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Control of Multiple-Input, Multiple-
Output (MIMO) Processes

18.1 Process Interactions and Control Loop Interactions
18.2 Pairing of Controlled and Manipulated Variables
18.3 Singular Value Analysis

18.4 Tuning of Multiloop PID Control Systems

18.5 Decoupling and Multivariable Control Strategies

18.6 Strategies for Reducing Control Loop Interactions



Control of Multivariable Processes

 In practical control problems there typically are a
number of process variables which must be controlled
and a number which can be manipulated.

Example: product quality and throughput
must usually be controlled.
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o Several simple physical examples are shown in Fig.
18.1.

Note the "process interactions" between controlled and
manipulated variables.
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« Controlled Variables: x,,x,,P,h,,and A,
e Manipulated Variables: D,B,R,0p,and Qp

Note: Possible multiloop control strategies = 5! = 120
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Figure 18.8. Controlled and manipulated variables for a typical distillation column. S




¢ In this chapter we will be concerned with characterizing process
Interactions and selecting an appropriate multiloop control
configuration.

e If process interactions are significant, even the best multiloop
control system may not provide satisfactory control.

¢ In these situations there are incentives for considering
multivariable control strategies.

Definitions:
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 Multiloop control: Each manipulated variable depends on
only a single controlled variable, i.e., a set of conventional
feedback controllers.

 Multivariable Control: Each manipulated variable can depend
on two or more of the controlled variables.

Examples: decoupling control, model predictive control 6




Multiloop Control Strategy

« Typical industrial approach
» Consists of using n standard FB controllers (e.g., PID), one for
each controlled variable.

« Control system design

1. Select controlled and manipulated variables.
2. Select pairing of controlled and manipulated variables.
3. Specify types of FB controllers.

Example: 2 x 2 system

00)
i
| -
D
i
O
qv]
L
O

rocess
UE'_' _-'-YE

Two possible controller pairings:
U, with Y, U, with Y, (1-1/2-2 pairing)
or
U, with Y, U, with Y, (1-2/2-1 pairing)

Note: For n x n system, n! possible pairing configurations.




Transfer Function Model (2 x 2 system)

Two controlled variables and two manipulated variables
(4 transfer functions required)

(00)

]

CT) ()]71((2)) =Gp (), 5((2))26;1012(5)

— 1 ’ (18-1)
Q. Y,(s) _ Y,(s)

g Ul(S)_szl(S)’ Uz(S)_szz(S)

Thus, the input-output relations for the process can be
written as:

Yi(5)=Gp(S)U(5)+Gpp(s)U,(s) (18_2)
Y,(s)=Go (s)U,(s)+Gp,(s)U,(s) (18-3)




Or In vector-matrix notation as,

Y(s)=G,(s)U(s) (18—4)
°£| where ¥(s) and U(s) are vectors,
3 [(s)] _[Uis) .
% Y(s)—_YZ(S)_ U(S)—_UZ(S)_ (18—5)
c
O

And G (s) Is the transfer function matrix for the process

| Gpii(s) Gppa(s) -
GP(S)__GP21(S) Gpoa(s) (18-6)
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Control-loop Interactions

« Process interactions may induce undesirable
Interactions between two or more control loops.

Example: 2 x 2 system
Control loop interactions are due to the presence

of a third feedback loop.

* Problems arising from control loop interactions
I. Closed-loop system may become destabilized.
ll. Controller tuning becomes more difficult.

11
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Figure 18.4. The hidden feedback control loop (in dark lines) for a 1-1/2-2 controller pairing.

12
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Block Diagram Analysis

For the multiloop control configuration, the transfer
function between a controlled and a manipulated variable
depends on whether the other feedback control loops are
open or closed.

Example: 2 x 2 system, 1-1/2 -2 pairing
From block diagram algebra we can show
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I(S)
! =Gp((S), second loop open) (18-7)
lrl(S) Pl1 ( P Op )

Yi(s) -G _ Gp1nGpy Gy
U(s) ™ 1+G.,Gpy,

Note that the last expression contains G.,.

