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Feedforward and Ratio Control
In Chapter 8 is was emphasized that feedback control is an 
important technique that is widely used in the process industries. 
Its main advantages are as follows.

1. Corrective action occurs as soon as the controlled variable 
deviates from the set point, regardless of the source and type 
of disturbance.

2. Feedback control requires minimal knowledge about the 
process to be controlled; it particular, a mathematical model 
of the process is not required, although it can be very useful 
for control system design.

3. The ubiquitous PID controller is both versatile and robust. If 
process conditions change, retuning the controller usually 
produces satisfactory control.
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However, feedback control also has certain inherent 
disadvantages:

1. No corrective action is taken until after a deviation in the 
controlled variable occurs. Thus, perfect control, where the 
controlled variable does not deviate from the set point during 
disturbance or set-point changes, is theoretically impossible.

2. Feedback control does not provide predictive control action 
to compensate for the effects of known or measurable 
disturbances.

3. It may not be satisfactory for processes with large time 
constants and/or long time delays. If large and frequent 
disturbances occur, the process may operate continuously in a 
transient state and never attain the desired steady state.

4. In some situations, the controlled variable cannot be 
measured on-line, and, consequently, feedback control is not 
feasible.
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Introduction to Feedforward Control
The basic concept of feedforward control is to measure important 
disturbance variables and take corrective action before they upset 
the process. Feedforward control has several disadvantages:

1. The disturbance variables must be measured on-line. In many 
applications, this is not feasible.

2. To make effective use of feedforward control, at least a crude 
process model should be available. In particular, we need to 
know how the controlled variable responds to changes in both 
the disturbance and manipulated variables. The quality of 
feedforward control depends on the accuracy of the process 
model.

3. Ideal feedforward controllers that are theoretically capable of 
achieving perfect control may not be physically realizable. 
Fortunately, practical approximations of these ideal controllers
often provide very effective control.
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Figure 15.2 The feedback control of the liquid level in a boiler
drum.
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• A boiler drum with a conventional feedback control system is 
shown in Fig. 15.2. The level of the boiling liquid is measured 
and used to adjust the feedwater flow rate.

• This control system tends to be quite sensitive to rapid changes
in the disturbance variable, steam flow rate, as a result of the
small liquid capacity of the boiler drum.

• Rapid disturbance changes can occur as a result of steam 
demands made by downstream processing units.

The feedforward control scheme in Fig. 15.3 can provide better 
control of the liquid level. Here the steam flow rate is 
measured, and the feedforward controller adjusts the feedwater
flow rate.
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Figure 15.3 The feedforward control of the liquid level in a 
boiler drum.
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• In practical applications, feedforward control is normally used 
in combination with feedback control. 

• Feedforward control is used to reduce the effects of measurable 
disturbances, while feedback trim compensates for inaccuracies 
in the process model, measurement error, and unmeasured 
disturbances.
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Figure 15.4 The feedfoward-feedback control of the boiler 
drum level.
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Ratio Control
• Ratio control is a special type of feedforward control that has 

had widespread application in the process industries. 

• The objective is to maintain the ratio of two process variables 
as a specified value. 

• The two variables are usually flow rates, a manipulated 
variable u, and a disturbance variable d. 

• Thus, the ratio

(15-1)uR
d

=

is controlled rather than the individual variables. In Eq. 15-1, 
u and d are physical variables, not deviation variables.
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Typical applications of ratio control:

1. Setting the relative amounts of components in blending 
operations

2. Maintaining a stoichiometric ratio of reactants to a reactor

3. Keeping a specified reflux ratio for a distillation column

4. Holding the fuel-air ratio to a furnace at the optimum value.
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Figure 15.5 Ratio control, Method I.
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• The main advantage of Method I is that the actual ratio R is 
calculated.

• A key disadvantage is that a divider element must be included 
in the loop, and this element makes the process gain vary in a 
nonlinear fashion. From Eq. 15-1, the process gain

1 (15-2)p
d

RK
u d
∂ = = ∂ 

is inversely related to the disturbance flow rate d. 

• Because of this significant disadvantage, the preferred scheme 
for implementing ratio control is Method II, which is shown in  
Fig. 15.6. 
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Figure 15.6 Ratio control, Method II
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• Regardless of how ratio control is implemented, the process 
variables must be scaled appropriately. 

• For example, in Method II the gain setting for the ratio station
Kd must take into account the spans of the two flow 
transmitters.

