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Abstract

The diagnosis of abnormal plant operation can be greatly facilitated
if periods of similar plant performance can be located in the his-
torical database. A novel methodology is proposed for this pat-
tern matching problem. The new approach provides a preliminary
screening of large amounts of historical data in order to generate a
candidate pool of similar periods of operation. This much smaller
number of records can then be further evaluated by someone fa-
miliar with the process. Similarity factors are used to characterize
the degree of similarity between the current abnormal operation and
historical data. A new Distance Similarity Factor is proposed that
complements the standard PCA similarity factor. The two similarity
factors provide the basis for an unsupervised pattern matching tech-
nique.The proposed pattern matching methodology has been eval-
uated in a detailed case study for a controlled CSTR (14 measured
variables, more than 474,000 data points for each measured vari-
able, and 19 operating modes/faults). The proposed methodology
was able to locate over 90% of the previous occurrences of “abnor-
mal situations”.

1 Introduction

Advances in data collection technology have resulted in routine col-
lection and storage of large volumes of data in industrial plants.
Large plants record thousands of process variables, product quality,
production, and maintenance information on a frequent basis. Thus,
massive amounts of stored data can be used for analysis of the pro-
cess and previous occurrences of abnormal situations. A historical
database contains potentially valuable process information, but it
is notoriously difficult to extract it. Industrial plants have there-
fore been called, “data rich, but information poor”. The problem of
extracting valuable information from large historical database has
received considerable attention in other fields, as indicated by the
growing interest in data mining and knowledge discovery problems
(Apté, 1997; Agrawal et al., 1998). An industrial consortium has es-
timated that abnormal, but preventable, plant behavior costs the U.S.
petrochemical industry more than $20 billion per year (Honeywell,
Inc., 2000). This estimate is just one indication that improved plant
monitoring can play a key role in increasing plant productivity, an
important concern in the intensely competitive global economy.

1.1 Abnormal situation analysis

In this paper, an abnormal situation is defined as an unanticipated
plant situation that has (or could have) serious consequences, but
does not warrant drastic action such as an emergency shutdown.
For example: (i) several key control loops exhibit unusual oscilla-

tory behavior for several hours before the oscillations die out, and
(ii) the product quality is low for a period of several days, for no
apparent reason. After an abnormal situation is detected, it is im-
portant to diagnose its cause in order to take corrective action, and
to prevent future occurrences.

A wide variety of fault diagnosis techniques are available in
the process monitoring literature (Frank, 1990; Kramer and Mah,
1994; Kourti and MacGregor, 1996). However, existing techniques
rely on one or more of the following types of information: current
plant data, previous experience, or process knowledge that is codi-
fied in the form of a process model or a knowledge-based system.
A valuable resource, historical plant data, is seldom considered in a
systematic manner during fault diagnosis.

If the same type of abnormal situation has occurred in the past,
the relevant historical data would be a valuable source of informa-
tion for difficult process diagnosis problems. This additional in-
formation can facilitate two important activities: (i) identifying the
root cause of the abnormal situation, and (ii) developing an effective
remedy that will prevent future occurrences or minimize their im-
pact. These considerations motivate the main premise of this paper:

After an abnormal plant situation occurs, it would be
very beneficial to be able to efficiently search a his-
torical database in order to locate periods of similar,
but not necessarily identical, plant behavior.

Emphasis is placed on performing a preliminary screening of
historical data because an efficient screening technique can be used
to narrow the search for similar periods of process behavior by iden-
tifying a relatively small number of promising data records within
the historical database. These records will be referred to as thecan-
didate pool. Then a person familiar with the process (a process
expert) could take a closer look at the candidate pool in order to
narrow the search further and to diagnose the root cause of the ab-
normal situation.