(second loop closed) (18-11)

14
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18.1.2 Closed-Loop Stability

To evaluate the effects of control loop interactions further, again consider the block diagram for the

1-1/2-2 control scheme in Fig. 18.3a. Using block diagram algebra (see Chapter 11), we can derive the
following expressions relating controlled variables and set points:

Y1 =T11Ysp1 + T2Ysp (18-13)
Y2 = P21Ysp1 + FZZYspZ (18-14)

where the closed-loop transfer functions are

GaGpi1 + GaGeGp11Gpz2 — Gp12Gon1)

Ty = 0 (18-15)
GG
— ¢ "
1’12‘ As) (18-16)
Ga1Gpat
{ =] c -
I'n AG) (18-17)
Iy = GoGpn + GaGeGp1iGp2 — Gp12Gp21) (18-18)
A(s)
and A(s) is defined as
A(s) = (1 + GaGp1)(1 + GaaGp») — GaGeGpi2Gun (18-19)

Two important conclusions can be drawn from these closed-loop relations, First, a set-point change
in one loop causes both controlled variables to change because I'12 and I'z; are not zero, in general.
The second conclusion concerns the stability of the closed-loop system. Because each of the four
closed-loop transfer functions in Egs. 18-15 to 18-18 has the same denominator, the characteristic
equation is A(s) = 0, or

(1 + GaGpu)(1 + GaGpaz) — GaGeaGp12Gpa1 = 0 (18-20)

Thus, the stability of the closed-loop system depends on both controllers, Ge1 and G2, and all four
process transfer functions. An analogous characterlsllc equation can be derived for the 1-2/2-1 control
scheme in Fig. 18.35.

For the special case where either Gp12 = 0 or Gpat = 0, the characteristic equation in Eq. 18-20 re-
duces to

(1 + GaGp1)(1 + GaGyz) = 0 ' (18-21)

For this situation, the stability of the overall system merely depends on the stability of the two individ-
ual feedback control loops and their characteristic equations.

1+ GaGpuu=0 and 1+ GaGp=0 (18-22)

15
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EXAMPLE 18.2

SOLUTION

Consider a process that can be described by the transfer function matrix (Gagnepain and Se-
borg, 1982):

Assume that two proportional feedback controllers are to be used so that Gy = K and G2 =
K. Determine the values of K and K that result in closed-loop stability for both the 1-1/2-2
and 1-2/2-1 configurations.

The characteristic equation for the cldéed—loop system is obtained by substitution into Eq. 18-20
and collecting powers of s as follows:

ass*+ass* + axs? +ais +ag =0 (18-23)

where a4 = 100
as = 20K + 20Kz + 220
a» = 42K + 42K — 221 KgKe + 141
ar = 24K, + 24K + 8KaKe + 22
ao=2Ka + 2K + 175 KaKea + 1

Note that the characteristic equation in (18-23) is fourth order, even though each individual
transfer function in Gp(s) is first order.

The controller gains that result in a stable closed-loop system can be determined by applying
the Routh stability criterion (Chapter 11) for specified values of K1 and K. The resulting sta-
bility regions are shown in Fig. 18.6. If either K. or K., is close to zero, the other controller
gain can be an arbitrarily large, positive value and still have a stable closed-loop system. This
result is a consequence of having process transfer functions that are first order without time
delay, which is an idealistic case. MIMO control systems normally have an upper bound for sta-
bility for both controller gains for all values of K.

A similar stability analysis can be performed for the 1-2/2-1 control configuration. The calcu-
lated stability regions are shown in Fig. 18.7. A comparison of Figs. 18.6 and 18.7 indicates that
the 1-2/2-1 control scheme results in a larger stability region because a wider range of controller
gains can be used. For example, suppose that K. = 2. Then Fig. 18.6 indicates that the 1-1/2-2
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Figure 18.6. Stability region for Example 18.2 with 1-1/2-2 controller pairing

17




§

00)
i
| -
D
i
O
qv]
L
O

////-141 2 3 4 5 6

Figure 18.7. Stability region for Example 18.2with 1-2/2-1 controller pairing




Relative Gain Array

- Provides two types of useful information:
1. Measure of process interactions
2. Recommendation about best pairing of
controlled and manipulated variables.
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 Requires knowledge of steady-state gains
but not process dynamics.

