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The shape of a crystalline organic solid has a major impact on its downstream pro-
cessing and on its end-product quality, issues that are becoming increasingly important
in the specialty and fine chemical, as well as the pharmaceutical and life science, indus-
tries. Though it is widely known that impro®ed crystal shapes can be achie®ed by ®ary-

( )ing the conditions of crystallization such as sol®ent type and impurity le®els , there is
far less understanding of how to effect such a change. Until recently, most methods for
predicting crystal shapes were based exclusi®ely on the internal crystal structure, and
hence could not account for sol®ent or impurity effects. New approaches, howe®er, offer
the possibility of accurately predicting the effects of sol®ents. Models for predicting crys-
tal shape are re®iewed, as well as their utility for process and product design.

Introduction
In the chemical process industries, numerous organic ma-

Žterials are purified by solid-liquid separation such as adipic
.acid, ibuprofen, and bisphenol A . Many of them, in particu-

lar specialty chemicals such as pharmaceuticals, are crystal-
lized from solution. As with other separation techniques, the
product purity is the primary measure of product quality.
However, unlike other separations, solution crystallization
produces materials with specific crystal shapes and size distri-
butions, variables that have a substantial impact on down-
stream processing and product performance.

The effects of crystal size and shape on solids processes
are far reaching. They influence the rate at which material

Ž .can be processed such as filtering, washing, and drying , as
well as physical properties such as bulk density, mechanical
strength, and wettability. Storage and handling characteris-
tics, the ease with which solids flow, and the extent of dust
formation are all, to some extent, a function of crystal mor-
phology; so is the dispersibility and stability of crystals in sus-
pension, which is important for materials, such as pigments,
that are eventually formulated as colloids.

Crystal morphology also plays a role in the quality and effi-
cacy of solid dose pharmaceuticals. Crystals of different

Žshapes have different bioa®ailabilities rate and extent of ad-
sorption in the human body}this is often determined by the

.dissolution rates of different crystal faces , in which case
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shape must be controlled for both medical and regulatory
Ž .purposes Romero et al., 1991 . Crystal morphology also af-

fects the ease with which the drug is compressed into tablets
Ž .Gordon and Amin, 1984 . Both are key factors in the pro-

Žcess efficiency and product quality of pharmaceuticals York,
.1983 .

The significant impact that crystal size and shape have on
crystallization processes requires that they, along with prod-
uct purity, be tightly controlled. To handle composition and
size distribution, there is a plethora of modeling and design

Ž .techniques Tavare, 1995; Bermingham et al., 2000 . The
phase behavior that dictates composition, and the kinetics and
mathematics that describe size distribution, are well devel-
oped aspects of chemical engineering. On the other hand,
the impact of the crystal’s growth environment on its final

Ž .shape is not as well understood Myerson and Ginde, 1993 .
This environment may include process effects such as fluid
shear, mechanical abrasion from vessels and impellers, and
heat and mass transfer. It also includes physico-chemical ef-
fects from interactions between crystal surfaces and the am-

Ž .bient phase often a solution . While they all act in concert,
the solution-surface interactions are critical for modeling
crystal shape.

Recently, there has been increased interest in the design of
solid processes for organic materials, and a corresponding
demand for a comprehensive model to predict crystal shape
Ž .Davey, 1991; Tanguy and Marchal, 1996 . Improved shapes
yield an economic benefit that has been demonstrated in in-
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dustrial situations, for example, in the production of solid
dose pharmaceuticals. The Upjohn Company has patented an
improvement of their ibuprofen process, where they have
changed solvents and obtained shapes that have better filter-
ing, washing, and drying performance, as well as improved

Ž .tablet formation characteristics Gordon and Amin, 1984 .
The result is a substantial reduction in production downtime
and better product quality.

In order to improve the design of solids processes, it would
be beneficial to include crystal shape prediction in the overall
process design and optimization. There are now several prac-
tical modeling techniques that are available to the process
engineer. In the following sections, we will review the major
developments in the field, and introduce the classical theo-
ries and the common procedures for calculating crystal shape.
These classical approaches are important first steps in mor-
phological analysis, despite the fact that they fail to account
for several key factors of industrial solution crystalliza-
tion}primarily the effect of solvent on crystal shape. In the
final section, we will discuss more recent approaches to the
problem that promise to overcome these limitations.

Background
The shape of a crystal is determined by the relative rates of

deposition of material on various crystal faces. The general
rule is that the slower a face grows, the larger its relative size
on the crystal. Given enough time, and appropriate condi-
tions, the crystal should evolve into its equilibrium shape, one
that minimizes its total surface free energy per unit volume
Ž .Gibbs, 1928 . In practice, however, such conditions are rarely
achieved, and the shape remains in its nonequilibrium growth
form.

The overall rate at which the material crystallizes depends
on the thermodynamic driving force. If there are no transport
limitations, this driving force is simply the supersaturation of

Ž .the system Myerson and Ginde, 1993 . However, where this
material is deposited, and at what relative rates, depends on
the nature of its incorporation and binding at different crys-

Ž .tal faces Berkovitch-Yellin, 1985a . If these properties were
isotropic, the resulting crystal would be spherical. Since, for

Žorganic solids, these properties are highly anisotropic Gibbs,
.1928 , the crystals are generally nonspherical, with distinct

facets of differing surface areas and orientations.
Early observers suggested a relationship between the facet

growth properties and the internal crystal structure. As far
Ž .back as 1849, Bravais 1866 noted that, for a given sub-

stance, certain crystal faces almost always appeared, and some
Ž .of them were almost more prominent had larger area than

others. He suggested that this was due to the existence of
structural motifs-surface architectures}that were different
on different crystal faces. Faces with motifs that have high
molecular densities should be more energetically stable, and
grow more slowly, than ones with low molecular densities.

With the advent of X-ray crystallography, anisotropy of
crystal packing was confirmed, and substantial effort was de-
voted to relating internal crystal structure to external crystal

Ž . Ž .shape. Freidel 1907 , and later Donnay and Harker 1937 ,
refined the observations of Bravais. Their model, which is
often termed the BFDH model, predicts the growth rates of

Žfaces from a knowledge of a substance’s lattice geometry unit

.cell dimensions and positions of molecules . It assumes that
the most energetically stable, and slowest growing faces are
the ones with the highest density of material and the largest
spacing between adjacent layers of material.

Ž .Hartman and Perdok 1955 expanded on this concept.
They suggested that lattice geometry is not an accurate
enough measure of internal crystal forces. The actual number
and magnitude of intermolecular interactions are more pre-
cise measures of face stability and growth rate. In particular,
they proposed that a face’s growth rate is directly propor-
tional to the interaction energy between a molecule on the
face and those in the underlying bulk of the crystal}the
molecule’s attachment energy. Computer implementations of
both the attachment energy and the BFDH approaches have
been developed, and their predictions have been compared

Žextensively to experimental results Saska and Myerson, 1983;
.Berkovitch-Yellin, 1985; Clydesdale et al., 1991 . These

methods closely predict the shapes of vapor grown crystals;
however, since they cannot account for forces external to the
crystal structure, they are not accurate for solution growth.