• Thus, the correct gain for the ratio station is

(15-3)d
R d

u

SK R
S

=

where Rd is the desired ratio, Su and Sd are the spans of the 
flow transmitters for the manipulated and disturbance streams, 
respectively.
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Example 15.1
A ratio control scheme is to be used to maintain a stoichoimetric
ratio of H2 and N2 as the feed to an ammonia synthesis reactor. 
Individual flow controllers will be used for both the H2 and N2
streams. Using the information given below, do the following:

a) Draw a schematic diagram for the ratio control scheme.

b) Specify the appropriate gain for the ratio station, KR.
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Available Information

i. The electronic flow transmitters have built-in square root 
extractors. The spans of the flow transmitters are 30 L/min for 
H2 and 15 L/min for N2. 

ii. The control valves have pneumatic actuators.

iii. Each required current-to-pressure (I/P) transducer has a gain 
of 0.75 psi/mA.

iv. The ratio station is an electronic instrument with 4-20 mA
input and output signals.

Solution

The stoichiometric equation for the ammonia synthesis reaction is

2 2 33H N 2NH+
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In order to introduce the feed mixture in stoichiometric
proportions, the ratio of the molar flow rates (H2/N2) should be 
3:1. For the sake of simplicity, we assume that the ratio of the
molar flow rates is equal to the ratio of the volumetric flow rates. 
But in general, the volumetric flow rates also depend on the 
temperature and pressure of each stream (cf., the ideal gas law).

a) The schematic diagram for the ammonia synthesis reaction is 
shown in Fig. 15.7. The H2 flow rate is considered to be the 
disturbance variable, although this choice is arbitary because 
both the H2 and N2 flow rates are controlled. Note that the ratio 
station is merely a device with an adjustable gain. The input 
signal to the ratio station is dm, the measured H2 flow rate. Its 
output signal usp serves as the set point for the N2 flow control 
loop. It is calculated as usp = KRdm.
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Figure 15.7 Ratio control scheme for an ammonia synthesis 
reactor of Example 15.1



19

C
ha

pt
er

 1
5

b) From the stoichiometric equation, it follows that the desired 
ratio is Rd = u/d = 1/3. Substitution into Equation 15-3 gives:

1 30 L / min 2
3 15 L / min 3RK

  = =    

Feedforward Controller Design Based on 
Steady-State Models
• A useful interpretation of feedforward control is that it 

continually attempts to balance the material or energy that must
be delivered to the process against the demands of the load.

• For example, the level control system in Fig. 15.3 adjusts the 
feedwater flow so that it balances the steam demand.

• Thus, it is natural to base the feedforward control calculations 
on material and energy balances.
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Figure 15.8 A simple schematic diagram of a distillation 
column.
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• To illustrate the design procedure, consider the distillation 
column shown in Fig. 15.8 which is used to separate a binary 
mixture. 

• In Fig. 15.8, the symbols B, D, and F denote molar flow rates, 
whereas x, y, and z are the mole fractions of the more volatile 
component.

• The objective is to control the distillation composition, y, 
despite measurable disturbances in feed flow rate F and feed 
composition z, by adjusting distillate flow rate, D. 

• It is assumed that measurements of x and y are not available.

The steady-state mass balances for the distillation column can be 
written as

(15-4)
(15-5)z

F D B
F Dy Bx
= +
= +
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Solving (15-4) for D and substituting into (15-5) gives

( )
(15-6)

F z x
D

y x
−

=
−

Because x and y are not measured, we replace these variables by 
their set points to yield the feedforward control law:

( )
(15-7)sp

sp sp

F z x
D

y x
−

=
−
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Blending System

• Consider the blending system and feedforward controller shown 
in Fig. 15.9. 

• We wish to design a feedforward control scheme to maintain 
exit composition x at a constant set point xsp, despite 
disturbances in inlet composition, x1. 

• Suppose that inlet flow rate w1 and the composition of the other 
inlet stream, x2, are constant. 

