gasoline yield subject to a specified feed rate.
2. Minimize feed rate subject to required gasoline production.

3. Maximize conversion to light products subject to load and
compressor/regenerator constraints.
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Optimize yields subject to fixed feed conditions.

5. Maximize gasoline production with specified cycle oll
production.

6. Maximize feed with fixed product distribution.

Maximize FCC gasoline plus olefins for alkylate.




Selection of Processes for RTO

Sources of Information for the Analysis:

1. Profit and loss statements for the plant
» Sales, prices
« Manufacturing costs etc.
2. Operating records
« Material and energy balances
 Unit efficiencies, production rates, etc.

Categories of Interest:

1. Sales limited by production

* Increases in throughput desirable

* Incentives for improved operating conditions and schedules.
2. Sales limited by market

» Seek improvements in efficiency.

« Example: Reduction in manufacturing costs (utilities, feedstocks)
3. Large throughput units

« Small savings in production costs per unit are greatly magnified.
10
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The Formulation and Solution
of RTO Problems

« Step 1. Identify the process variables.
o Step 2. Select the objective function.

o Step 3. Develop the process model and constraints.
o Step 4. Simplify the model and objective function.

o Step 5. Compute the optimum.

« Step 6. Perform sensitivity studies.
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.Example 19.1

A section of a chemical plant makes two spemalty prod 5 (E, F) from two raw materials (A,
-B) that-are in limited supply. Each product is formed ini a separate process as shown in Fig. 19.3.
- Raw materials A and B do not have to be totally eonsmed The reactmns involvmg A and B
are as follows S | |

- o Processl A+B—-E
T o ProcessZ A+23*—->F

- The processmg cost includes the costs of utﬂmes and supphes Labor and other costs are
“$200/day for process 1 and $350/day for process 2. These-costs occur even if the production of E
or F is zero. Formulate the objective function as the. tmal nperanng proﬁt per day List the

| equahty and inequality constraints (Steps.1, 2, and 3), - o
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SOLUTION .

- The optimization problem is formulated using the first three steps delineated above.

N

Available Information !
-, Maximum Available -
~ Raw Ma:e;sé ' (Ib/day) Cost (¢/16) .
A 40,000 . 15 (i i
B, 30,000 20 .
Reactant : : Maximum
Requirements Production
(1b) per 1b Processing Selling Price Level
Process Product - Product Cost of Product (Ib/day)
1 " E 23A,13B ~ 15¢IbE 40¢E 30,000

2 R 12A,12B  5¢bF  33¢bF 30000

Step 1. The relevant process varmbles are the mass flow rates of reactants and products (sce
Fig 19.3): P .

x1=lb!daonomumecl
' xz*lbfdayBeommad

.X3 = Ib/day E produced _ e
\ x4 = Ib/day Fproduced SR AR

Step 2. In order to use Eq. 19-1 to compute the opemnng product per day, we need to spec—
- ify product saies income, Ieedstoc‘t costs nnd dpl:i‘&tiﬂg t.‘dsts

Sales income ($/day) = EFng = 04:3 +0. 33:4 S (19-2)
. Feedstock costs ($/day) = EF,C, = 0.15x1 + 02x, (19-3).

opemnngmsts(sfday)=,c;c-noxsxs+005x4+3so+2oo (19-4)
Substituting into (19-1).yields the daily profit: - Ly

P =04x+ 0335 = 0.15x = 026 ~0ilSx; - 0.05x¢ = 350 = 200 :

* = 0.25x3 + 028x — 0.15x - 02x2~ 550 ' (19-5)

Step 3. Not all variables in this problem are unconstrained. First consider the material bal— :
ance equations, obmned&omthereactamreqlmments whxchmth:scaseoompﬁsethq
process opemting model: .
x1 = 0667xs + 05xs . (19-68)
© %2 =0.333x3 + 0.5x4 (19-6b)

12



The limits on the feedstocks and production levels are: | | |
. C 0=xm=40000 (19-7a)