The need to account for external factors in predicting crys-
Ž .tal shape was also recognized very early on Bravais, 1866 .

However, the first to present a comprehensive study of the
effects of growth conditions on organic crystal shapes was

Ž .Wells 1946 . He distinguished two main factors that influ-
ence crystal shape: the overall rate of growth, and the exter-
nal interactions of the crystal with molecules of another kind,
that is, solvent andror impurities. Wells emphasized the simi-
larity between solvent and impurities; both are nonsolutes that
influence the rate at which the solute incorporates at crystal
faces. He was wary of any proposed mechanisms for model-
ing crystal-impurity interactions that could not logically be
extended to handle crystal-solvent interactions.

Since Wells, many researchers have suggested that impuri-
ties andror solvents affect crystal shape by their preferential
adsorption on different crystal faces. It is thought that this
‘‘binding’’ reduces the growth rates of certain crystal faces

Ž .and, hence, modifies the shape. Myerson and Saska 1990
have used the solvent accessible areas of the molecules on
crystal faces as a measure of solvent binding. More recently,

Ž .Walker and Roberts 1993 employed molecular dynamics to
calculate the binding energy between solvent and crystal faces.

Ž . Ž .Berkovitch-Yellin 1985 and Berkovitch-Yellin et al. 1985
have developed a technique to estimate the effect of impurity
binding. This approach, termed the tailor-made additi®e ap-
proach, assumes that a structurally similar additive molecule
can substitute for a solute molecule on some crystal faces. It

Žhas been applied to a variety of crystal systems Lahav and
Leiserowitz, 1993; Clydesdale et al., 1994; Koolman and

.Rousseau, 1996 .
The goal of these techniques has been to calculate a bind-

ing energy of a solvent or impurity and to incorporate this
value into the attachment energy model. It is thought that
the magnitude of the binding energy is related to an effective
reduction in the attachment energy, and, hence, growth rate,
of a crystal face. Though this assumption has been shown to
be qualitatively correct}a large binding energy generally
corresponds to a high likelihood that a face’s growth rate will
be affected}it has not been adequate for quantitative pre-
dictions. Binding energies have yet to be successfully corre-
lated to experimentally grown crystal shapes.
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The main drawback of these approaches is their ad hoc
nature. They stem from the attachment energy model which
is difficult to modify to account for process conditions, be-
cause it is not based on strict thermodynamic principles or a
detailed kinetic model. The binding energies themselves are
not well defined properties from a classical physical-chemical
point of view. These characteristics are the main impedi-
ments towards the improvement and widespread use of these
techniques.

Morphological models using more detailed kinetic descrip-
tions of crystal growth have been explored and refined since

Žthe 1930s. Volmer, Stranski and others Volmer and Marder,
.1931; Kaichew and Stranski, 1934 developed a 2-D nucle-

ation model of crystal growth based on the fundamental
physics of interface structure and of elementary growth pro-

Ž Ž . .cesses. See also the review by Ohara and Reid 1973 . Bur-
Ž .ton et al. 1951 proposed a growth mechanism resulting from

Ž .dislocations on crystal faces the BCF model . Both models
Ž .address the subtle problem of how facetted planar surfaces

form on crystals. It is thought that facets occur as a result of
layer-by-layer processes: in the 2-D nucleation model, a new
layer is initiated by the birth of a 2-D nucleus; in the BCF
model, a dislocation on a face forms a spiral that rotates as it
grows, and forms a new layer upon each rotation. In addi-
tion, the kinetic theory defines conditions under which non-

Ž .facetted growth occurs Burton et al., 1951; Jackson, 1958 ;
that is, conditions where layer-by-layer mechanisms break
down, facets become roughened, and growth occurs due to
the random attachment of molecules onto crystal surfaces.
Experiments strongly support the existence of 2-D nucleated,
BCF, and roughened growth for different materials and con-

Žditions of crystallization Lewis, 1974; Jetten et al., 1984; Land
.et al., 1996 .

Despite the acceptance of these physical models, they have
not been widely employed for predicting crystal shapes. Their
application requires kinetic and transport coefficients that

Ždepend on both the direction of crystal growth the orienta-
.tion of the face and on the type of solution environment

Ž .primarily the solvent . While such parameters can be ex-
tracted from experiments that measure face-specific growth

Ž .rates Davey et al., 1986 , this is not a preferred approach for
morphological modeling}one would like to predict crystal
shape a priori, without having to perform experiments. The
use of detailed kinetic models for morphological prediction
has been limited mostly to computer studies of simple, ideal-

Žized systems Gilmer and Bennema, 1972; Swendson et al.,
.1976 .

Recently, however, the group of Bennema and co-workers
Ž .Liu et al., 1995; Liu and Bennema, 1996a,b,c have re-focused
attention on detailed crystal growth kinetics as a means of
predicting crystal morphology grown from solution. They have
simplified the kinetic models to retain only one solvent de-
pendent parameter, and, furthermore, they have demon-
strated that this property can be derived from molecular dy-
namics simulations of the solution-crystal interface. We have

Ž .also developed a similar approach Winn and Doherty, 1998 ,
although one that does not require fluid-phase molecular
simulations. It uses only known physical properties of the pure
solvent, along with the results of standard attachment energy
calculations to estimate face-specific kinetic parameters.
These implementations of detailed crystallization kinetics of-

fer the possibility to predict crystal shape under realistic pro-
cessing conditions.

Equilibrium and Growth Shapes
The equilibrium criterion for the dividing surface between

Ž .solid and fluid phases was developed by Gibbs 1928 . For
Ž .the case where the solid is a convex body a crystal , it states

that the total surface free energy must be at a minimum for a
fixed volume of solid

min Hg n dS 1Ž . Ž .

where dS is a differential area of the surface, and g is the
specific surface free energy. The value of g on any portion of
the surface is a function of its orientation, which is defined
by n, a unit vector normal to the tangent plane to the sur-
face. If a surface consists entirely of facets, as is often the
case with crystals, then the criterion becomes

min g n A n 2Ž . Ž . Ž .Ý i i
i

Ž . Žwhere A n is the area of a facet of orientation n . Note:i i
.each n will be referred to as a facetted direction.i

The geometric features of the crystal shape that minimizes
Ž .surface free energy were developed by Wulff 1901 . His the-

orem states that within the equilibrium crystal there is a point,
the Wulff point, such that the perpendicular distance l from
any surface tangent plane of orientation n to the Wulff point

Ž .is proportional to g n ; that is

g n g n g nŽ . Ž . Ž .1 2 i
s s ??? s 3Ž .

l l l1 2 i

Thus, all tangent planes to the crystal are perpendicular to a
Ž .set of vectors, emanating from the Wulff point the origin ,

Ž . Žwith direction n and magnitude proportional to g n . The
.proportionality depends on the fixed volume of the crystal.