• It is assumed that x1 is measured but x is not. 
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Figure 15.9 Feedforward control of exit composition in the 
blending system.
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The starting point for the feedforward controller design is the 
steady-state mass and component balances,

1 2 (15-8)w w w= +

1 1 2 2 (15-9)w x w x w x= +

where the bar over the variable denotes a steady-state value. 
Substituting Eq. 15-8 into 15-9 and solving for       gives:2w

1 1
2

2

( ) (15-10)w x xw
x x

−
=

−

In order to derive a feedforward control law, we replace     by xsp,
and      and , by w2(t) and x1(t), respectively:

x
2w 1x

1 1
2

2

( )
( ) (15-11)sp

sp

w x x t
w t

x x
 − =

−

Note that this feedforward control law is based on the physical 
variables rather than on the deviation variables.
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• The feedforward control law in Eq. 15-11 is not in the final 
form required for actual implementation because it ignores 
two important instrumentation considerations: 

• First, the actual value of x1 is not available but its measured 
value, x1m, is. 

• Second, the controller output signal is p rather than inlet flow 
rate, w2.

• Thus, the feedforward control law should be expressed in 
terms of x1m and p, rather than x1 and w2. 

• Consequently, a more realistic feedforward control law should 
incorporate the appropriate steady-state instrument relations 
for the w2 flow transmitter and the control valve. (See text.)
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Feedforward Controller Design Based on 
Dynamic Models
In this section, we consider the design of feedforward control 
systems based on dynamic, rather than steady-state, process 
models.

• As a starting point for our discussion, consider the block 
diagram shown in Fig. 15.11.

• This diagram is similar to Fig. 11.8 for feedback control but 
an additional signal path through Gt and Gf has been added.
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Figure 15.11 A block diagram of a feedforward-feedback control 
system.
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The closed-loop transfer function for disturbance changes is:

( )
( )

(15-20)
1

d t f v p

c v p m

G G G G GY s
D s G G G G

+
=

+

Ideally, we would like the control system to produce perfect 
control where the controlled variable remains exactly at the set 
point despite arbitrary changes in the disturbance variable, D. 
Thus, if the set point is constant (Ysp(s) = 0), we want Y(s) = 0, 
even though D(s)

(15-21)d
f

t v p

GG
G G G

= −

• Figure 15.11 and Eq. 15-21 provide a useful interpretation of the 
ideal feedforward controller. Figure 15.11 indicates that a 
disturbance has two effects.

• It upsets the process via the disturbance transfer function, Gd; 
however, a corrective action is generated via the path through 
GtGfGvGp.
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• Ideally, the corrective action compensates exactly for the upset
so that signals Yd and Yu cancel each other and Y(s) = 0.

Example 15.2
Suppose that

, (15-22)
τ 1 τ 1

pd
d p

d p

KKG G
s s

= =
+ +

Then from (15-22), the ideal feedforward controller is

τ 1
(15-23)

τ 1
pd

f
t v p d

sKG
K K K s

  + 
= −    +  

This controller is a lead-lag unit with a gain given by              
Kf = -Kd/KtKvKp. The dynamic response characteristics of lead-
lag units were considered in Example 6.1 of Chapter 6.
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Example 15.3
Now consider

θ

, (15-24)
τ 1 τ 1

s
pd

d p
d p

K eKG G
s s

−

= =
+ +

From (15-21),

θτ 1
(15-25)

τ 1
p sd

f
t v p d

sKG e
K K K s

+
  + 

=     +  

Because the term        is a negative time delay, implying a 
predictive element, the ideal feedforward controller in (15-25) 
is physically unrealizable. However, we can approximate it by 
omitting the        term and increasing the value of the lead time 
constant from      to            . 

θse+

θse+

τ p τ θp +
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Example 15.4
Finally, if

( )( )1 2

, (15-26)
1 1 1

pd
d p

d p p

KKG G
s s sτ τ τ

= =
+ + +

then the ideal feedforward controller,

( )( )
( )

1 2τ 1 τ 1
(15-27)

τ 1
p pd

f
t v p d

s sKG
K K K s

+ + 
= −   + 

is physically unrealizable because the numerator is a higher 
order polynomial in s than the denominator. Again, we could 
approximate this controller by a physically realizable one such 
as a lead-lag unit, where the lead time constant is the sum of 
the two time constants, 1 2τ τ .p p+
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Stability Considerations
• To analyze the stability of the closed-loop system in Fig. 15.11, 

we consider the closed-loop transfer function in Eq. 15-20. 

• Setting the denominator equal to zero gives the characteristic 
equation,

1 0 (15-28)c v p mG G G G+ =

• In Chapter 11 it was shown that the roots of the characteristic 
equation completely determine the stability of the closed-loop 
system. 

• Because Gf does not appear in the characteristic equation, the 
feedforward controller has no effect on the stability of the 
feedback control system. 