0 = x2 = 30,000 C (19-7b)
0 = x3 =< 30,000 . (19-7¢)
0 = x4 = 30,000 (19-7d)

Equatlons (19—5) through (19-7) constitute the optimization problem to be solved. Because
the variables appear linearly in both the objective function and constraints, this formulation
is referred toasa tmear programmmg problem, which is dlscussed in Sectxon 194, =

o

UNCONSTRAINED OPTIMIZATION
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« The simplest type of problem
* No inequality constraints

 An equality constraint can be eliminated by variable
substitution in the objective function.

13
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Single Variable Optimization

A single independent variable maximizes (or
minimizes) an objective function.

Examples:

1. Optimize the reflux ratio in a distillation column
2. Optimize the air/fuel ratio in a furnace.
Typical Assumption: The objective function f (X) is

unimodal with respect to x over the region of the
search.

— Unimodal Function: For a maximization (or
minimization) problem, there is only a single
maximum (or minimum) in the search region.

14



Different Types of Objective Functions

~ =N
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X x X
(a) (b) (c)
Figure 19.5 Three types of optimal operating conditions.




One Dimensional Search Techniques

Selection of a method involves a trade-off between
the number of objective function evaluations
(computer time) and complexity.

1. "Brute Force" Approach

Small grid spacing (Ax) and evaluate f(x) at each grid
point = can get close to the optimum but very
Inefficient.
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2. Newton’s Method

e It is based on the necessary condion for optimality: f’(x)=0.
e Example: Find a minimum of f (x). Newton's method gives,

Gk f(x)
f”(Xk)

16




3. Quadratic Polynomial fitting technique

1. Fitaquadratic polynomial, f (x) = a,+a,x+a,x?, to three
data points in the interval of uncertainty.

« Denote the three points by x,, x,, and x., and the
corresponding values of the function as f_, f,, and f..

2. Find the optimum value of x for this polynomial:

X*:E(xg—xcz) fa+(xC2—xa2) f, +(xa2—x§) f.

19-8
2(Xb_xc)fa“L(Xc_Xa) 1Eb"‘(xa_xb) 1Ec ( )

4. Evaluate f (x*) and discard the x value that has the
worst value of the objective function. (i.e., discard
either x,, X, Or X.).
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5. Choose x*to serve as the new, third point.

6. Repeat Steps 1to 5 until no further improvement in
f (x*) occurs.
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Equal Interval Search: Consider two cases

b

f3 /2
f2 | f
fi f ;
| ] o I l |
a X xp x3 b a X X X3
() i<hHh</3 2 2>H>hH
Ll = [12, b] Ll = [I1,13]

Figure 20.3. Two cases arising in a three-point equal-interval search.

Case 1: The maximum lies in (X, b).

Case 2: The maximum lies in (X4, X3).

18
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Multivariable Unconstrained Optimization
f(x) f (xl,x2 e Xy, )

Computational efficiency is important when N is large.

"Brute force" techniques are not practical for problems with
more than 3 or 4 variables to be optimized.

Typical Approach: Reduce the multivariable optimization
problem to a series of one dimensional problems:

(1) From a given starting point, specify a search direction.

(2) Find the optimum along the search direction, i.e., a
one-dimensional search.

(3) Determine a new search direction.

(4) Repeat steps (2) and (3) until the optimum is located

Two general categories for MV optimization techniques:

(1) Methods requiring derivatives of the objective function.
(2) Methods that do not require derivatives.

19



Constrained Optimization Problems

Optimization problems commonly involve equality
and inequality constraints.

Nonlinear Programming (NLP) Problems:
a. Involve nonlinear objective function (and possible
nonlinear constraints).

b. Efficient off-line optimization methods are available
(e.g., conjugate gradient, variable metric).

c. On-line use? May be limited by computer execution
time and storage requirements.
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Quadratic Programming (QP) Problems:
a. Quadratic objective function plus linear equality and
inequality constraints.

b. Computationally efficient methods are available.

