Frequency Response Analysis

Sinusoidal Forcing of a First-Order Process

For a first-order transfer function with gain K and time constant t,

g the response to a general sinusoidal input, X(t) = Asinot is:
| -
Q y(t)= 2Kf\ ((m:e_t/T —mtcos ot +sin o)t) (5-25)
o 01T +1
©
6 Note that y(t) and x(t) are in deviation form. The long-time
response, Y,(t), can be written as:
Y, (t): KA sin(oot+(p)fort—>oo (13-1)
\/ 0’1 +1

where:

@ =—tan"! (o1)
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Figure 13.1 Attenuation and time shift between input and output
sine waves (K= 1). The phase angle ¢ of the output signal 1s given

by ¢ =—Time shift/ P x360°, where At is the (period) shift and P
1s the period of oscillation.




Frequency Response Characteristics of
a First-Order Process

For X(t) = Asinat, Y, (t) = Asin(ot+¢)as t — oo where:

o A= RA and ¢@=—tan" ((m:)
— \/ ®°1° +1
| -
B 1. The output signal 1s a sinusoid that has the same frequency, ©,
% as the input.signal, x(t) =Asinoot.
6 2. The amplitude of the output signal, A, is a function of the
frequency ® and the input amplitude, A:
Ao KA (13-2)
\/ 1> +1

3. The output has a phase shift, ¢, relative to the input. The
amount of phase shift depends on .
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Dividing both sides of (13-2) by the input signal amplitude A
yields the amplitude ratio (AR)

N

AR=A___K (13-3a)

A \/ 0’1’ +1
which can, 1n turn, be divided by the process gain to yield the
normalized amplitude ratio (ARN)

AR = (13-3b)

\/(021 +1



Shortcut Method for Finding
the Frequency Response

The shortcut method consists of the following steps:

Step 1. Set s=jw in G(S) to obtain G( jw).
Step 2. Rationalize G(Jo); We want to express it in the form.
G(jo)=R + |l

where R and | are functions of ®. Simplify G(jo) by
multiplying the numerator and denominator by the
complex conjugate of the denominator.
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Step 3. The amplitude ratio and phase angle of G(S) are given
by:
Memorize =

AR =vR? +12
g/):tan_l(l /R)




Example 13.1

Find the frequency response of a first-order system, with

Tjo+1 - Jot+1

1

| G(s)= p— (13-16)
g Solution
M First, substitutes = jo 1n the transfer function
QO
=S G(jo)=——=—1 (13-17)
L
O

Then multiply both numerator and denominator by the complex
conjugate of the denominator, that is,— jot +1

—jot+1 :—j(m:+1
(jor+l)(-jot+1) @*t*+1

L ()

oozrz +1 0021:2 +1

G(jc)):

=R+ jl (13-18)
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where: R= i) (13-19a)
ot +1
—OT
| = (13-19b)
w1 +1
o From Step 3 of the Shortcut Method,
i
— 2 2
o ST N
% ot +1 ot +1
SOl or
O (1+c021:2)
1
AR = 7 = (13-20a)
\(m2T2 +1) Vo2 +1
Also,

Q= tan " (LR) —tan" (—(D‘L‘) = —tan" ! ((D‘L‘) (13-20b)




Complex Transfer Functions

Consider a complex transfer G(S),

O-ghemen P
Substitute S=jo,
. Gy (jo)Gy (jo)G (jo)-- i
CU0) =5 (10)G (10)6s (jo) - 2

From complex variable theory, we can express the magnitude and
angle of G( jw) as follows:

1 [Ga((j0))|Gp (j©)||Ge (i)
G = 13-24
‘ (J(’D)‘ ‘Gl(jm)HGz(j(D)HG3(j(D)"" ( a)
£G(jo)=2£G,(jo)+ LGy (jo)+ LG, (jo)+--
—[£G,(jo)+ £G, (jo)+£G;(jw)+--]  (13-24b)
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Bode Diagrams

* A special graph, called the Bode diagram or Bode plot,
provides a convenient display of the frequency response
characteristics of a transfer function model. It consists of
plots of AR and ¢ as a function of m.

™

— e Ordinarily, ® is expressed in units of radians/time.

| -

J=B Bode Plot of A First-order System

Q.

