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Abstract tory behavior for several hours before the oscillations die out, and
(ii) the product quality is low for a period of several days, for no
The diagnosis of abnormal plant operation can be greatly facilitatedapparent reason. After an abnormal situation is detected, it is im-
if periods of similar plant performance can be located in the his- portant to diagnose its cause in order to take corrective action, and
torical database. A novel methodology is proposed for this pat-to prevent future occurrences.
tern matching problem. The new approach provides a preliminary A wide variety of fault diagnosis techniques are available in
screening of large amounts of historical data in order to generate gpe process monitoring literatur&rank, 1999 Kramer and Mah,
candidate pool of similar periods of operation. This much smaller 1994 Kourti and MacGregor, 1996 However, existing techniques
number of records can then be further evaluated by someone faely on one or more of the following types of information: current
miliar with the process. Similarity factors are used to characterize yant gata, previous experience, or process knowledge that is codi-
the degree of similarity between the current abnormal operation an(ﬁed in the form of a process model or a knowledge-based system.

historical data. A new Distance Similarity Factor is proposed that A yajuable resource, historical plant data, is seldom considered in a
complements the standard PCA similarity factor. The two similarity systematic manner during fault diagnosis.

factors provide the basis for an unsupervised pattern matching tech-
mque.'_l'he prop_osed pattern matching methodology has been eval-he relevant historical data would be a valuable source of informa-
uated in a detailed case study for a controlled CSTR (14 measure ion for difficult process diagnosis problems. This additional in-
variables, more than 474,000 data points for each measured vari: P g P :

. formation can facilitate two important activities: (i) identifying the
able, and 19 operating mogtmilts). The proposed methodology mpo! i, 0 . fy 9
. N root cause of the abnormal situation, and (ii) developingféatéve
was able to locate over 90% of the previous occurrences of “abnor-

T remedy that will prevent future occurrences or minimize their im-
mal situations”. - . . . . . .
pact. These considerations motivate the main premise of this paper:

If the same type of abnormal situation has occurred in the past,

1 Introduction After an abnormal plant situation occurs, it would be

very beneficial to be able tgfiiently search a his-
Advances in data collection technology have resulted in routine col- torical database in order to locate periods of similar,
lection and storage of large volumes of data in industrial plants. but not necessarily identical, plant behavior.

Large plants record thousands of process variables, product quality,

production, and maintenance information on a frequent basis. Thus, Emphasis is placed on performing a preliminary screening of
massive amounts of stored data can be used for analysis of the prdaistorical data because affieient screening technique can be used
cess and previous occurrences of abnormal situations. A historicato narrow the search for similar periods of process behavior by iden-
database contains potentially valuable process information, but ittifying a relatively small number of promising data records within

is notoriously dfficult to extract it. Industrial plants have there- the historical database. These records will be referred to amthe
fore been called, “data rich, but information poor”. The problem of didate pool Then a person familiar with the process (a process
extracting valuable information from large historical database hasexpert) could take a closer look at the candidate pool in order to
received considerable attention in other fields, as indicated by thenarrow the search further and to diagnose the root cause of the ab-
growing interest in data mining and knowledge discovery problems normal situation.

(Apté, 1997 Agrawal etal., 1998 An industrial consortium has es- Data mining of historical databases has received attention in
timated tha_t ab_normal, but preventable, plgnt behavior costs the U.Sthe computer science literature; however problems involving time-
petrochemical industry more than $20 billion per yedoieywell,  series databases have been addressed only redafaihg and Mc-

Inc., 2000. This estimate is just one indication that improved plant Greavy (1998used clustering methods to classify abnormal behav-
monitoring can play a key role in increasing plant productivity, an jor of a refinery fluid catalytic cracking proces®lg and Huang
important concern in the intensely competitive global economy. (1999 also used a clustering approach to classiffedéent types of

stars based on their light curves. In a previous stilidigannesmeyer

and Seborg (199%eveloped anfécient technique to locating sim-

ilar records in the historical database using PCA similarity factors.