The equilibrium, or Wulff, shape consists of all points x on
the convex envelope of this family of planes

x : x ? nAg n 4� 4Ž . Ž .

The equilibrium shape is determined by the features of the
vector field g n. The end points of these vectors can be plot-
ted, forming a surface termed the polar plot of g . Properties
of the polar plot have been widely studied, because they not
only determine the equilibrium shape, but also the stability of

Žthe minimizing surfaces with regard to fluctuations. A com-
plete survey of the properties of the polar plot of surface free

Ž . .energy can be found in the work of Herring 1951, 1953 . Its
most important feature is that it exhibits ‘‘cusped’’ minima in
directions which correspond to facetted directions on the
equilibrium crystal. Thus, for completely facetted equilibrium
crystals, the Wulff shape can be constructed knowing only
discrete values of g for the facetted directions.

The shape itself has two very important and well known
characteristics. Its primary feature is that it scales with vol-
ume; that is to say, the ratio of surface-to-origin distances for
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any two points on the surface is the same at any volume. The
other property applies only to completely facetted Wulff
shapes: the relati®e area of a facet increases with decreasing g .

There are several proofs of Wulff’s theorem in the litera-
ture, and there is a detailed discussion in the article by Her-

Ž .ring 1953 . Most begin with the assumption that the Wulff
Ž .shape is completely facetted. Taylor 1978 developed a rigor-

Ž .ous proof for Wulff’s theorem for the general case where g n
takes on any functional form. The proof places the theorem
in a general mathematical framework: for any function of the

Ž .form F n , there is a convex shape, the Wulff of F, that has
the least surface integral for a fixed volume.

Although the theoretical equilibrium shape has been widely
studied, it has been known for some time that most crys-

Žtalline materials are not in their equilibrium habit Gibbs,
.1928; Herring, 1953; Hartman, 1963 . The vast majority of

single crystals, particularly organics, are highly facetted and
Ž .dominated by one or two forms symmetry related faces . For

these forms to be equilibrium crystals, they would have to be
capable of adjusting to small fluctuations in the surroundings.
This might require the addition or removal of small amounts
of material, while at the same time maintaining the equilib-
rium shape. However, large facets cannot exchange infinitesi-
mal amounts of material and still be surface energy minimiz-
ing: they must exchange whole layers. Hence, crystals develop
morphologies that are generally not surface energy minimiz-
ing, but are a function of the kinetic processes that control

Žlayer growth. The morphologies are, however, likely to con-
tain most low g faces. Faces of small g have small local su-

Ž .persaturation Gibbs, 1928 , and, thus, small driving forces
.and slow growth rate. They are commonly referred to as

growth shapes.
Most kinetic theories of crystal growth suggest that mate-

rial is added to facets such that each facet grows with a veloc-
ity in the direction normal to its plane. For example, Frank
Ž .1958 showed by the theory of kinematic waves that the pro-
cess of layer growth by step propagation resulted in an in-

Ž .stantaneous velocity v n for each point on the surface in the
direction of the surface normal n. Given continuous or dis-

Ž .crete values for v n , Frank deduced a construction for the
growth shape at time t: his construction is in fact equivalent

Ž .to performing a Wulff construction on v n t.
Ž . Ž .Recently, Cahn et al. 1991 , and Taylor et al. 1992 put

this result in a more general mathematical framework. They
showed that Frank’s construction stems from the solution to
a PDE which describes a moving interface. They define a
crystal surface as a set of points, each one reaching a position
x in time t. If there is a point x with surface normal n on an
initial surface, and, after a time d t, there is a point xqd x
with the same surface normal n on a new surface, then dxrdt
is the velocity of points of constant n. Each point on the

Ž .surface also has an instantaneous velocity v n in the direc-
tion n. This is assumed to be a known quantity, estimated
from mechanistic models and physical properties. Thus, the
relationship

dx
? ns v n 5Ž . Ž .

dt

Ž .If we define an arrival time, t x , as the time for a point
Ž .on the surface to reach x, then t x s t is an implicit equa-

Figure 1. Two-dimensional representation of an evolv-
ing cubic crystal.
t represents time, t is the arrival time n is the unit normal
vector, and v is the velocity of the face.

Žtion for the shape of the crystal for the set of all x on the
. Ž . Ž .surface . That is to say, t x s t is the shape at t , t x s t1 1 2

is the shape at t , and so on, as illustrated in Figure 1.2
Ž .Differentiating t x and applying the chain rule

dt dx
s1s=t ? 6Ž .

dt dt

and comparing this with Eq. 5, we see that =t is a vector
with a magnitude of 1rv, and a direction coincident with n,
the surface normal. This is the well known result in differen-
tial geometry for the motion of a surface tracked by ‘‘level

Ž .sets’’ of a function see Taylor et al., 1992 . The gradient of t
Ž .is also defined by Frank 1972 as the slowness ®ector of a

surface. Thus, the equation of motion of the surface is ex-
pressed as

< <=t v n y1s0 7Ž . Ž .

< <where =t is the Euclidean length of vector =t .
Ž .Since v n is a function only of direction, it is a first-order

homogeneous function. It can be extended on all vectors p,
Ž . Ž . < < Ž . Ž < < .where ps pn, so that v p spv n . Thus =t v n s v =t n ,

and Eq. 7 becomes

v =t y1s0 8Ž . Ž .

which is an implicit PDE for the motion of the surface.
Ž .This equation has the general form F x, t , p s0, where

ps=t . Under conditions of smoothness in F, this initial-value
problem has an analytical solution by the method of character-

Ž .istics John, 1975 ; we expect the solution to be of the form
Ž .t x, p . In this method, curves parameterized by some vari-

Ž .able s, defined as x s , and termed characteristics, emanate
from every point x on the initial surface. They are deter-0
mined by the following set of ordinary differential equations

dxrdss= F x , t , p 9Ž . Ž .p

dtrdss p ?= F x , t , p 10Ž . Ž .p

­ F
dprdssy= F y p 11Ž .x ­t

where =ps­r­ p for is1, 2, 3.i
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Ž .It is readily shown that p ?= F s v p s1, and hence dtrdsp
s1; the parameter s is just the arrival time. Also, in the case
where v is not an explicit function of x or t, as is true for the
conventional problem of the kinetic growth of organic crys-
tals, Eq. 11 reduces to dprdts0. Therefore, p and n are
constant along characteristics, which are, from Eq. 9, just the
straight line trajectories of points of constant n

dx
s= v p 12Ž . Ž .pdt

xs x q t= v p 13Ž . Ž .0 p

The construction of the crystal surface can be further clari-
Ž .fied by expanding = v pp

dv p s= v p ? dpŽ . Ž .p

s= v p ? pd nq ndpŽ . Ž .p

Comparing it to

dv p spdv n qv n dpŽ . Ž . Ž .