© Recall:

= 1 B

O AR = and p=—tan~ (o1)
\/ 1 +1

e At low frequencies (m —> 0 and ot <« 1)
ARy =1 and ¢=0

e At high frequencies (o — o and ®t>>1):
ARy =1l/ot and ¢=-90
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Figure 13.2 Bode diagram for a first-order process.
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* Note that the asymptotes intersect at ® = o, =1/1, known as the
break frequency or corner frequency. Here the value of ARy
from (13-21) 1s:

1

V1+1

* Some books and software defined AR differently, in terms of
decibels. The amplitude ratio in decibels AR is defined as

AR, =20 log AR (13-33)

AR\ (0=0y)= =0.707 (13-30)
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Integrating Elements

The transfer function for an integrating element was given in

Chapter 5:
_Y(s) _K
G(S)_U(s) = (5-34)
AR =[G (jo) = AL (13-34)
jo|
¢=2G(jo)=2K—-L(0)=-90° (13-35)

Second-Order Process

A general transfer function that describes any underdamped,
critically damped, or overdamped second-order system i1s

K
G(s)= (13-40)
(5) 1% + 2015 +1

12
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Substituting S = jo and rearranging yields:

K

AR = - (13-41a)
2
\/(1—(021:2) +(2w1g)
| 2201
¢ = tan 1 2(;2 (13-41b)
1-o°T
1
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Figure 13.3 Bode diagrams for second-order processes.
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Time Delay

[ts frequency response characteristics can be obtained by
substituting S = jo,

G(jo)=e 1 (13-53)
which can be written 1n rational form by substitution of the
Euler 1dentity,

G(joo)ze_j(”e =cos 0 — jsin ®h (13-54)
From (13-54)

AR = ‘G ( jco)‘ = \/cos2 ®0 +sin’ 00 =1 (13-55)

: _ In w0
_ /G jo)=tan”![ S0 j
P (J ) ( cos ®0
or
¢ =—m0 (13-56)
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Figure 13.7 Phase angle plots for e~ and for the 1/1 and 2/2
Padé approximations (G, 1s 1/1; G, 1s 2/2).
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Process Zeros

Consider a process zero term,
G (S) = K(st+1)
Substituting S=jm gives

G(jo)) =K(Jot+1)
Thus:

AR = ‘G ( joo)‘ _ Ko +1
¢=2LG ( joo) = +tan " (0)1:)

Note: In general, a multiplicative constant (e.g., K) changes
the AR by a factor of K without affecting .

17
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Frequency Response Characteristics of
Feedback Controllers

Proportional Controller. Consider a proportional controller with
positive gain

G.(s)=K; (13-57)

In this case ‘GC ( jo))‘ = K,, which is independent of .
Therefore,

AR, =K, (13-58)
and
0. =0 (13-59)

18



Proportional-Integral Controller. A proportional-integral (PI)
controller has the transfer function (cf. Eq. 8-9),

G, (s)=K, (1+Lj = KCLT'SHj (13-60)

o T|S T|S
:' Substitute s=jm:
= |
- (N T B,
— T J(D J(DT| T|(D
O Thus, the amplitude ratio and phase angle are:
2
_ 1 \/(oor| )" +1
AR, =G (jo)| =K, [1+ - =K, (13-62)
((DT| ) T

0, = LG, (jo)=tan"' (-1/@1) )=tan"' (@1, )=90°  (13-63)

19
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Figure 13.9 Bode plot of a PI controller, G, (s) = 2(

10s
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Ideal Proportional-Derivative Controller. For the ideal
proportional-derivative (PD) controller (cf. Eq. 8-11)

G.(s) =K (1+1ps) (13-64)

The frequency response characteristics are similar to those of a
LHP zero:

AR = Kq(tp ) +1 (13-65)

q):tan_l((mD) (13-66)

Proportional-Derivative Controller with Filter. The PD
controller 1s most often realized by the transfer function

G, (s)= KC( tpS*l j (13-67)

(XTDS+1

21
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Figure 13.10 Bode
plots of an 1deal PD
controller and a PD
controller with
derivative filter.

Idea: G (s)=2(4s+1)

With Derivative
Filter:

45 +1
GC(S):2(0.43+1J
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PID Controller Forms

Parallel PID Controller. The simplest form in Ch. 8 is

G.(s)=K; (1+$+’CDSJ

Series PID Controller. The simplest version of the series PID
controller 1s

G, (s)= KC(T18+1](TDS+1) (13-73)
TS

Series PID Controller with a Derivative Filter.

GC(S):KC TIS+1 TDS+1
TS atpS+1

23
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Nyquist Diagrams

Consider the transfer function

with
1

J2o) 41

AR =[G (jo)| =

and

¢=2G(jo)= —tan ™! (20)

(13-76)

(13-77a)

(13-77b)

25
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Figure 13.12 The Nyquist diagram for G(s) = 1/(2s+ 1)
plotting Re(G ( j(o)) and Im(G ( j(o))

Real

> part
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Real part

Figure 13.13 The Nyquist diagram for the transfer
function in Example 13.5:

—6S
G(s) = 5(8s+1)e
(20s+1)(4s+1)
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