In this paper, an abnormal situation is defined as an unanticipatedrhis paper introduces a neldistance Similarity Factoto charac-

plant situation that has (or could have) serious consequences, buerize the distance between the subspaces spanned by two datasets.
does not warrant drastic action such as an emergency shutdowrThe standard PCA similarity factor and the new distance similarity
For example: (i) several key control loops exhibit unusual oscilla- factor are used to generate the candidate pool.

1.1 Abnormal situation analysis

TE-mail: ashishs@engineering.ucsb.edu
*E-mail: seborg@engineering.ucsb.edu, Corresponding author

1759



2 Methodology Krzanowski (1979developed a method for measuring the simi-
larity of two data sets using a PCA similarity fact8gca. Consider

The proposed pattern matching strategy is summarized in thetwo data sets which contain the sameariables but not necessarily

flowchart in Figurel. First, the user defines tls@apshobf the data the same number of measurements. We assume that the PCA model

that serves as a template for searching the historical database. Thr each data set contaikgrincipal components, wheke< n. The

snapshot specifications consist of: (i) the relevant variables, and (ij)number of principal components (PC) is chosen such khaCs

“duration of the abnormal situation”. These well defined specifica- describe at least 95% of the total variance in each dataset. The sim-

tions can be arbitrarily chosen; no special plant tests or pre-imposedlarity between the two data sets is then quantified by comparing

conditions are necessary. their principal components. The appeal of the similarity factor ap-
In order to compare the snapshot data to historical data, the relproach is that the similarity between two data sets is quantified by a

evant historical data are divided into data windows that are the samesingle numberSeca.

size as the snapshot data. The historical data sets are then organized Consider a current shapshot dataSetnd a historical data set

by placing windows side-by-side along the time axis, which results H having the same variables. Let the PCA models f& andH

in equal length, non-overlapping segments of data. The similarity consist otk PC’s each. The correspondingx k) subspaces are de-

between these windows of historical data and the current data camoted byL andM respectively. Th&pc, compares these subspaces

then be calculated via appropriate similarity measures. and is defined to bekfzanowski, 1979
Once the historical data has been divided into data windows, the
shapshot data is compared to these data windows using appropriate trace(LT MMT L)
similarity measures. The similarity measure is a number between Spca = — (1)

zero and one, where zero denotes no similarity and one denotes
identical data sets. In this paper, similarity factors based on PCA
and distance between the two datasets are developed. These si
larity factors are used to define similarity between the snapshot an
historical datasets. A cufiovalue for the similarity factors is used
so that data sets that have similarity factor greater than or equal to

The geometric interpretation @pca is that it is the sum of the
quares of the cosines of the angles between each principal compo-
ent ofL andM. Thus,

k k
the cutdf are labeled as “similar”. The historical data sets that are Spca = 1 Z Z cog 6; (2)
“similar” to the snapshot data are collected iceandidate poalThe k -1 =1
records in the candidate pool are then given to a process expert for
a detailed evaluation. Because subspacksandM contain thek most important principal

components that account for most of the variance in their corre-
Specify snapshot sponding data setSpca is also a measure of similarity between the
(variables and time period) data set$ andH.

2.2 Distance Similarity Factor

Divide historical data into

data windows In this section, a distance similarity fact@ys; is introduced that
compares two datasets that have the same spatial orientation but are
located far apart. The new similarity factor is particularly useful
Compare snapshot and when two data windows have similar principal components but the
historical data windows numerical values of the process variables are veffgrdint. The
distance similarity factor can be used to distinguish between these
two cases.
- o The Mahalanobis distanc&, from the center of the histori-
Collect similar periods in a . —
candidate pool cal datasetxy) to the center of the current snapshot datasstis
defined as,
A process expert inspects ¢ = \/()TH - )?S)TZ*S_I()?H - )75) 3)

the candidate pool

wherexs andxy are sample mean vectors. The distance similarity

. . factor is proposed as the probability that the center of the historical
Figure 1. Proposed pattern matching approach. datasetx, is not closer than its Mahalanobis distande,