Ž .we see that the gradient of v p has the following properties

= v p ? ns v n 14Ž . Ž . Ž .p

= v p ? dnsdv n 15Ž . Ž . Ž .p

The vector dn lies in a plane perpendicular to n and hence,
it is tangential to the crystal surface. It equals du T, where T
is the tangent vector to the crystal surface in the direction of
maximum increase of v with n, and du is the magnitude of

Ž .angular change in n Hoffman and Cahn, 1972 . Equation 13
can therefore be rewritten as the sum of normal and tangen-
tial components

xy x ­ v0
s vnq T 16Ž .ž /t ­u max

Ž .where v refers to v n . This expression completely determines
the position of all points on the surface.

Facetted portions of a surface are those where x is multi-
valued; that is, to say, where there are many x with the same
surface normal n. This requires having multiple characteris-
tics for a single n. From Eq. 16, we see that multiple charac-
teristics must all have the same normal component, and
hence, must all have different tangential components. This
occurs when ­ vr­u is undefined, as is the case when there is

Ž .a discontinuity, a ‘‘cusp,’’ in the polar plot of v n . The mag-
nitude of the tangential components are in a range bounded
by the limiting values of ­ vr­u as the discontinuity is ap-

Ž .proached from both sides positive and negative T . The mul-
tiple trajectories that emanate from points on facets are
termed fans of characteristics. Physically speaking, they are a
result of the fact that a point on a facet n at t could follow1
numerous trajectories and still arrive on facet n of the new
surface at t .2

It we start the crystal growth process from a single point,
an origin, then all characteristics x defined by Eq. 16 em-
anate from that point. For nonfacetted directions, Eq. 16
yields one characteristic, while for facetted n, it yields fans

Ž .of x with the same normal components: x ? ns v n t. The
locus of all x is the crystal surface.

If two or more characteristics intersect}as happens when
Ž .a characteristic from one fan of a given facet crosses a char-

Ž .acteristic stemming from another fan of another facet }they
cannot be included in the crystal surface. A crystal surface by
definition must be continuous, and the end points of inter-
secting characteristics do not form part of a continuous locus.
These intersections are termed shocks, and correspond to
edges and corners in the crystal.

The occurrence of fans and shocks in the solution of the
PDE results in a unique construction for the case of a com-
pletely facetted crystal growing from an origin. It has a sur-
face defined by all the characteristics of Eq. 16, minus those
cut off by shocks, with all characteristics grouped into sets of

Ž .x such that x ? ns v x t. In other words, it is the envelope of
the family of planes defined by

x : x ? ns v n t 17� 4Ž . Ž .

This envelope of planes is clearly equivalent to the envelope
of planes described by Eq. 4. Therefore, the construction of a

Ž .growth crystal at time t, given a function v n , is equivalent to
Ž .the construction of the Wulff of v n t.

This result can also be inferred from the work of Hoffman
Ž . Ž .and Cahn 1972 , who showed that =g p is a vector field

Ž .whose locus of tips encloses the Wulff of g n . Hence, the
Ž .vector field =v p which defines the characteristics of the

Ž . Ž .PDE, also defines the Wulff of v n . The Wulff of v n is
thus the relative growth shape of the crystal. It scales with
volume, and, hence, scales with time: relative center-to-face
distances remain constant for all time. Hence

v n v n v nŽ . Ž . Ž .1 2 i
s s ??? s 18Ž .

l l l1 2 i

This is the key relation that is used in crystal growth re-
search. In experiments, this equation is used to estimate rela-
tive face velocities from measurements of center-to-face dis-
tances; in modeling, the shape is constructed from relative
face velocities.

The analogy between the growth and equilibrium shapes
leads to an important property for the growth shape, one that
observers of crystal growth have suggested for a long time
Ž .Wells, 1953 : the slower the growth rate of a face, the larger its
size on the crystal. Growth shapes are dominated by slow grow-
ing faces.

The overall morphology of a crystal is usually characterized
by its aspect ratio, defined as the ratio of longest to shortest
crystal dimension. This can be approximated by the ratio of

Ž .largest to smallest v n for facets that appear on the crystal.
Crystal shape prediction is therefore primarily concerned with
models that predict relative rates of growth. The simplest are
based on the influence of anisotropic forces within the crystal
structure; the more advanced include the influence of sur-
face-fluid interactions.
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Bravais-Friedel, Donnay-Harker Method
The earliest attempt to quantitatively relate crystal habit to

Ž .crystal structure was proposed by Bravais 1866 and vali-
Ž .dated by the extensive observations of Friedel 1907 . They

suggested that the morphological importance M. I. of a face
Ž .its relative area on the crystal is proportional to the inter-
planar spacing d of its corresponding lattice plane. Don-hkl

Ž .nay and Harker 1937 extended this approach to take into
account reductions in interplanar spacing due to space group
symmetry, and, hence, it is often termed the Donnay-Harker
or the BFDH law. It remains the simplest way to predict the
likely forms on a crystal, and can be used in conjunction with
the Wulff construction to draw the crystal shape.

The theory is derived from two hypotheses made by Bra-
vais during his pioneering work on crystallography. The con-
cepts are fundamental to the study of crystal growth, and are
based on his observations of crystal cleavage. Bravais noted
that, for a given material, some crystal faces are more easily
cleaved than others. He suggested that:
Ž .I Faces that are easiest to cleave have strong cohesive

forces between molecules in the surface layer, that is, tangen-
tial to the plane, and weak cohesion forces between adjacent
layers, that is, normal to the plane.
Ž .II Forces involved in crystal cleavage are essentially the

same as those involved in crystal growth}the most dominant
faces grow slowly because they have strong tangential, and
weak normal forces.

Bravais went on to approximate the tangential and normal
forces at crystal faces. He assumed that strong tangential
forces were due to a high density of molecules on a surface
layer. Since molecules in the solid state are on the nodes of
crystal lattices, the density of material can be represented by
the density of nodes. This is, in crystallographic terms, the
reticular density, S : the number of nodes per unit area onhkl

Ž .a net plane a lattice plane that intersects nodes . It is in-
versely proportional to the reticular area A : the area of ahkl

Ž .net plane per node it intersects A s1rS . Therefore,hkl hkl
he proposed, tangential forces are inversely proportional to
A . Similarly, he approximated the normal forces by assum-hkl
ing that they are inversely proportional to the distance be-
tween layers of material. Large spacing would imply weak
interactions. The spacing is represented by the distance be-
tween net planes d .hkl

The original hypothesis implied that both normal and tan-
gential forces, now approximated by reticular area and inter-
planar spacing, have an impact on morphology. However, be-
cause A ? d sV, and V is the constant lattice volumehkl hkl
per node, A and d are not independent variables. Thehkl hkl
most important faces on a crystal have small reticular areas,
implying large interplanar spacings, and vice versa. Hence

1
M . I. A A d 19Ž .hkl hklAhkl

Since d is large when h, k, and l are small integers, lowhkl
index faces tend to dominate crystal morphology.

