Frequency Response Analysis

Sinusoidal Forcing of a First-Order Process

For a first-order transfer function with gain K and time constant t,

the response to a general sinusoidal input, x(¢) = Asin? is:
KA _ .
y(t)= — (O)Te T _ otcos ot +sin oot) (5-25)
ot +1

Note that y(?) and x(?) are in deviation form. The long-time
response, y,(t), can be written as:
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KA .
yi(t)= \/®2T2+lsm(mt+(p)fort—>oo (13-1)

where:

Q= —tan"! ((o'c)
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Figure 13.1 Attenuation and time shift between input and output
sine waves (K= 1). The phase angle ¢ of the output signal 1s given
by ¢ =—-Time shift/ Px360°, where At is the (period) shift and P

1s the period of oscillation.




Frequency Response Characteristics of
a First-Order Process

For x(f) = Asint, y,(t) = Asin(ot+@)as ¢ —> o where:

e K4 and ¢=—tan"’ ((D’C)
= \/ ®°1% +1
—
Il 1. The output signal is a sinusoid that has the same frequency, ,
% as the input.signal, x(?) =Asinwt.
S 2. The amplitude of the output signal, A, is a function of the
frequency o and the mput amplitude, 4:
k4 (13-2)
\/ ®°1% +1

3. The output has a phase shift, ¢, relative to the input. The
amount of phase shift depends on m.
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Dividing both sides of (13-2) by the input signal amplitude 4
yields the amplitude ratio (AR)

N

A K

4 \/ ®’1? +1
which can, in turn, be divided by the process gain to yield the
normalized amplitude ratio (ARy)

1
2

AR =

(13-3a)

(13-3b)

AR =
: \/0)2’C +1



Shortcut Method for Finding
the Frequency Response

The shortcut method consists of the following steps:

Step 1. Set s=jo in G(s) to obtain G( jw).
Step 2. Rationalize G(jo); We want to express it in the form.
G(jo)=R +jI

where R and [ are functions of ®. Simplify G(jo) by
multiplying the numerator and denominator by the
complex conjugate of the denominator.
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Step 3. The amplitude ratio and phase angle of G(s) are given
by:

AR =V R? 412
go:tan_l(R/])

Memorize =




Example 13.1

Find the frequency response of a first-order system, with

Tjo+1 - jot+1

1
G(s)= 13-16
( ) Ts +1 ( )

o Solution
‘: First, substitutes = jo 1n the transfer function
2 1 1
Q. G(jo)= = (13-17)
L
O

Then multiply both numerator and denominator by the complex
conjugate of the denominator, that is,— jot +1

—jot+1 :—jo)r+1
(jor+1)(—jot+l) ot +1

L (o)

0)212 +1 00212 +1

G(ja)):

=R+ jI (13-18)
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where: R=—— (13-19a)
0 t°+1
—OT
I = (13-19b)
0’1’ +1
o3 From Step 3 of the Shortcut Method,
R
e 2 2
D _ p) 2 1 —OT
2 ISR _J( ) ()
=
O 2.2
(l-l-(D T ) 1
AR = 5 (13-20a)
\(0)21;2 +1) Vol +1
Also,
(1 | 1
@=tan | — |=tan (—(or)z—tan ((DT) (13-20b)

\ R




Complex Transfer Functions

Consider a complex transfer G(s),

G(s) = CC;;C; ((j))gj ((:’))g; ((;9)) (13-22)
Substitute s=jm,
SN Ga( 'o))Gb( '(D)GC( 0))
G(jo)= Gl(;(o)Gz(;oa)Gg,(;w)--- (13-23)

From complex variable theory, we can express the magnitude and
angle of G( jo) as follows:

: Ga (jm)HGb (](D)‘ Gc (](D)‘
G = 13-24
‘ (](D)‘ ‘Gl (jﬁ))“Gz (jm)HG3 (](D)‘ ( a)
£G(jo)=2G,(jo)+£G,(jo)+ LG, (jo)+--
—[£G,(jo)+ LG, (jo)+ LGy (jo)+--]  (13-24b)
8
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Bode Diagrams

A special graph, called the Bode diagram or Bode plot,
provides a convenient display of the frequency response
characteristics of a transfer function model. It consists of
plots of AR and ¢ as a function of m.

m

‘: * Ordinarily, o 1s expressed in units of radians/time.

..g.- Bode Plot of A First-order System

© Recall:

e 1 4

O AR = and p=—tan  (o1)
\/ 0’1 +1

e At low frequencies (o > 0 and ot < 1):
ARy =1 and ¢=0

e At high frequencies (o0 — 0 and ot > 1):

ARy =1/ot and ¢@=-90
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wp = L7
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Figure 13.2 Bode diagram for a first-order process.
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 Note that the asymptotes intersect at ® = @, =1/1, known as the
break frequency or corner frequency. Here the value of ARy

from (13-21) 1s:

1

V1+1

* Some books and software defined AR differently, in terms of
decibels. The amplitude ratio in decibels AR 1s defined as

AR 4 =20 log AR (13-33)

ARN((D:(Db):

=0.707 (13-30)
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Integrating Elements