Data mining of historical databases has received attention in
the computer science literature; however problems involving time-
series databases have been addressed only recently.Wang and Mc-
Greavy (1998) used clustering methods to classify abnormal behav-
ior of a refinery fluid catalytic cracking process.Ng and Huang
(1999) also used a clustering approach to classify different types of
stars based on their light curves. In a previous study,Johannesmeyer
and Seborg (1999) developed an efficient technique to locating sim-
ilar records in the historical database using PCA similarity factors.
This paper introduces a newDistance Similarity Factorto charac-
terize the distance between the subspaces spanned by two datasets.
The standard PCA similarity factor and the new distance similarity
factor are used to generate the candidate pool.
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2 Methodology

The proposed pattern matching strategy is summarized in the
flowchart in Figure1. First, the user defines thesnapshotof the data
that serves as a template for searching the historical database. The
snapshot specifications consist of: (i) the relevant variables, and (ii)
“duration of the abnormal situation”. These well defined specifica-
tions can be arbitrarily chosen; no special plant tests or pre-imposed
conditions are necessary.

In order to compare the snapshot data to historical data, the rel-
evant historical data are divided into data windows that are the same
size as the snapshot data. The historical data sets are then organized
by placing windows side-by-side along the time axis, which results
in equal length, non-overlapping segments of data. The similarity
between these windows of historical data and the current data can
then be calculated via appropriate similarity measures.

Once the historical data has been divided into data windows, the
snapshot data is compared to these data windows using appropriate
similarity measures. The similarity measure is a number between
zero and one, where zero denotes no similarity and one denotes
identical data sets. In this paper, similarity factors based on PCA
and distance between the two datasets are developed. These simi-
larity factors are used to define similarity between the snapshot and
historical datasets. A cutoff value for the similarity factors is used
so that data sets that have similarity factor greater than or equal to
the cutoff are labeled as “similar”. The historical data sets that are
“similar” to the snapshot data are collected in acandidate pool. The
records in the candidate pool are then given to a process expert for
a detailed evaluation.

Specify snapshot
(variables and time period)

Divide historical data into
data windows

Compare snapshot and
historical data windows

Collect similar periods in a
candidate pool

A process expert inspects
the candidate pool

Figure 1. Proposed pattern matching approach.

2.1 PCA Similarity Factor

Because principal component analysis (PCA) has been widely re-
ported in the process monitoring literature (Kourti and MacGregor,
1996; Martin and Morris, 1996), only a brief summary will be pre-
sented here. PCA is a multivariate statistical technique which cal-
culates the principal directions of variability in data, and transforms
the original set of correlated variables into a new set of uncorrelated
variables. The new uncorrelated variables are linear combinations
of the original variables. These principal components represent the
most important directions of variability in a dataset (Jackson, 1991;
Jolliffe, 1986).

Krzanowski (1979) developed a method for measuring the simi-
larity of two data sets using a PCA similarity factor,SPCA. Consider
two data sets which contain the samen variables but not necessarily
the same number of measurements. We assume that the PCA model
for each data set containsk principal components, wherek 6 n. The
number of principal components (PC) is chosen such thatk PCs
describe at least 95% of the total variance in each dataset. The sim-
ilarity between the two data sets is then quantified by comparing
their principal components. The appeal of the similarity factor ap-
proach is that the similarity between two data sets is quantified by a
single number,SPCA.

Consider a current snapshot data setS and a historical data set
H having the samen variables. Let the PCA models forS andH
consist ofk PC’s each. The corresponding (n× k) subspaces are de-
noted byL andM respectively. TheSPCA compares these subspaces
and is defined to be (Krzanowski, 1979),

SPCA =
trace

(
LT MMT L

)
k

(1)

The geometric interpretation ofSPCA is that it is the sum of the
squares of the cosines of the angles between each principal compo-
nent ofL andM. Thus,

SPCA =
1
k

k∑
i=1

k∑
j=1

cos2 θi j (2)

Because subspacesL andM contain thek most important principal
components that account for most of the variance in their corre-
sponding data sets,SPCA is also a measure of similarity between the
data setsS andH.

2.2 Distance Similarity Factor

In this section, a distance similarity factor,Sdist, is introduced that
compares two datasets that have the same spatial orientation but are
located far apart. The new similarity factor is particularly useful
when two data windows have similar principal components but the
numerical values of the process variables are very different. The
distance similarity factor can be used to distinguish between these
two cases.