2.1 PCA Similarity Factor Sdisté\/?f 2247 @)
T Jo

Because principal component analysis (PCA) has been widely re-

ported in the process monitoring literatuio(irti and MacGregor, ~ Matrix =5 is the pseudo-inverse &fs and is calculated using a
1996 Martin and Morris, 199§ only a brief summary will be pre-  singular value decomposition. The error function in E4).dan be
sented here. PCA is a multivariate statistical technique which cal-evaluated using standard tables or software packages. The distance
culates the principal directions of variability in data, and transforms similarity factor provides a natural complement to the PCA similar-
the original set of correlated variables into a new set of uncorrelatedity factor. In contrast, the use of alarm limit violations information
variables. The new uncorrelated variables are linear combinationgproposed bylohannesmeyer and Seborg (1996quire that alarm

of the original variables. These principal components represent theviolations actually occur. This places a restriction on the analysis.
most important directions of variability in a datasé¢kson, 1991 The distance similarity factor proposed in this paper is independent
Jolliffe, 1986. of the alarm limits and does not use amypriori information.
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2.3 Measures of Hectiveness of Search Techniques variables were fiected by approximately the same magnitude for
each fault. Setpoint changes in reactor temperature were also in-
cluded. Gaussian noise was also added to all measurendehen¢
nesmeyer, 1999

Johannesmeyer and Seborg (1p@8veloped two useful metrics to
describe the ffectiveness of pattern matching techniques. They are
based on the following statistics for the candidate pool and the his-
torical database:

Np: The size of the candidate po®r is the total number of his-
torical data records that have been labeled “similar”’ by the
pattern matching technique.

N:: The number of records in the candidate pool, that are actually
similar to the snapshot dataset, i.e., the correctly identified
records.

N,: The number of records in the candidate pool, that are not
similar to the current snapshot, i.e., incorrectly identified
records. By definitionN; + N, = Np.

Npg: The number of historical records similar to the current snap-
shot data se$. Note thatNpg is independent of the size of
the candidate pool.

Figure 2. Schematic of CSTR system with cascade

Based on the above quantities, the pool accum@nd the search
control.

efficiency n, are defined as followsJohannesmeyer and Seborg,
1999:

A 1
p= No % 100% ©) 3.1 Generation of Historical Database

L Ng 100% 6 The database was generated by simulating the controlled process via
= Nog * 0 ) Swuunk™in MarLas™5.3 on an HP 71800 UNIX workstation. In

DB ) i
An effective search technique should produce a high pool accuracy,order to generate a large historical database, the CSTR system was

as well as a high searclfieiency. Itis convenient to use an average Simulated for a period of 39 days with measurements being recorded
of p andy as a measure of the overaffectiveness. every five seconds. Measurements of the 14 process variables given
in Table2 were included in the database. The last four measure-
Average= b+n @) ments correspond to controller output signals. For exanhilds

the output signal in mA for the level controller.

The historical database was generated in the following man-
ner. Each period of operation lasted 120 minutes. Each consecutive
. . . . mode of operation (i.e., fault type, set point change, or normal oper-
3 Simulation Example: Continuous Stirred Tank Reac- ation) to bg simulat(ed was chggen ranFc):Iome fron?the listin Tﬁblg

tor The fault direction and magnitude were also randomly selected for

An extensi imulati wud dt luate th ‘ each period of operation. The fault direction could be positive or
h extensive simulation case study was used to evaluate the per Or'negative for faults that contain ramps or steps. The fault magnitude
mance of alternative pattern matching techniques for a wide variety

¢ i diti d fault i was chosen randomly to be between 25% to 125% of the nominal
° oz\era ng th;ln : 'OTS anr au sctt_ana(rjlc;s. K tor (CSTR) with fault magnitude. Once the mode of operation and any necessary
'\ hon-isothermal continuous stirred tank reactor ( ; ) wit parameters (i.e., direction and magnitude) were selected, the simu-
cooling jacket dynamics and variable liquid level was simulated in lation ran for 120 minutes before the next period of operation began.
order to generate historical data. A first order irreversible rea(:tion,Each 120 minute period of operation consisted of 85.3 minutes for
ﬁ‘ —I)< B, 'St' als,surrt1ed._A ichemat'l:c_ d:;\gga(;n of the CSJ'Tfan?thEd'the “event”, followed by a period of 35 minutes for the process to
ack contro system IS Snown in FIQULEA dynamic modetforth€ - oy g the original steady state before the next period of operation
CSTR can be derived based on the assumptions of perfect mixin