Linear Programming (QP) Problems:
a. Both the objective function and constraints are
b. Solutions are highly structured and can be rapidly %)tai
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LP Problems (continued)

 Most LP applications involve more than two
variables and can involve 1000s of variables.

« S0 we need a more general computational
approach, based on the Simplex method.

 There are many variations of the Simplex method.
* One that is readily available is the Excel Solver.

Recall the basic features of LP problems:
* Linear objective function
e Linear equality/inequality constraints

21
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Linear Programming (LP)

« Has gained widespread industrial acceptance for on-line
optimization, blending etc.

e Linear constraints can arise due to:

1. Production limitation: e.g. equipment limitations, storage
limits, market constraints.

2. Raw material limitation

3. Safety restrictions: e.g. allowable operating ranges for
temperature and pressures.

4. Physical property specifications: e.g. product quality
constraints when a blend property can be calculated as
an average of pure component properties:

E:Zn:yiPi <o
i=1

22
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5. Material and Energy Balances
- Tend to yield equality constraints.
- Constraints can change frequently, e.g. daily or hourly.

o Effect of Inequality Constraints

- Consider the linear and quadratic objective functions on
the next page.

- Note that for the LP problem, the optimum must lie on one
or more constraints.

e Solution of LP Problems

- Simplex Method
- Examine only constraint boundaries
- Very efficient, even for large problems

23



Linear Programming Concepts

e For a linear process model,

@)
— y=Ku (19-18)
—
8 The standard linear programming (LP) problem can be stated as follows:
o] minimize f = 2c,-xs - (19-19)
O subject to: ' _ -
| xz0  i=1,2...Ny
. 2aijxj2'b,- i=1,2,...Ny (19:20)
s -
W : .
'_:__zllaij-xj= di i=12...Ng (19-21)

24
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Figure The effect of an inequality constraint
on the maximum of guadratic function,
fix) = a5 + a, + a,x% (The arrows

indicate the allowable values of x.)
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fix)

& x

(a) Unconstrained case, x™° — oo

flx}

M I NI O

(b) Constrained case (x < %), PASEE
The effect of a linear constraint
on the maximum of linear objective function,
f(x) = d¢ + ax.

26



Increasing profit

@) / (dashed lines)
—i
S
q) . 0‘\?;‘1
Q \,0\“
L Fi S
O igure 19.6 Operating window fora2x2
optimization problem. The dashed lines
| Profit contours are objective function contours,
: increasing from left to right. The
u' maximum profit occurs where the profit

Ui line intersects the constraints at vertex D.

27
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Crude oil #1

Crude oil #2

Costs
($24/bbl)

($15/bbl)

Sales prices

Refinery

Gasoline ($36/bbl)

—
—
——
—

Kerosene ($24/bbl)

> Fuel oil ($21/bbl)

> Residual ($10/bbl)

Figure 19.7 Refinery input and
output schematic.

28
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Table 19.3 Data for the Refinery Feeds and Products

Maximum
Volume percent yield allowal?le
production
Crude #1 Crude #2 (bbl/day)
Gasoline 80 44 24,000
Kerosene 5 10 2,000
Fuel oil 10 36 6,000
Processing cost ($/bbl) 0.50 1.00

29
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Solution

Let x1 = crude #1 (bbl/day)
Xp = crude #2 (bbl/day)

Maximize profit (minimize cost):

y = income - raw mat'l cost - proc.cost

Calculate amounts of each product

produced:

~ gasoline

kerosene
fuel o1l
residual

gasoline
kerosene
fuel oil
residual

I |

0.80 x1 + 0.44 x,
0.05 x1 + 0.10 x,
0.10 x; + 0.36 X2
0.05 x; + 0.10 x5

Income

(36)(0.80 x; + 0.44 x5)
(24)(0.05 x; + 0.10 x5)
(21)(0.10 x; + 0.36 x5)
(10)(0.05 x1 + 0.10 x3)

30
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So, .