The transfer function for an integrating element was given in

Chapter 5:
Y(S) K
G(S) U(S) ; (5-34)
AR =|G(jo) = ]% =§ (13-34)
(p:LG(j(D):LK—L(oo):—90° (13-35)

Second-Order Process

A general transfer function that describes any underdamped,
critically damped, or overdamped second-order system 1s

K
G(s)= (13-40)
( ) s’ +2Cts +1

12



Substituting s = jo and rearranging yields:

K
AR — 2 (13-41a)
2
\/(1—(,021:2) +(2w1g)
| 2ot
¢ =tan! 2% (13-41b)
o _1—(0 T
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Figure 13.3 Bode diagrams for second-order processes.
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Time Delay

Its frequency response characteristics can be obtained by
substituting s = jo,

G(jo)=e 7 (13-53)
which can be written in rational form by substitution of the
Euler 1dentity,

G(joo)ze_j(De = cos w0 — jsin w0 (13-54)
From (13-54)

IALR:‘G(joo)‘:\/cos2 @0 +sin® ©0 =1 (13-55)

_ In mo
_ /G (jo)=tan™! [~ SO j
P (J ) ( cos ®0
or
¢ =—mb (13-56)
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Figure 13.7 Phase angle plots for ¢ % and for the 1/1 and 2/2
Padé approximations (G, 1s 1/1; G, 1s 2/2).
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Process Zeros

Consider a process zero term,
G(S) = K(st+1)
Substituting s=jm gives

G(jo)=K(jot+1)
Thus:

AR :‘G(joo)‘ — Kot +1
¢ =2G(jo)=+tan" (o1)

Note: In general, a multiplicative constant (e.g., K) changes
the AR by a factor of K without affecting¢.

17



o
\
S
Q
d
Q.
y°)
L
&

Frequency Response Characteristics of
Feedback Controllers

Proportional Controller. Consider a proportional controller with
positive gain

G.(s)=K (13-57)

c c

In this case ‘GC ( j(o)‘ = K., which 1s independent of w.
Therefore,

AR, =K, (13-58)
and
0,.=0 (13-59)
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Proportional-Integral Controller. A proportional-integral (PI)
controller has the transfer function (cf. Eq. 8-9),

G.(s)=K, (1+Lj - K, [”S“j (13-60)

o ;8 1,8
— . e
. Substitute s=jm:
= 1 ' 1 1
% GC(j(D):KC(1+ . ):KC(JQ?TI_I_ j:Kc(l__]j
- T]](D ](DT] T[(D
O Thus, the amplitude ratio and phase angle are:
2
| 1 J(or, )’ +1
AR, =|G, (jo) =K, [1+ — =K, (13-62)
(o1;) 0Ty

0, = £G,(jo)=tan"' (-1/01, )=tan"' (01, )-90°  (13-63)
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Figure 13.9 Bode plot of a PI controller, G, () = 2( . )
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Ideal Proportional-Derivative Controller. For the 1deal
proportional-derivative (PD) controller (cf. Eq. 8-11)

G (S)IKC (l-I—TDS) (13-64)

c

The frequency response characteristics are similar to those of a
LHP zero:

AR, ZKC\/((DTD )2 +1 (13-65)

(p:tan_l((mD) (13-66)

Proportional-Derivative Controller with Filter. The PD
controller 1s most often realized by the transfer function

ps +1
Gc(s)ch(MDHJ (13-67)
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Figure 13.10 Bode
plots of an 1deal PD
controller and a PD
controller with
derivative filter.

Idea: G, (s)=2(4s+1)

With Derivative
Filter:

4s +1
Ge(5)= 2(0.4s+1j

22
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PID Controller Forms

Parallel PID Controller. The simplest form in Ch. 8 is
1

GC(S)=K0£1+——I—TDSJ

TIS

Series PID Controller. The simplest version of the series PID
controller 1s

G, (s) =KC(T1S+IJ(TDS+1) (13-73)

TIS

Series PID Controller with a Derivative Filter.

GC(S)ZKC Ts+1 [ Tps+1
TyS atps+1
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] Figure 13.11 Bode

AR 10' | 5 plots of 1deal parallel
: : PID controller and

o~ series PID controller
- 100l T S e with derivative filter
3 (a=1).
i 80
% 60} Idea parallel:
£ ol 1
O “’:g’_z: Gc(s):2(1+ﬁ+4sj

-l

e i Series with

109 Derivative Filter:

GC(S):2(105+IJ( 4s +1 j
10s 0.4s+1
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Nyquist Diagrams

Consider the transfer function

1
G(S):2s+1

with
1

J2o) 41

AR =[G(jo)|=

and

¢=2G(jo)= —tan”! (20)

(13-76)

(13-77a)

(13-77b)
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A Imaginary

1.0

Figure 13.12 The Nyquist diagram for G(s) = 1/(2s + 1)
plotting Re(G(jco)) and Im(G(jco)).

Real
}

part
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Figure 13.13 The Nyquist diagram for the transfer
function in Example 13.5:

G(s) = 5(8s +1)e %
(20s +1)(4s+1)
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