The Mahalanobis distance,Φ, from the center of the histori-
cal dataset ( ¯xH) to the center of the current snapshot dataset, ¯xS, is
defined as,

Φ =

√
(x̄H − x̄S)TΣ∗−1

S (x̄H − x̄S) (3)

wherex̄S and x̄H are sample mean vectors. The distance similarity
factor is proposed as the probability that the center of the historical
dataset, ¯xH , is not closer than its Mahalanobis distance,Φ:

Sdist ,

√
2
π

∫ ∞

Φ

e−z2/2dz (4)

Matrix Σ∗−1
S is the pseudo-inverse ofΣS and is calculated using a

singular value decomposition. The error function in Eq. (4) can be
evaluated using standard tables or software packages. The distance
similarity factor provides a natural complement to the PCA similar-
ity factor. In contrast, the use of alarm limit violations information
proposed byJohannesmeyer and Seborg (1999), require that alarm
violations actually occur. This places a restriction on the analysis.
The distance similarity factor proposed in this paper is independent
of the alarm limits and does not use anya priori information.
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2.3 Measures of Effectiveness of Search Techniques

Johannesmeyer and Seborg (1999) developed two useful metrics to
describe the effectiveness of pattern matching techniques. They are
based on the following statistics for the candidate pool and the his-
torical database:

NP: The size of the candidate pool.NP is the total number of his-
torical data records that have been labeled “similar” by the
pattern matching technique.

N1: The number of records in the candidate pool, that are actually
similar to the snapshot dataset, i.e., the correctly identified
records.

N2: The number of records in the candidate pool, that are not
similar to the current snapshot, i.e., incorrectly identified
records. By definition,N1 + N2 = NP.

NDB: The number of historical records similar to the current snap-
shot data setS. Note thatNDB is independent of the size of
the candidate pool.

Based on the above quantities, the pool accuracyp, and the search
efficiency η, are defined as follows (Johannesmeyer and Seborg,
1999):

p ,
N1

NP
× 100% (5)

η ,
N1

NDB
× 100% (6)

An effective search technique should produce a high pool accuracy,
as well as a high search efficiency. It is convenient to use an average
of p andη as a measure of the overall effectiveness.

Average,
p+ η

2
(7)

A higher average value means better pattern matching.

3 Simulation Example: Continuous Stirred Tank Reac-
tor

An extensive simulation case study was used to evaluate the perfor-
mance of alternative pattern matching techniques for a wide variety
of operating conditions and fault scenarios.

A non-isothermal continuous stirred tank reactor (CSTR) with
cooling jacket dynamics and variable liquid level was simulated in
order to generate historical data. A first order irreversible reaction,
A → B, is assumed. A schematic diagram of the CSTR and feed-
back control system is shown in Figure2. A dynamic model for the
CSTR can be derived based on the assumptions of perfect mixing
and constant physical parameters (Russo and Bequette, 1996). The
nominal operating conditions, control structure and the controller
parameters are described in detail byJohannesmeyer (1999). The
historical database for the CSTR case study was designed to in-
clude both normal operating periods and a wide variety of abnormal
situations or “faults”.

Many fault detection and diagnosis studies have been conducted
using CSTR models (Sorsa and Koivo, 1993; Vaidyanathan and
Venkatasubramanian, 1992), and a large number of possible fault
conditions can be considered. The 19 operating conditions in Ta-
ble 1 were chosen in order to simulate the wide range of distur-
bance and fault types that can be encountered in a typical histori-
cal database. Fault conditions included process disturbances (e.g.,
ramp change inTCF, step or sinusoidal changes inQF , etc.), in-
strumentation faults (e.g., dead coolant flow measurement, bias in
reactor temperature measurement, etc.) and equipment faults (e.g.,
valve stiction, heat exchanger fouling, catalyst deactivation, etc.).
Nominal sizes for the faults were chosen so that the key process

variables were affected by approximately the same magnitude for
each fault. Setpoint changes in reactor temperature were also in-
cluded. Gaussian noise was also added to all measurements (Johan-
nesmeyer, 1999).
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Figure 2. Schematic of CSTR system with cascade
control.

3.1 Generation of Historical Database

The database was generated by simulating the controlled process via
Sin M5.3 on an HP 715/100 UNIX workstation. In
order to generate a large historical database, the CSTR system was
simulated for a period of 39 days with measurements being recorded
every five seconds. Measurements of the 14 process variables given
in Table2 were included in the database. The last four measure-
ments correspond to controller output signals. For example,hC is
the output signal in mA for the level controller.

