Enhanced Single-Loop Control Strategies

Cascade control

Time-delay compensation
Inferential control
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Example: Cascade Control

Feed Reactor
in temperature
- set point
o) Wat f (master)
ater
i surge I
tank | Jacket
—
Q @_ | temperature
| set point
5 | [I__D (slave)
s Reactor __ .
Cooling
L water = I
O out I

Product )-@ .

Cooling
water
makeup

Circulation
pump

Figure 16.3 Cascade control of an exothermic chemical reactor.
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(%) Figure 16.1 A furnace
Cold oil > - Fuel gas temperature control scheme that

uses conventional feedback
Furnace control.




O
i
| -
D
i
O
qv]
L
O

|
I
Stack gas I
1 I Set point
I
I

|
Hc_)t < @ I
oil
Cold ‘:—_)) |
> < <— Fuel gas

oil

Furnace
Figure 16.2 A furnace temperature control scheme using cascade control.
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Cascade Control

Distinguishing features:

. Two FB controllers but only a single control

valve (or other final control element).

. Output signal of the "master" controller is the

set-point for “slave" controller.

. Two FB control loops are "nested" with the

"slave" (or "'secondary") control loop inside
the "master" (or "primary") control loop.

Terminology:
slave vs. master
secondary vs. primary
Inner vs. outer
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Figure 16.4 Block diagram of the cascade control system.
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Yo SeiCaz (16-5)
D2 1+GchvaZGm2 +GcleCZGvaZGple1

Y; = hot oil temperature

Y, = fuel gas pressure

D, = cold oil temperature (or cold oil flow rate)
D, = supply pressure of gas fuel

Y; = measured value of hot oil temperature
Yo = measured value of fuel gas temperature

Ysp

~

Ysp2 = set point for Y,

L = set point for Y,



Example 16.1

Consider the block diagram in Fig. 16.4 with the following

transfer functions:
5 4
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0 5 10 15 20 25 30 Figure 16.5 A comparison of Dy unit step responses
Time (min) with and without cascade control.
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Example 16.2
Compare the set-point responses for a second-order process with a time delay

(min) and without the delay. The transfer function is

e—Hs

(5s+1)(3s+1)

G,(s) = (16 -18)

Assume G, =G,=1and time constants in minutes. Use the following PI
controllers. For 6=0 K;=3.02andz =6.5 min, while for g=2 min the controller
gain must be reduced to meet stability requirements (K; =123,3 =7.0min).
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0 10 | 20 | 30 %0 Figure 16.7 A comparison of closed-loop set-point
Time (min) changes.
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— Y-Y>  Figure 16.8 Block diagram of
% the Smith predictor.
— E'=E-Y; =Yg -V, (Y -Y) (16-19)
O If the process model is perfect and the disturbance is zero, then YN2 =Y and
E' =Y, Y (16-20)

For this ideal case the controller responds to the error signal that would occur if not time
were present. Assuming there is not model error (G:G), the inner loop has the effective
transfer function

P G

° :E:1+GCG*(1—e—93)

(16— 21)
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Figure 16.9 An alternative block diagram
of a Smith predictor.

For no model error: G=G=G ¢’
GC

G, =

" 146G (1-e7*)

Y  GGe®” GG
Yo 1+G.G e 1+G.G

By contrast, for conventional feedback control
Y G G*
Yop 1+G.G*e ¥

(16 - 23)
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Figure 16.10 Closed-loop set-point
change (solid line) for Smith predictor
with 6 = 2. The dashed line is the
response for 6 = 0 from Fig. 16.7.
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14




O
i
| -
D
i
O
qv]
L
O

Inferential Control

 Problem: Controlled variable cannot be measured or has
large sampling period.

e Possible solutions:
1. Control a related variable (e.g., temperature instead
of composition).
2. Inferential control: Control is based on an estimate

of the controlled variable.

 The estimate is based on available measurements.
— Examples: empirical relation, Kalman filter

 Modern term: soft sensor

15
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Inferential Control with Fast and Slow
Measured Variables

Set
point

Disturbance

Controller

4)(4%)— Process

Inferential | Xm Secondary | Fast sampling, X
model measurement
A
Ym Primary Slow sampling
measurement,

Figure 16.12 Soft sensor block
diagram used in inferential
control.

16



O
i
| -
D
i
O
qv]
L
O

Selective Control Systems & Overrides

 For every controlled variable, it is very desirable that
there be at least one manipulated variable.

« But for some applications,

Ne >Ny
where:

No = number of controlled variables

Ny, = number of manipulated variables

« Solution: Use a selective control system or an override.