Morphological importance was a term employed by the
early researchers of crystal shape. It represented both the
frequency of occurrence of a face in a crop of crystals, and its

Ž . Žrelative size macroscopic area on a crystal Donnay and

.Harker, 1937 . Since the relative area of a face on a growing
polygon is approximately inversely proportional to its relative

Ž .linear velocity Cahn et al., 1991 , M. I. can be approximated
by the inverse of velocity, and, hence, the relationship

1
R A 20Ž .hkl dhkl

where R is the velocity of a crystal face with the samehkl
Ž .normal direction as the net plane hkl . This relationship

yields relative velocities between any number of possible
faces, and, hence, can be used to construct the growth shape.

The law originally assumed that there was only one net
plane in any crystallographic direction. In many instances this

Ž .is true: there is only one value of n such that nh, nk, nl
intersects nodes. Generally ns1, and hkl are small, because
the net plane is intersecting nodes which are at lattice ver-

Ž .tices. For example, in a cubic lattice, 100 is the only net
w xplane with a normal in the 100 direction. Hence, a crystal

Ž .face growing in that direction is termed the 100 crystal face,
and, by the BFDH law, has a velocity inversely proportional
to d .100

Ž .Donnay and Harker 1937 discovered exceptions to this
due to the symmetry of certain space groups. They found that
in crystal structures with centering, glide planes, or screw axes,
there are directions that have more than one net plane; that

Ž .is to say, more than one n such that nh, nk, nl intersects
nodes. The planes are structurally equivalent, intersecting the
same types of molecules and having the same surface densi-
ties. They only differ because in one of the planes the
molecules are translated andror rotated relative to the other.

For example, in a body-centered cubic lattice, there are
w x Ž .two net planes whose normals are 100 : the 100 plane, in-
Ž .tersecting the vertex nodes, and the 200 plane, intersecting

the centered nodes. They have the same pattern and density
Ž .of nodes, but the whole pattern the ‘‘net’’ has been trans-

w xlated. For an actual crystal face growing in the 100 direc-
tion, either net plane could be the surface structures}they

Ž .are equivalent. Since the 200 family of lattice planes in-
Ž .cludes both structures, it is labeled the 200 face; its velocity

is inversely proportional to d .200
These exceptions to the original law of Bravais are a result

of what is termed effecti®e reductions in interplanar spacing. In
certain space groups, in certain directions, the smallest index
family of net planes does not represent the actual spacing of
net planes. The smallest index plane is said to be ‘‘extinct,’’
excluded from morphological consideration. Because of the
symmetry operations within each space group, it is possible
to express the indices of extinct planes in algebraic relation-
ships. These extinction conditions are well known for each
space group, and are available in the X-ray diffraction litera-

Ž .ture Hahn, 1995 . They play an important role in diffraction
experiments, because the same reduction in interplanar spac-
ing that causes morphological extinction also leads to the ex-
tinction of diffraction patterns.

The BFDH model is implemented by calculating d for ahkl
range of net planes which are potential crystal faces. All that
is needed is the unit cell and space group information. It is
only necessary to calculate d-spacing for small values of hkl,
such as all hkl between 1 and 3, since high index faces are
unlikely to appear in the final shape. The planes that satisfy
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extinction conditions are also excluded. The number of calcu-
lations can be further reduced by ignoring symmetrically
equivalent planes, planes of a form. The entire process can
be done automatically on a computer, and there are pro-

Žgrams available such as MORANG Docherty and Roberts,
.1988a . The d-spacings provide a means of ranking the most

morphologically important forms, and yield their relative ve-
locities. Applying a Wulff construction to the velocities gives
the BFDH estimate of the growth shape.

Hartman-Perdok Approach
Ž .Hartman and Perdok 1955 developed an approach for

predicting crystal shape based on similar principles to Bra-
vais’. They too suggested that prominent faces must have
strong tangential forces and weak normal forces. However,
their model uses actual measures of the chemical interac-
tions, not geometric approximations, to predict face growth
rates. There are two principal contributions of Hartman and
Perdok that are frequently discussed in the literature: PBC
theory, a method for defining the morphological importance
of various crystal faces, and the attachment energy model, a
method for predicting, quantitatively, the relative growth rates
of faces.

PBC theory stems from the proposition that there are dif-
ferent growth mechanisms and surface structures on faces of
different orientation. Low index faces, with their high density
of surface molecules, should remain macroscopically flat
throughout the growth process, and have a distinct dividing
plane between the crystal and ambient phase. High index
planes, however, with their large distances between
molecules, may exhibit hill and valley structures with no dis-
tinct dividing plane. The significance of this is that a molecule
crystallizing onto a flat face will have a much higher energy
barrier to overcome than one attaching into a hill and valley

Ž .structure Hartman, 1953 . The flat faces should be slower
growing, and dominate the crystal morphology.

Hartman and Perdok proposed a rule of thumb for distin-
guishing between these different interface structures. First,
they defined interactions between centers of mass of growth

Ž .units molecules or atoms as bonds, and since a particular
bond is repeated throughout the crystal, they termed these

Ž .Periodic Bond Chains PBCs . If a face is parallel to at least
two ‘‘strong’’ PBCs, then they proposed that it must be stable

Ž .and macroscopically flat F face ; if it has only one ‘‘strong’’
Ž .PBC then it is moderately rough, or stepped S face ; if it has
Ž .none, then it is completely kinked and rough K face . They

reasoned that F faces are the most morphologically impor-
tant, followed by S faces, and then K faces. Thus, the theory
may be used to rank the morphologically important forms on
a crystal.

The use of PBC theory in this way requires an understand-
ing}or more precisely, an exact definition}of ‘‘strong’’
bonds. For metallic and ionic solids, which have highly sym-
metric growth units and crystal packing, the dominant chemi-
cal interactions in the crystal are often assumed to be be-
tween nearest neighbor growth units. For these materials,
Hartman and Perdok proposed explicitly that the first near-
est neighbor interactions are the ‘‘strong’’ bonds. For organic
crystals, however, they did not propose such a strict defini-
tion. Organic molecules and crystal structures are more

asymmetric, and it is accepted that there are significant bonds
between molecules that do not have the absolute closest cen-
ters of mass. Hartman and Perdok suggested that there was a
coordination sphere about a central molecule that encom-
passed all the molecules with which it made strong bonds;
unfortunately, they did not provide an exact definition of this
sphere. Instead, they relied heavily on chemical
intuition}qualitative judgments}to define the strong PBCs
in organic materials. The need for qualitative judgments lim-
its the use of this approach. As a result, PBC theory is not as
widely employed for ranking morphologically important forms
as the BFDH model discussed in the previous section.