19




Example of RGA Analysis: 2 x 2 system

o Steady-state process model,
=Ky + Kppuy
Vo = Koy + Kyouy
The RGA, A, is defined as:

A:{lll /112}
b1 A

where the relative gain, 2, relates the i controlled
variable and the j™ manipulated variable

P (5%'/8’“‘]’) open-loop gain

v (ayl./auj) ~ closed-loop gain
4 20
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u __

(18—24)
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Scaling Properties:

.. 2 Is dimensionless

1. Z}\'ij :ZKU =1.0
i J
For a2 x 2 system,
1
A1 = KKy A =1-41 =4y (18-34)
K11K9

Recommended Controller Pairing

It corresponds to the A; which have the largest
positive values that are closest to one.

21
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In general:
1. Pairings which correspond to negative pairings should
not be selected.
2. Otherwise, choose the pairing which has A; closest

to one.
Examples:

Process Gain Relative Gain

Matrix, K : Array, A :

K, O } N (1 0]

| 0 Ky 10 1]

0 K12_ _O 1_

Ky 0 | — -

Ky Ky | p— (1 0]

L 0 K22 _O 1_

(K 0 | B 7

Kll p :> 1 O

| 21 22 | O 1

22



For 2 x 2 systems:

J’1:K11”1+K12U2 A = X K.’ Ay =1-A =4y
121821

vy = Ky + Kyu, K 1Ky,
Example 1:
O£| P
_ K:{KH Klz}{ 2 1.5}
K K :
8 21 Ko 1.5 2
(@
f__(S 799 _1.29 Recommended pairing is Y,
S {_1029 2.29} and U,, Y, and U..

Example 2:
-2 1.5 0.64 0.36
K = = A=
1.5 2 0.36 0.64

Recommended pairing is Y, with U, and Y, with U.,. 93
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EXAMPLE: Thermal Mixing System

5%
14

Wi

T o

9.

The RGA can be expressed in two equivalent forms:

i w, w. i i
T-T. T,-T
d 1T. -1T. T,-T d
K = hZe hTe and A=
T,-T T-T.
T T
1, -1, T,—-1,. i

w, W,

W, W
w.+w, W.+W,
W W,
w.+w, W.+W,

Note that each relative gain is between 0 and 1. The recommended
controller pairing depends on nominal values of T, T,,, and T..

24



RGA for Higher-Order Systems

For and n x n system,

U u, ou,

it Ay o A
A= T (18-25)

yn _ﬂ'nl ﬂnl ﬂ’nn_

Each 2; can be calculated from the relation,
Ay = Ky H (18-37)
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where Kl-j is the (i,j) -element of the steady-state gain K matrix,
y = Ku

T
H; is the (i,j) -element of the H =(K'1)

Note : A?’—'KH
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Example: Hydrocracker

The RGA for a hydrocracker has been reported as,

34|
Y2
V3
Y4

Y
0.931
—0.011

—-0.135

| 0.215

U Us

0.150 0.080
—0.429 0.286

3.314 -0.270

—-2.030 0.900

Recommended controller pairing?

Uy .
—0.164
1.154

—-1.910

1.919

26
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Singular Value Analysis

Any real m x n matrix can be factored as,
K=wxVv
Matrix 2 is a diagonal matrix of singular values:
2 =diag (o4, 05, ..., C))
The singular vaIuTes are the positive square roots of the
eigenvalues of K K ( » = the rank of K K).
The columns of matrices W and V are orthonormal. Thus,
wWWw =I and VV' =1
Can calculate 2, W, and V using MATLAB command, svd.

Condition number (CN) is defined to be the ratio of the largest
to the smallest singular value,

CN A°%1

O

A large value of CN indicates that K is ill-conditioned.
27
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Condition Number

* CN 1s a measure of sensitivity of the matrix properties to
changes 1n individual elements.

* Consider the RGA for a 2x2 process,

1 O
K = = A=1
{10 1}

 If K;, changes from 0 to 0.1, then K becomes a singular
matrix, which corresponds to a process that 1s difficult to
control.

 RGA and SVA used together can indicate whether a process
1s easy (or difficult) to control.

0.1 0
E(K)_{o 0.1

* K is poorly conditioned when CN 1s a large number
(e.g.,> 10). Thus small changes in the model for this
process can make it very difficult to control.