17
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Vi
e Low selector: é ;
L, 1

Z = Minimumof Xand Y

« High selector: é_,‘_,z

Z = Maximumof Xand Y

» Median selector:

* The output, Z, is the median of an odd number of inputs

18



Example: High Selector Control System

8 Thermocouple High selector _ To

signals 4 _@_ _____ ———).@—_—cuntru'l
— (from reactor) valve
(D) Controller Current
4 to pressure
% ~ 410 W _} transducer

& -

6 Transmitters

Figure 16.13. Control of a reactor hot spot temperature by using a high selector.

o multiple measurements
e one controller
e one final control element
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Variable speed pump pond)

Figure 16.15. A selective control system to handle a sand/water siurry.

2 measurements, 2 controllers,
1 final control element
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Overrides

An override Is a special case of a selective control
system

One of the inputs Is a numerical value, a limit.

Used when it Is desirable to limit the value of a
signal (e.g., a controller output).

Override alternative for the sand/water slurry
example?

21



Reactor
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Nonlinear Control Strategies

Most physical processes are nonlinear to some degree. Some are very
nonlinear.

Examples: pH, high purity distillation columns, chemical reactions
with large heats of reaction.

However, linear control strategies (e.g., PID) can be effective if:

1. The nonlinearities are rather mild.
or,

2. A highly nonlinear process usually operates over a narrow range of
conditions.

For very nonlinear strategies, a nonlinear control strategy can provide
significantly better control.
Two general classes of nonlinear control:

1. Enhancements of conventional, linear, feedback control
2. Model-based control strategies
Reference: Henson & Seborg (Ed.), 1997 book.

23
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Enhancements of Conventional Feedback Control

We will consider three enhancements of conventional feedback control:
1. Nonlinear modifications of PID control
2. Nonlinear transformations of input or output variables
3. Controller parameter scheduling such as gain scheduling.

Nonlinear Modifications of PID Control:

» One Example: nonlinear controller gain

Ke =Keo(1+a]e(t)|) (16-26)
* K.pand a are constants, and e(t) is the error signal (e = Ysp - y).

» Also called, error squared controller,

Question: Why not use u oc e%(t) instead of u oc|e(t)]e(t)?

« Example: level control in surge vessels.

24
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Nonlinear Transformations of Variables

* Objective: Make the closed-loop system as linear as possible. (Why?)

 Typical approach: transform an input or an output.

Example: logarithmic transformation of a product composition in a high
purity distillation column. (cf. McCabe-Thiele diagram)

X5 =log ~—D (16-27)
o XDsp

where x*, denotes the transformed distillate composition.

» Related approach: Define u or y to be combinations of several
variables, based on physical considerations.

Example: Continuous pH neutralization
CVs: pH and liquid level, h
MVs: acid and base flow rates, g, and g
» Conventional approach: single-loop controllers for pH and h.

« Better approach: control pH by adjusting the ratio, q, / qg, and
control h by adjusting their sum. Thus,

Uj=0a/0g and U,=0n/0p

25



Gain Scheduling

* Objective: Make the closed-loop system as linear as possible.

« Basic Idea: Adjust the controller gain based on current measurements of
a “scheduling variable”, e.g., u, Yy, or some other variable.
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Figure 16.17 A gain-scheduled proportional controller with a
controller gain that is piecewise constant.

Note: Requires knowledge about how the process gain changes with this
measured variable.
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Examples of Gain Scheduling

« Example 1. Titration curve for a strong acid-strong base neutralization.

« Example 2. Once through boiler
The open-loop step response are shown in Fig. 16.18 for two
different feedwater flow rates.

50% flow

O
i N .
eam -
- ——_ 100% flow Fig. 16.18 Open-loop responses.
&)
o
o /
® .
c Time
@) » Proposed control strategy: Vary controller setting with w, the fraction of
full-scale (100%) flow.
KC = WKC’ T = Z_'| /W, Tp = ZTD /W, (16'30)
» Compare with the IMC controller settings for Model H in Table 12.1:
7] T + 0
j— S -
Model H : G(s) = ke : KC:i 2 T =T +Q, Tp = i
s + 1 K 0 2 2r + 0
T, + >
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Adaptive Control

A general control strategy for control problems where the process or
operating conditions can change significantly and unpredictably.

Example: Catalyst decay, equipment fouling

Many different types of adaptive control strategies have been proposed.
Self-Tuning Control (STC):

— A very well-known strategy and probably the most widely used adaptive
control strategy.
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— Basic idea: STC is a model-based approach. As process conditions change,
update the model parameters by using least squares estimation and recent u &
y data.

Note: For predictable or measurable changes, use gain scheduling
instead of adaptive control

Reason: Gain scheduling is much easier to implement and less trouble
prone.

28



Block Diagram for Self-Tuning Control

Controller < Parameter estimates

calculation :
| I
O | |
— | .
Controll | Input Process model
S qu.m ol P—————— > parameter
D settings | I estimation
(@B | ! |
40 y | | Output
= Ysp E P | I Y
O Controller ——L—> Process A >

Figure 16.23 A block diagram for self-tuning
control.
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