The historical database was generated in the following man-
ner. Each period of operation lasted 120 minutes. Each consecutive
mode of operation (i.e., fault type, set point change, or normal oper-
ation) to be simulated was chosen randomly from the list in Table1.
The fault direction and magnitude were also randomly selected for
each period of operation. The fault direction could be positive or
negative for faults that contain ramps or steps. The fault magnitude
was chosen randomly to be between 25% to 125% of the nominal
fault magnitude. Once the mode of operation and any necessary
parameters (i.e., direction and magnitude) were selected, the simu-
lation ran for 120 minutes before the next period of operation began.
Each 120 minute period of operation consisted of 85.3 minutes for
the “event”, followed by a period of 35 minutes for the process to
return to the original steady state before the next period of operation
began. Thus, the “event” data consisted of over 474,000 data points
for each measured variable. Also, the faults occurred one at a time
(i.e., no simultaneous faults) and for the same duration. The simu-
lation generated approximately 39 days of data and 463 periods of
operation, with each period containing 1024 data points for each of
the 14 variables.

4 Results and Discussion

In this section, we compare the performance of alternative pattern
matching techniques for the CSTR case study. For the PCA model
development, the historical data were partitioned into data windows
(Hi) that were the same size as the snapshot data (S). EachHi was
scaled to zero mean and unit variance. When the current snapshot,
S, was compared to a data window,Hi , it was scaled using the scal-
ing factors forHi . Alternative pattern matching methods were com-
pared in terms of the pool accuracy (p) and search efficiency (η),
that were defined in Eqs. (5) and (6). The results are reported as
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average values for the 19 operating modes, where each mode was
designated in turn as the “abnormal” situation for the snapshot data.

4.1 Results for the PCA Similarity Factor

In the proposed methodology, two data setsS andH are considered
similar if the similarity factor exceeds a specified threshold orcutoff
value. The effect of the cutoff value on the performance of the PCA
similarity factor,SPCA, is illustrated in Figure3. The values ofp,
η and their average are the mean values for the 19 operating con-
ditions in Table1. Thus the nominal condition for each operating
mode was considered in turn to be the “snapshot data”, and each
data windowHi in the historical database was screened. As the cut-
off value increases, the proportion of correctly identified records in
the candidate pool,p, increases, but the total number of correctly
identified records decreases becauseη decreases. This is reasonable
because increasing the cutoff results in only highly similar records
appearing in the candidate pool; this increasesp, but decreasesη.
But the average value is relatively constant for most part of the in-
dicated range and has a maximum value of 70% at a cutoff value of
0.965.
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Figure 3. Effect of PCA similarity factor cutoff on
pattern matching.

4.2 Results Using Both the PCA and Distance Similarity
Factors

Additional information about the distance between the subspaces of
theS andH datasets can provide further insight into their similar-
ity or dissimilarity. In particular, the new distance similarity factor,
Sdist, can be used in conjunction withSPCA, to provide further re-
finement of the results.

When bothSPCA andSdist are employed in the analysis, the his-
torical data setHi is considered to be similar to the snapshot data
setS, if,

SPCA > θPCA and Sdist > θdist (8)

whereθPCA andθdist are the cutoff values for the PCA and distance
similarity factors, respectively. To find the best performance when
both similarity factors are used, the average values for the 19 op-
erating modes is plotted as a function of the two cutoffs as a 3-D
surface in Figure4. The best performance was achieved forθPCA

= 0.965 andθdist = 0.290. A section of this surface cut at the op-
timum value of the distance similarity factor is shown in Figure5.
A comparison of Figures3 and5 indicates that significantly better
performance is obtained when both the PCA and distance similarity
factors are used.