Income = 32.6 X1 + 26.8 Xo
Raw mat'l cost = 24 x; + 15 x5
Processing cost = 0.5 x4 + xz

Then, the objectlve functlon 1s

Prof1t-y-81x1+108xz

‘Constraints

Maximum allowable production:

0.80 x1 + 0.44 x5 < 24,000 (gasoline)
0.05 x1 + 0.10 X < 2,000 (kerosene)
0.10 x7 + 0.36 X, < 6,000 (fuel oil)

and, of course, x71=0, X, =0 31
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Graphical Solution -

. Plot constraint lines on x1-X, plane.

. Determine feasible region (those

values of x; and x; that satisfy
maximum allowable production
constraints. ‘

. Find point or points in feasible region
that maximize y = 8.1 x1 + 10.8 Xx5;

this can be found by plotting the line

8.1 x; +10.8 x5 = P, where P can

vary, showing different profit levels.

32
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crude #2 (1,000 BBL)

60

40

20

.80x, + .44x, < 24,000 (A)
-05x%) + .10x, < 2,000 (B)

.10x, + .36x, < 6,000 (C)

Figure 6.4
Delineation of Feasible Region

Feasible
Region

i

—

T
20 40 60 33
crude #1 (1,000 BBL)
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From the graph,

X10Pt ~ 26,000
x,0Pt ~ 7,000

More precisely, this is the intersection of
the first two constraints, so x1°Pt and x,°pt
can be solved for simultaneously:

- 0.80 x1 + 0.44 x2 = 34,000
0.50 x1 + 0.10 x2 = 2,000

= X1°Pt = 26,200 and X70Pt = 6,900

with P =$ 286,740/day



As expected, optimum is at a corner of
the feasible region. -

Investigate the profit at the other corners:

o)

i .

EJ (X1.X2) Profit
S

W (0,16667) 180,000

(15000,12500) 256,500
(30000,0) 243,000

36
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QUADRATIC AND NONLINEAR
PROGRAMMING

The most general optimization problem occurs when both the
objective function and constraints are nonlinear, a case
referred to as nonlinear programming (NLP).

The leading constrained optimization methods include:
Quadratic programming
Generalized reduced gradient

Successive guadratic programming (SQP)
Successive linear programming (SLP)

37
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Quadratic Programming

A quadratic programming problem minimizes a quadratic function
of n variables subject to m linear inequality or equality constraints.

In compact notation, the quadratic programming problem is

. 1
Minimize f(x):ch+§xTQx (19-31)
Subject to Ax=Db
x>0 (19-32)

where c is a vector (n x 1), Ais an m x n matrix, and Q is a
symmetric n X n matrix.

38



Nonlinear Programming

‘maximize f(xl,xz, : xN,,) - | o (91)
sub]ect to: h;(x1,x2, xNV) 0 (z = 1 ., NE) s 1149
| | gg(x1, x2, .. xNV) 0 (= 1 ., N1 | - (19-_-15)- .

Constrained optimum: The optimum value of the profit is obtained
when x=x, Implementation of an active constraint is straight-
forward; for example, it is easy to keep a valve closed.
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Unconstrained flat optimum: In this case the profit is insensitive
to the value of x, and small process changes or disturbances do
not affect profitability very much.

Unconstrained sharp optimum: A more difficult problem for
Implementation occurs when the profit is sensitive to the value of x.
If possible, we may want to select a different input variable for
which the corresponding optimum is flatter so that the operating

range can be wider.
39




@))
i
| -
D
i
O
qv]
L
O

Nonlinear Programming (NLP) Example

- nonlinear objective function
- nonlinear constraints

MBG Fuel oil
X2 X1 xgl X4
Y Y
Gy Go
l’ l Figure 19.9 The allocation of two fuels in a boilerhouse with
Py o Py two turbine generators (G1, G2).

40