Nevertheless, Hartman and Perdok’s method for calculat-
ing the relative growth rates of faces, the attachment energy
model, is very widely applied. This technique determines rel-
ative growth rates from the magnitude of the intermolecular
interactions within crystals. For organics, these interactions
are the relatively weak, noncovalent cohesive forces between
molecules, although it is also quite common for charge trans-
fer interactions}mainly hydrogen bonds}to exist. The total
intermolecular energy per mol in a crystal is termed the lat-
tice energy E latt, which is approximately equal to the negative

Ženthalpy of sublimation. The lattice energy is the internal
energy of the crystal, which is a negative number. The subli-
mation enthalpy is the energy required to sublime the crystal,
which is a heat input to the system, and thus is usually re-

.ported as a positive number. Hartman-Perdok theory parti-
tions the lattice energy into two contributions: the interaction
within a slice of thickness d , and the interaction betweenhkl
the molecules in the slice and molecules in the rest of the
crystal. The energy per mol within a slice E s l is effectively
the energy of formation of a slice from the gas phase. The
energy per molecule between the slice and the bulk is effec-
tively twice the energy per molecule of attaching the slice to
the underlying crystal. The energy between slice and bulk is

att Ž .termed the attachment energy E . For any face hkl , the
sum of the slice energy and the attachment energy is a con-
stant E latt

E latt s E sl q Eatt 21Ž .hkl hkl

Hartman and Perdok suggested a relationship between at-
tachment energy and the rate at which material attaches to a
face. They assumed that bond energy is inversely propor-
tional to the time required to form a bond. The velocity of a
face must therefore increase with increasing magnitude of the
attachment energy

< att <R A E 22Ž .hkl hkl

Ž .where R is the rate of growth of face hkl in the directionhkl
of its normal.

< att <The model implies that faces with larger E grow fasterhkl
and are less prominent on a crystal. Since energy is in gen-
eral a function of intermolecular distance, it is consistent with
the Law of Bravais: faces with small interplanar distances have

< att <large E . Equation 22, like Eq. 20, gives relative rates ofhkl
growth that can be used in conjunction with a Wulff con-
struction to draw the shape.
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Energy Calculation
The attachment energy method requires calculation of the

intermolecular forces within crystals. For molecular crystals,
these are dominated by repulsive, dispersive attractive, and

Želectrostatic contributions. The repulsive and attractive that
.is, van der Waals energy shared between two particles is a

function of the interparticle distance r, and can generally be
described by a potential energy expression. Two common

Ž .forms are Gilli, 1992

y A B
V s q 23Ž .®dW n6 rr

y A
V s q B exp yCr 24Ž . Ž .®dW 6r

where A, B, C, and n are parameters that depend on the
Ž .type of particles type of materials that are interacting.

These expressions are obeyed only when the interaction
between particles is averaged over all orientations, that is,
when the particles have spherical symmetry. Hence, poten-
tials of this kind cannot be applied directly to most molecules.
However, they can be applied to force centers in molecules,
namely atoms. The sum of all atom-atom interactions be-
tween two molecules approximates the total molecule-mole-
cule interaction. This atom-atom approximation has been
shown to be valid for a great variety of molecular systems
Ž .Kitaigorodsky, 1973 .

Electrostatic contributions to the energy of organic crystals
are mostly due to dipole-dipole and hydrogen bonding inter-
actions. Because of the difficulty in ascribing localized dipole
moments, the monopolar model of the electrostatic forces is

Ž .often used see Kitaigorodsky, 1973 . Partial charges are as-
signed to all atoms, and the coulombic energy shared be-
tween two atoms is given by

q q1 2
V r s 25Ž . Ž .elec Dr

In addition, this monopolar model is also a physically reason-
Ž .able interpretation of the hydrogen bond Hagler et al., 1974 .

Thus, hydrogen bond energy can be calculated using Eq. 25.
The accuracy of this technique depends on the choice of par-
tial charges, which are parameters that depend on atom type
just like the parameters in the van der Waals terms. The
complete expression for the atom-atom potential is therefore

V sV qV 26Ž .®dW elec

Sometimes an additional term V is employed to accounthb
for the dependence of hydrogen bonding on the geometry of
donor-hydrogen-acceptor atoms.

Several forms of Eq. 26 have been parameterized for or-
ganic materials. They include the force fields of Kitaigorod-

Ž . Ž . Ž .sky et al. 1968 , Williams 1966 , Momany et al. 1974 , and
Ž .Lifson, Hagler and Dauber 1979 , each of which are accu-

Žrate for a specific class or classes of compounds such as
.alkanes, carboxylic acids, and so on . The more generic

Ž .DREIDING force field Mayo et al., 1990 , although not as
precise as the older models, has parameters for a large num-

ber of main group elements and is suitable for a wide range
of organic materials. Some of the force fields include partial
charges for atom types in a class of compounds; these have
been selected so as to predict the known electrostatic and
hydrogen bonding characteristics of these materials. When
partial charges are not provided, it is reasonable to use gas-
phase charges in the coulombic term that are calculated by
ab intio or semi-empirical quantum mechanics methods.

Potential functions in the form of Eq. 26 are employed to
calculate E latt. The lattice energy is half the sum of all atom-
atom interactions between a central molecule and the sur-
rounding molecules in the crystal. If the central molecule and
the N surrounding molecules each have n atoms, then

N n n1
lattE s V 27Ž .Ý Ý Ý ki j2 k s1 is1 js1

where V is the interaction of atom i of the central moleculeki j
with atom j of the kth surrounding molecule. The accuracy
of Eq. 27, and, hence, the accuracy of the chosen potential
set, is tested by comparison to the experimental sublimation
enthalpy of the material of interest. The lattice energy must
satisfy the relationship

B latt syD H suby2 RT 28Ž .

where the 2RT compensates for thermal contributions to the
Ž .enthalpy Gilli, 1992 .

The number of summations in Eq. 27 is, in principle, infi-
nite. However, in practice, it is finite, because only molecules
within a fixed distance from the central molecule contribute
significantly to the energy. The cutoff radius can be deter-
mined by repeatedly calculating E latt with greater and greater
numbers of surrounding molecules until there is negligible
decrease in the energy. For many organics, this occurs at a

˚distance of about 15 to 20 A from the central molecule. Dur-
ing the lattice energy calculation, slice and attachment ener-

Ž .gies can also be determined. For a face hkl , boundaries of
the slice are constructed around a central molecule. Interac-
tions with molecules whose center of mass is within the
boundaries contribute to the slice energy. Those outside of
the boundary contribute to attachment energy. This is illus-
trated in Figure 2. If there is more than one choice for the
central molecule, that is, more than one independent
molecule in the unit cell, the slice is centered at each one,
and the energy results are averaged. This general procedure
}setting up the lattice, applying an intermolecular potential,
determining the cut-off radius, and calculating E latt, E sl, Eatt

Ž}has been implemented by several authors Saska and My-
erson, 1983; Berkovitch-Yellin, 1985; Docherty and Roberts,

.1988b , and there are two publicly available programs for this
Ž .purpose: HABIT Clydesdale et al., 1991 and Cerius.