} CN =101

28



Selection of Inputs and Outputs

* Arrange the singular values in order of largest to
smallest and look for any o/0, ; > 10; then one or
more 1nputs (or outputs) can be deleted.

 Delete one row and one column of K at a time and
evaluate the properties of the reduced gain matrix.

« Example:
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048 0.90 —-0.006
K=|052 095 0.008
10.90 -0.95 0.020 |

29




0.5714 0.3766  0.7292
W= 0.6035 04093 -0.6843
-0.5561 0.8311 0.0066

1.618 0 0 0.0541 09984 0.0151
>=| 0 1.143 0 V=] 09985 -0.0540 -0.0068
0 0 0.0097 —0.0060  0.0154 -0.9999

CN =166.5 (0,/0;)

The RGA is: ) .
—2.4376  3.0241 0.4135

A = 1.2211 -0.7617 0.5407
| 22165 —1.2623 0.0458
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Preliminary pairing: y,-u,, y,-us, ys-u,.

CN suggests only two output variables can be controlled. Eliminate one
input and one output (3x3—2x2).
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Table 18.3 CN and A for Diffarent 2 X 2 Pairings, Example 18.7

Nunber Varinbles Yariables CN A
1 MR uy, 4 184 3.0
2 M B, N 20 0.552
3 ] g, U3 133 0.558
4 M, 78 Mz, W1 151 0.640
5 LA 1, W3 0.4 0.640
6 .8 ) Ha, Wy 139 1463
7 ¥, V8 4y, W1 1.45 0.634
8 Yh¥s W1, b3 338 325
g ¥, ¥3 H3, B §1.9 0.714
Question:

How sensitive are these results to the scaling of inputs and
outputs?

31



Alternative Strategies for Dealing with Undesirable
Control Loop Interactions

1. "Detune" one or more FB controllers.

2. Select different manipulated or controlled variables.
e.g., nonlinear functions of original variables

3. Use a decoupling control scheme.

4. Use some other type of multivariable control scheme.

Decoupling Control Systems

e Basic Idea: Use additional controllers to compensate for
process interactions and thus reduce control loop interactions
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e |deally, decoupling control allows setpoint changes to affect
only the desired controlled variables.

e Typically, decoupling controllers are designed using a simple
process model (e.g., a steady-state model or transfer function
model)

32
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Figure 18.9 A decoupling control system. |
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Decoupler Design Equations

We want cross-controller, T,,, to cancel the effect of U, on Y.
Thus, we would like,

1,G6,,U, +G,,U, =0 (18 - 79)

O£| Because U,, # 0 in general, then
@ 1, =S (18—80)
O Gpy)
B Similarly, we want T,, to cancel the effect of U, on Y,. Thus, we
6 require that,

TzlezzUn +GP21U11 =0 (18_76)

LT, = Zr (18— 78)

GP22

Compare with the design equations for feedforward control based on
block diagram analysis 34
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Variations on a Theme

1. Partial Decoupling:
Use only one “cross-controller.”

2. Static Decoupling:
Design to eliminate SS interactions
|deal decouplers are merely gains:

K

T, = ——20 18-85

N KPll ( )
K

T, =——*=2 18—-86

B szz ( )

3. Nonlinear Decoupling
Appropriate for nonlinear processes.

35



Wood-Berry Distillation Column Model
(methanol-water separation)

q &
FeedF: ‘|‘@€Z¥Z) @=

Reflux R Distillate D,
composition (wt. %) X,

@ Steam S

T L@ Bottoms B,

composition (wt. %) Xp
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Wood-Berry Distillation Column Model

12.8¢°  —18.9¢7 |

|:y1 (S):| ) 16.7s +1 21s +1 |:u1 (S):|
V2 () Uy ()

(18—-12)

6.6e "5  —19.4¢°
1109s+1  14.4s+1 |

where:
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¥| = xp = distillate composition, %eMeOH
¥y, = xp = bottoms composition, %MeOH
u; = R =reflux flow rate, 1b/min

u; = S =reflux flow rate, Ib/min
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Figure 19.13. An experimental application of decoupling (noninteracling) control to a

distillation column {3].