d tant phvsical e 4B tte. 1996 h goegan. Thus, the “event” data consisted of over 474,000 data points
and constant pnysical parame §so and Bequette, 199 he for each measured variable. Also, the faults occurred one at a time
nominal operating conditions, control structure and the controller

parameters are described in detail hannesmeyer (1999The (i.e., no simultaneous faults) and for the same duration. The simu-
S g ._lation generated approximately 39 days of data and 463 periods of
historical database for the CSTR case study was designed to in g op y ¥ P

operation, with each period containing 1024 data points for each of
clude both normal operating periods and a wide variety of abnormal peration, Wi per ning pot

L the 14 variables.

situations or “faults”.
Many fault detection and diagnosis studies have been conducted

using CSTR modelsSorsa and Koivo, 1993Vaidyanathan and 4 Results and Discussion
Venkatasubramanian, 1992and a large number of possible fault
conditions can be considered. The 19 operating conditions in Ta-In this section, we compare the performance of alternative pattern
ble 1 were chosen in order to simulate the wide range of distur- matching techniques for the CSTR case study. For the PCA model
bance and fault types that can be encountered in a typical histori-development, the historical data were partitioned into data windows
cal database. Fault conditions included process disturbances (e.g(H;) that were the same size as the snapshot @&taHachH; was
ramp change ifTcg, step or sinusoidal changes @, etc.), in- scaled to zero mean and unit variance. When the current snapshot,
strumentation faults (e.g., dead coolant flow measurement, bias irS, was compared to a data windoi, it was scaled using the scal-
reactor temperature measurement, etc.) and equipment faults (e.ging factors forH;. Alternative pattern matching methods were com-
valve stiction, heat exchanger fouling, catalyst deactivation, etc.).pared in terms of the pool accuracy)(@and searchféciency ),
Nominal sizes for the faults were chosen so that the key processhat were defined in Eqs.5 and €). The results are reported as

A higher average value means better pattern matching.
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average values for the 19 operating modes, where each mode was A comparison of the performance offidirent pattern matching
designated in turn as the “abnormal” situation for the snapshot datatechniques is presented in Taklde The first three rows contain a

4.1 Results for the PCA Similarity Factor

In the proposed methodology, two data se&ndH are considered
similar if the similarity factor exceeds a specified thresholduigf
value The dfect of the cutff value on the performance of the PCA
similarity factor, Spca, is illustrated in Figure3. The values ofp,

summary of results obtained by matching g Q and the com-
bined discriminantRaich and Cinar, 1994statistics of the histori-

cal data recordH; with those for the snapshot de8a It can be seen
that these statistics do not produce very satisfactory results. A com-
parison of the last two rows in TabBindicates that the addition of
the distance similarity factor produces a dramatic improvement in
the p and average values (40% and 17%), while only redugibyg

n and their average are the mean values for the 19 operating cona small amount. The size of the candidate pd&)( also serves as

ditions in Tablel. Thus the nominal condition for each operating

a diagnostic measure of how well a technique performs by compar-

mode was considered in turn to be the “snapshot data”, and eacling it with the average size of the candidate pool if it only contained

data windowH; in the historical database was screened. As the cut-

off value increases, the proportion of correctly identified records in
the candidate poolp, increases, but the total number of correctly
identified records decreases becapdecreases. This is reasonable
because increasing the cffteesults in only highly similar records
appearing in the candidate pool; this increapebut decreases.

But the average value is relatively constant for most part of the in-
dicated range and has a maximum value of 70% at dfcvahue of
0.965.
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4.2 Results Using Both the PCA and Distance Similarity
Factors

Additional information about the distance between the subspaces of

the S andH datasets can provide further insight into their similar-
ity or dissimilarity. In particular, the new distance similarity factor,
Suist, Can be used in conjunction witBeca, to provide further re-
finement of the results.