Crystal Shape Predictions
Adipic acid

Adipic acid is a precursor to Nylon and is a widely pro-
duced industrial chemical. It is also used as a lubricant and
acidulant in pharmaceutical tablet formulations. Its crystal
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Figure 2. Attachment energy calculation.

shape plays a major role in the material’s bulk processing; in
particular, certain shapes are dominated by hydrophilic faces

Ž .that make flowability very difficult Klug and van Mil, 1994 .
Adipic acid shape also has a large effect on tablet com-
paction and dissolution properties, and, hence, is of great in-

Žterest to pharmaceutical researchers Chan and Grant, 1989;
.Grant et al., 1991 . The effect of impurities, additives, and

solvents on adipic acid crystal shape is an active area of study
Ž .Myerson and Saska, 1990; Pfefer and Boistelle, 1996 .

The BFDH and attachment energy models were used by
Ž .Davey et al. 1992 to predict adipic acid crystal shape, and a

similar calculation has been repeated here. Table 1 lists in-
terplanar spacings and attachment energies of various low in-
dex faces, in units of Angstroms and kcalrmol, respectively.
Adipic acid crystallizes in space group P2 rc, with two1
molecules per unit cell, and unit cell dimensions: as10.01,

Žbs5.15, cs10.06, and b s136.758 Housty and Hospital,
.1965 . Its extinction conditions are: h0 l ls2n, 0k0 ks2n,

Table 1. BFDH and Attachment Energy Results for Adipic
Acid

at td Eh k l h k l
˚Ž . Ž .Face A kcalrmol

100 6.920 y25.68
102 4.767 y26.98
202 4.685 y31.27
111 4.513 y27.32
011 4.126 y12.95
21 1 3.509 y31.42
002 3.446 y15.29

hkl kq ls2n. The energy calculation was performed with a
Ž .6-12 potential developed by Lifson et al. 1979 for carboxylic

acids and amines. The potential also included estimates of
partial charges that are suitable for carboxylic acids. The cal-
culated lattice energy was y35.5 kcalrmol, which compares

Žwell to the enthalpy of sublimation, 32.1 kcalrmol Lifson et
.al., 1979 .

It is important to note the disagreement between the BFDH
Ž . Ž .and attachment energy results see Figure 3 . The 100 face

has a large slice thickness, yet it has a large attachment en-
ergy. This is a result of a chain of strong hydrogen bonds

w xalong the 100 direction, which contribute significantly to the
attachment energy. The BFDH crystal is dominated by a slow

Ž .growing 100 face, while the attachment energy crystal is fast
growing and elongated in this direction.

Also shown is the flat, plate-like, adipic acid crystal grown
Ž .from aqueous solution redrawn from Davey et al., 1992 .

Studies have shown that polar solvents like water and cationic
Ž .additives reduce the 100 growth rate resulting in plate-like,

Ž .even flaky shapes Michaels and Colville, 1960 . Nonpolar
solvents, anionic additives, and growth from the vapor permit

Ž .fast 100 growth and, hence, result in needle-like crystals
Ž .Klug and van Mil, 1994 .

Several attempts to model the effects of solution phase on
adipic acid crystal shape have been reported in the literature.

Ž .Myerson and Saska 1990 have calculated the solvent acces-
sible regions of adipic acid faces, an approach generally ap-

Ž .plied to biochemical structures. Davey et al. 1992 have ex-

Figure 3. Adipic acid crsytals.
Ž .Water grown crystal redrawn from Davey et al. 1992 .
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amined structurally similar impurities in a tailor-made addi-
tive type approach. These strategies have not been com-
pletely successful, and are not effective for routine, a priori
predictions of crystal shape.

Ibuprofen
Expanding world markets and increased competition have

ignited efforts to improve pharmaceutical production.
Ibuprofen is an example of a widely used medication whose
process efficiency and product quality were improved by
modifying the crystallization process. By changing the solvent
from linear alkanes to linear alcoholralcohol mixtures with
high hydrogen bonding solubility parameters d h, more equant

Žcrystal shapes were achieved see U.S. Patent 4,476,248, Gor-
.don and Amin, 1984 . These shapes caused less lamination of

tablet compression dies and, hence, less production down-
time. Tablet integrity, shelf life, and the drug’s bioavailability
were also enhanced.

A method for selecting the proper solvent a priori would
be a valuable tool for process design. The BFDH and attach-
ment energy models were explored as a first approach. Such

Ž .a simulation has been performed by Bunyan et al. 1991 ,
where the growth unit was assumed to be the individual
ibuprofen molecules. However, ibuprofen molecules pack in
the lattice as dimers, and it is possible that the dimer is the
growth unit that enters the solid phase. There is some evi-
dence that mono-carboxylic acids like ibuprofen form dimer

Ž .precursors in the solution Gavezzotti et al., 1997 . In this
study, the morphological models were applied to both the
monomer and the dimer case for comparison.

Racemic ibuprofen is in space group P2 rc, with as14.667,1
Žbs7.866, cs10.730, b s99.368, and four molecules two

. Ž .dimers per unit cell McConnell, 1974 . The general extinc-
tion conditions are h0 l ls2n, 0k0 ks2n. The dimer has a
symmetry center situated on a ‘‘special’’ position in this space
group while the monomer does not; thus, the special extinc-
tion condition hkl kq ls2n is only applied in the dimer case.

Since ibuprofen is an aromatic with a carboxylic acid side
Ž .chain, the potential of Lifson et al. 1979 was used for the

energy calculation. This force field includes parameters and
partial charges for the carboxylic and alkyl portions of the
molecule, but none for atoms in the aromatic portion. As an
approximation, the alkyl parameters are applied to these
atoms, although this might be expected to reduce the accu-
racy of the energy calculation. Nevertheless, the predicted
lattice energy for the monomer simulation was 29.3 kcalrmol,
which compares well to the experimental sublimation en-

Ž .thalpy of 28.9 reported by Bunyan et al. 1991 .
Table 2 gives the results of the BFDH and attachment en-

ergy calculations, and Figure 4 illustrates the predicted
shapes. These can be compared to the experimental shapes

Ž .reported by Bunyan et al. 1991 for ibuprofen crystals grown
Žfrom hexane, ethanol, methanol, and from the vapor Figure

. Ž . Ž .5 . Note that the 110 and 210 faces are excluded from the
dimer calculation because of the special condition. Both of
the predicted crystals are similar to the sublimation

Ž .crystal}flat plates dominated by the 100 face. However,
the dimer calculation appears to be the better prediction,

� 4since it yields 011 as the dominant form for growth in the

Table 2. BFDH and Attachment Energy Results for Racemic
Ibuprofen

at t at td E Eh k l h k l h k l
˚Ž . Ž . Ž .Face A kcalrmol kcalrmol ?dimer

100 14.47 y12.03 y9.59
110 6.92 y17.53
011 6.32 y19.32 y35.20
111 6.01 y20.08 y35.61
111 5.60 y23.58 y34.23
210 5.33 y21.56
002 5.29 y26.28 y31.45
102 5.25 y25.02 y35.35

direction of the b-axis. Neither prediction matches the sol-
Ž .vent-grown shapes: the hexane low d shape is needle-likeh

with an aspect ratio of about 8, while the ethanol and
Ž .methanol high d shapes have aspect ratios close to 2. Theh

latter is known to be the preferred shape for downstream
Ž .processing and end-product quality Gordon and Amin, 1984 .