A comparison of the performance of different pattern matching
techniques is presented in Table3. The first three rows contain a
summary of results obtained by matching theT2, Q and the com-
bined discriminant (Raich and Çinar, 1994) statistics of the histori-
cal data recordHi with those for the snapshot dataS. It can be seen
that these statistics do not produce very satisfactory results. A com-
parison of the last two rows in Table3 indicates that the addition of
the distance similarity factor produces a dramatic improvement in
the p and average values (40% and 17%), while only reducingη by
a small amount. The size of the candidate pool (NP), also serves as
a diagnostic measure of how well a technique performs by compar-
ing it with the average size of the candidate pool if it only contained
correctly identified records (i.e., ifp = 100%). This average size
is 17. Use of the distance similarity factor with the PCA similar-
ity factor reduces the candidate pool size from 34 to 17 which is
exactly equal to the average number of similar records in the histor-
ical database. Therefore, the combination of the PCA and distance
similarity factor produces very accurate results.
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Figure 4. Effect of PCA and distance similarity fac-
tor cutoffs.
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Figure 5. Effect of PCA similarity factor cutoff on
pattern matching. θdist = 0.290.

It may be noted that the new pattern matching approach can
be applied without specifying cutoff values. Instead, the person fa-
miliar with the process could first evaluate the historical data win-
dows which have the largestSPCA and Sdist values. The evalua-
tion could stop when an appropriate number of successful pattern
matches have been confirmed or when a desired value ofNP has
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been reached.
The computational requirements for calculation of the similar-

ity factors are modest. For example, it takes less than 10 seconds
on a Pentium III/550 MHz computer running Mversion 5.3
to build PCA models on the current snapshot and all the 463 his-
torical data sets (1024 data points per variable per data set), and to
calculate both the similarity factors for all historical data sets.

5 Conclusions

A novel methodology has been developed for locating similar peri-
ods of historical data, similar to an “abnormal situation”, that is of
interest. The proposed pattern matching methodology is both data
driven (does not use process models or prior process knowledge),
and unsupervised. The new approach is based on principal com-
ponent analysis and a new metric for the distance between the two
datasets. The computational load is modest, which allows process-
ing of large amounts of process data in relatively short time.

In an extensive simulation case study, the proposed approach
performed better than the existing PCA methodology for a wide
range of operating conditions and faults. The combination of PCA
and distance similarity factors provide an effective way of matching
patterns in multivariate time-series datasets.

Acknowledgements

The authors thank the UCSB Process Control Consortium and Pavil-
ion Technologies, Inc., Austin, Texas, for providing financial sup-
port for this research.

Literature Cited

Agrawal, R., P. Stoloroz and G. Piatetsky-Shapiro (eds.).Proc.
4th Int. Conf. on Knowledge Discovery and Data Mining.
AAAI Press, Menlo Park, CA (1998).
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Table 1. Modes of Operation.

ID Operating Condition
Normal Normal operation

F1 Catalyst deactivation by ramp increase in activation energy
F2 Heat exchanger fouling leading to ram decrease in heat transfer coefficient
F3 Dead coolant flow measurement
F4. Bias in reactor temperature measurement
F5 Coolant valve stiction
F6 Step change in feed flow rate,QF

F7 Ramp change in feed concentration,CAF

F8 Ramp change in feed temperature,TF

F9 Ramp change in coolant feed temperature,TCF

F10 Step change in upstream pressure in the cooling line
F11 Step change in downstream pressure in the reactor outlet line
F12 Damped oscillations in feed flow rate
F13 Autoregressive disturbance in feed flow rate
S1 Set point change in reactor temperature,T
O1 High frequency oscillations of 3 cycles/min in feed flow rate
O2 Intermediate frequency oscillations of 1 cycles/min in feed flow rate
O3 Intermediate frequency oscillations of 0.5 cycles/min in feed flow rate
O4 Low frequency oscillations of 0.2 cycles/min

Table 2. Measurements for the CSTR simulation.

CA T TC h Q QC QF

CAF TF TCF hC QC TC QCC

Table 3. Best performance of the similarity factors.

Method Best Cutoff(s) NP p (%) η (%) Average (%)
T2 statistic N/A 39 25 33 29
Q statistic N/A 30 61 53 57
CombinedQ andT2 N/A 34 66 65 65
PCA similarity factor alone 0.965 34 50 90 70
Distance similarity factor alone 0.290 138 29 94 61
PCA and Distance similarity factors 0.965, 0.290 17 90 84 87
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