Homogeneous Vanadium-based Aerobic Oxidation Catalysts and Derivatives for Silica Supported Systems
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Silica Supported Vanadium Catalyst

Biomass is the only renewable carbon feedstock available, |
corn stover, and thus much recent effort has focused on developing : e : Potential Benefits:
straw technologies that convert biomass into chemicals and fuels

Site Accessibility — Some silica supports Mechanistic Insight — Supporting the catalyst
have large surface areas (800 m2/g) and pore allows the potential to site isolate the vanadium
sizes (2 nm to 50 nm) allowing easily centers and could prevent bimolecular
accessible anchored functional groups reactions between two vanadium centers.

Vanadium Catalyzed Oxidative C-C Bond Cleavage |

Time(s) Time(s)

The use of an earth-abundant (non- Air- Vanadium:

precious) metal catalyst and air as an _ _ _ Stabili ™ th d el g .
oxidant would represent a significant Inexpensive non-precious metal Kype VS. [pyridine] (M), 340 K Kye VS. [iSOpropanol] (M), 319 K tability = The support can withstand elevate Reusability — The catalyst can be recycled and

advance in our ability to break carbon- environmentally friendly high oxidation potential of +5 state temperatures in the presence of water without used in other oxidation processes
carbon bonds in 1,2-hydroxyether losing order.
compounds such as lignin.

—

(H,O is the only by-product) non-toxic

Vanadium- DEA Modification Silica
Model compounds are needed as test substrates because breakdown of the highly functionalized polymers lignin
and cellulose is challenging
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| | Successful catalytic, aerobic oxidative C-C bond cleavage of lignin model complexes has been
co-products 95% COnversion products } ) o .‘ . demonstrated, while the precise mechanisms of the oxidations continue to be the subject of ongoing
' : detailed experimental and computational investigations.
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1+ Keglpyr] 1+ Keglpyr] Sotvent efect PCM DVSO and selectivity in these reactions. Future work will focus on the design of more active catalysts and
extension of this catalytic oxidation reaction to more complex model systems and lignins.

center fo,

@ Detected as an intermediate: 80% yield at 50% conversion ate = KoYV KaKeg[pyr[Vy] - I The homogeneous nature of the catalyst provides new opportunities for ligand design to optimize activity
Cg_/ Control (no vanadium): no reaction after 1 week at 100 °C

ratte = (ky/Keg)[Vd + ko[pyr[V{] Calculations suggest that the reaction may proceed by an “E2” type pathway,

where a bimolecular reaction occurs between the vanadium(V) complex and
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