• This is a desirable situation that allows the feedback and 
feedforward controllers to be tuned individually.
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Lead-Lag Units
• The three examples in the previous section have demonstrated 

that lead-lag units can provide reasonable approximations to 
ideal feedforward controllers.

• Thus, if the feedforward controller consists of a lead-lag unit 
with gain Kf, we can write

( ) ( )
( )

( )1

2

τ 1
(15-29)

τ 1
f

f

K sU s
G s

D s s
+

= =
+

Example 15.5
Consider the blending system of Section 15.3 and Fig. 15.9. A 
feedforward-feedback control system is to be designed to reduce 
the effect of disturbances in feed composition, x1, on the 
controlled variable, produce composition, x. Inlet flow rate, w2, 
can be manipulated. (See text.)
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Configurations for Feedforward-Feedback 
Control
• In a typical control configuration, the outputs of the feedforward

and feedback controllers are added together, and the sum is sent
as the signal to the final control element. 

• Another useful configuration for feedforward-feedback control 
is to have the feedback controller output serve as the set point
for the feedforward controller.
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Figure 15.14 Feedforward-feedback control of exit composition in 
the blending system.
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loop responses to step 
changes in u and d.
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Tuning Feedforward Controllers
Feedforward controllers, like feedback controllers, usually 
require tuning after installation in a plant.

Step 1. Adjust Kf.

• The effort required to tune a controller is greatly reduced if good 
initial estimates of the controller parameters are available.

• An initial estimate of Kf can be obtained from a steady-state 
model of the process or steady-state data.

• For example, suppose that the open-loop responses to step 
changes in d and u are available, as shown in Fig. 15.15. 

• After Kp and Kd have been determined, the feedforward
controller gain can be calculated from the steady-state version  
of Eq. 15-22:

(15-40)d
f

t v p

KK
K K K

= −
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• To tune the controller gain, Kf is set equal to an initial value, and 
a small step change (3 to 5%) in the disturbance variable d is 
introduced, if this is feasible. 

• If an offset results, then Kf is adjusted until the offset is 
eliminated. 

• While Kf is being tuned,      and      should be set equal to their 
minimum values, ideally zero.

1τ 2τ

Step 2. Determine initial values for     and     .1τ 2τ

• Theoretical values for     and      can be calculated if a dynamic 
model of the process is available, as shown in Example 15.2. 

• Alternatively, initial estimates can be determined from open-
loop response data. 

• For example, if the step responses have the shapes shown in 
Figure 15.16, a reasonable process model is 

1τ 2τ
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( ) ( ), (15-41)
τ 1 τ 1

p d
p d

p d

K KG s G s
s s

= =
+ +

where      and      can be calculated as shown in Fig. 15.16. 

• A comparison of Eqs. 15-24 and 5-30 leads to the following 
expression for      and     :

τ p τd

1τ 2τ

1τ τ (15-42)p=

2τ τ (15-43)d=

• These values can then be used as initial estimates for the fine 
tuning of      and     in Step 3.

• If neither a process model nor experimental data are 
available, the relations                  or                    may be used, 
depending on whether the controlled variable responds faster 
to the disturbance variable or to the manipulated variable. 

1τ 2τ

1 2τ / τ 2= 1 2τ / τ 0.5=
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• In view of Eq. 15-58,    should be set equal to the estimated 
dominant process time constant.

1τ

Step 3. Fine tune     and     .1τ 2τ

• The final step is to use a trial-and-error procedure to fine tune   
and    by making small step changes in d. 

• The desired step response consists of small deviations in the 
controlled variable with equal areas above and below the set 
point, as shown in Fig. 15.17. 

• For simple process models, it can be proved theoretically that 
equal areas above and below the set point imply that the 
difference,           , is correct (Exercise 15.8).

• In subsequent tuning to reduce the size of the areas,     and   
should be adjusted so that           remains constant.

1τ
2τ

1 2τ τ−

1τ 2τ
1 2τ τ−
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Figure 15.16 The desired response for a well-tuned feedforward
controller. (Note approximately equal areas above and below the 
set point.)



43

C
ha

pt
er

 1
5

• As a hypothetical illustration of this trial-and-error tuning 
procedure, consider the set of responses shown in Fig. 15.17 for
positive step changes in disturbance variable d. 

• It is assumed that Kp > 0, Kd < 0, and controller gain Kf has 
already been adjusted so that offset is eliminated.
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Figure 15.17 An example of feedforward controller tuning.