When bothSpca andSy;s; are employed in the analysis, the his-
torical data set; is considered to be similar to the snapshot data
setS, if,

Spca > Opca and Sgis; > byist

8)

wherefpca andfyis: are the cutff values for the PCA and distance
similarity factors, respectively. To find the best performance when

both similarity factors are used, the average values for the 19 op-

erating modes is plotted as a function of the two fistas a 3-D
surface in Figurel. The best performance was achieved fgga

correctly identified records (i.e., iy = 100%). This average size

is 17. Use of the distance similarity factor with the PCA similar-
ity factor reduces the candidate pool size from 34 to 17 which is
exactly equal to the average number of similar records in the histor-
ical database. Therefore, the combination of the PCA and distance
similarity factor produces very accurate results.
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Figure 4.

Effect of PCA and distance similarity fac-
tor cutoffs.

%

65 : ‘ ‘ ‘
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Figure 5. Effect of PCA similarity factor cutoff on

pattern matching. gist = 0.290.

It may be noted that the new pattern matching approach can

= 0.965 andyist = 0.290. A section of this surface cut at the op- be applied without specifying cuiovalues. Instead, the person fa-

timum value of the distance similarity factor is shown in FigGre
A comparison of Figure8 and5 indicates that significantly better

miliar with the process could first evaluate the historical data win-
dows which have the largeStrca and Sy Values. The evalua-

performance is obtained when both the PCA and distance similaritytion could stop when an appropriate number of successful pattern

factors are used.
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been reached.

The computational requirements for calculation of the similar-
ity factors are modest. For example, it takes less than 10 seconds
on a Pentium 15550 MHz computer running Mras™version 5.3
to build PCA models on the current snapshot and all the 463 his-
torical data sets (1024 data points per variable per data set), and to
calculate both the similarity factors for all historical data sets.

5 Conclusions

A novel methodology has been developed for locating similar peri-
ods of historical data, similar to an “abnormal situation”, that is of
interest. The proposed pattern matching methodology is both data
driven (does not use process models or prior process knowledge),
and unsupervised. The new approach is based on principal com-
ponent analysis and a new metric for the distance between the two
datasets. The computational load is modest, which allows process-
ing of large amounts of process data in relatively short time.

In an extensive simulation case study, the proposed approach
performed better than the existing PCA methodology for a wide
range of operating conditions and faults. The combination of PCA
and distance similarity factors provide affieetive way of matching
patterns in multivariate time-series datasets.
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Table 1. Modes of Operation.

ID Operating Condition
Normal | Normal operation

F1 Catalyst deactivation by ramp increase in activation energy

F2 Heat exchanger fouling leading to ram decrease in heat transfeicte®

F3 Dead coolant flow measurement

F4. Bias in reactor temperature measurement

F5 Coolant valve stiction

F6 Step change in feed flow rat@g

F7 Ramp change in feed concentrati@

F8 Ramp change in feed temperatufe,

F9 Ramp change in coolant feed temperatiig;

F10 Step change in upstream pressure in the cooling line

F11 Step change in downstream pressure in the reactor outlet line

F12 Damped oscillations in feed flow rate

F13 | Autoregressive disturbance in feed flow rate

S1 Set point change in reactor temperature,

01 High frequency oscillations of 3 cyclgsin in feed flow rate

02 Intermediate frequency oscillations of 1 cyghas in feed flow rate

03 Intermediate frequency oscillations of 0.5 cygiem in feed flow rate

04 Low frequency oscillations of 0.2 cycl@sin

Table 2. Measurements for the CSTR simulation.
Ch T Tc h Q Q& QF
Cark T Tcg hC QC TC QC
Table 3. Best performance of the similarity factors.

Method Best Cutdf(s) | Np | p(%) | (%) | Average (%)
TZ statistic N/A 39 25 33 29
Q statistic N/A 30 61 53 57
CombinedQ andT? N/A 34 66 65 65
PCA similarity factor alone 0.965 34 50 90 70
Distance similarity factor alone 0.290 138 | 29 94 61
PCA and Distance similarity factors | 0.965, 0.290 | 17 90 84 87
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