Because the models do not predict the solvent-grown shape,
a qualitative interpretation of the solvent effect is sometimes
proposed. In an analysis akin to the tailor-made additi®e ap-

Ž .proach, Bunyan et al. 1991 suggested that polar solvents are
likely to inhibit the growth of faces which have accessible sites
for hydrogen bonding. However, this explanation is not valid
if the dimer is the growth unit, where no carboxyl groups are
available to the solvent. For the hexane-grown needle shape,
Bunyan and co-workers suggested that dimers made up of
R-R and S-S enantiomers may act as impurities to inhibit the
growth of certain faces.

Figure 4. Predicted crystal shapes of racemic ibupro-
fen.
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Figure 5. Experimental shapes of ibuprofen crystals.
Ž .Redrawn from Bunyan et al. 1991 .

Detailed Kinetics: Solvent Effect
Both the BFDH and attachment energy models are based

on sound physical principles; however, they have two main
Ž .drawbacks: 1 The theories are based on the physics of the

internal crystal structure, and ignore effects from the exter-
Ž .nal environment; 2 the theories do not provide a precise

mechanism for solute incorporation, and, hence, it is unclear
how one might include external factors, like solvent effects,
in the models. In order to have a better understanding of the
growth process and a more accurate prediction of crystal
shape, especially when grown from solution, it appears neces-
sary to use a detailed kinetic model of crystal growth.

Ž .The recent work of Liu et al. 1995 has shown promise as
a means of modeling the effects of crystallization environ-
ment on the shapes of organic crystals. They have success-
fully predicted the effects of solvent on the shape of several
organic crystal systems. The method is derived from well
known kinetic theories of crystal growth: the BCF model
Ž . wBurton et al., 1951 and its variations such as the Chernov

Ž .xmodel Chernov, 1984 , and 2-D nucleation growth models.
For each mechanism, relative growth rate expressions have
been formulated. Applying the approach to a given crystal
system requires an initial assumption about the type of crys-
tal growth mechanism that occurs.

We will briefly discuss the method of Liu and Bennema,
using their interpretation of the Chernov model as an exam-
ple. The focus will be on the important habit controlling

Ž .face-depending factors anisotropic variables , and we refer
the reader to the Appendix for a full derivation. The Cher-
nov model is based on the BCF theory, which proposes that
facetted crystals grow due to the lateral movement of micro-
scopic steps across faces, and that these steps are the edges

Ž .of spirals arising from dislocations on crystal faces Figure 6 .
Chernov suggested that, in solution growth, the rate limiting
step for the movement of edges is the incorporation of mate-
rial into kink sites in the edges. The growing, moving edges
cause the spiral to rotate, facilitating continuous normal
growth of the macroscopic face.

Figure 6. Spiral growth on a macroscopically flat face.

Based on principles of step geometry and step flow, BCF
formulated an expression for the rate of growth normal to a
surface with laterally propagating steps

Rs ®= hry 29Ž .

where ® is the lateral velocity of steps, y is the distance be-
tween steps, and h is the step height, normally thought to be
d . The parameters y and ® depend on the number of stepshkl

Ž .on a face, the number of kinks on a step, the step spiral
geometry, and the rate at which material is added to kink
sites. The Chernov model assumes that kink integration is
the rate limiting step, and, thus, the primary anisotropic vari-
able affecting step velocity is the probability of finding a kink
on an edge

y1a 1
kink®A 1q exp f rkT 30Ž .Ž .ž /l 20

where f kink is the energy to form a kink, a is the molecular
distance, and l is the distance between kinks. The main0
face dependent factor affecting y is the energy to form an

kink Ž .edge, which itself depends on f Liu et al., 1995 . The
kink energy is therefore the key anisotropic physical property
that dominates the morphological prediction.

As seen in Figure 6, the kink energy is the work required
to form an edge of molecular size orthogonal to a macro-
scopic edge. If the crystal is growing in a vacuum, then this is
just the work required to break the bond between the
molecules along the edge}the breaking of a bond along one
of Hartman and Perdok’s PBCs. However, with a solvent pre-
sent, the work must include the change in energy associated
with having a solvent in contact with the kink. This may in-
clude both a change in internal energy due to the breaking
and making of bonds, but also entropic contributions due to
the different state of the solvent. Thus, the kink energy might
more correctly be termed the kink free energy. In Liu and
Bennema’s development, however, only the change in forces
Ž .internal energy are considered, and, thus, it is termed kink
energy.

The formation of a kink between crystal and solvent is sim-
ilar to the dissolution of a solid in a solvent: the solid]solid
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bonds and solvent] solvent bonds are broken, and
solid]solvent bonds are formed. Thus, the energy to form a
kink might be approximated by some fraction of the enthalpy
of dissolution. Using the proportionality approximation, one
can assume that there is a fraction of D H diss that is due to
changes in interactions in the lateral direction}parallel to
the slice}and that this can be divided by the number of
nearest neighbors in the slice to yield the individual kink en-
ergies on the face

f kink sj D H dissrn 31Ž .hkl hkl hkl hkl

where j s E sl rE latt and is the anistropy factor that deter-hkl hkl
Žmines the proportion of bonds in the lateral direction in the

.slice , and n is the number of nearest neighbors parallel tohkl
the face. This expression can be further refined by assuming
that there is a local solution phase with its own dH diss inhkl
contact with each face on the crystal. Using the regular solu-
tion model for the dissolution enthalpy, we can write

ln X 0 AD H diss 32Ž .A

ln X 0Žeff . AD H diss 33Ž .AŽh k l . h k l

and define the factor Chkl

diss ln X 0Žeff .D H AŽh k l .h k l
C s s 34Ž .hkl diss 0D H ln XA

0 Ž .where X is the bulk concentration of solute A in solutionA
and X 0Žeff. is the local concentration of solute in proximityAŽh k l .
to a given crystal face. Since all other factors in the model
can be determined from attachment energy calculations and
structure considerations, C is the only measure of the sol-hkl
vent effect, and the key input to crystal shape prediction. In
fact, C is the key habit controlling factor in all the mecha-hkl

Ž .nism explored by Liu and Bennema 1996a . In order to ap-
ply this method, X 0Žeff. and C are determined a priori byA(hkl) hkl

Ž .molecular dynamcis modeling Boek et al., 1994 or self-con-
Ž .sistent field calculations Liu and Bennema, 1993a of the

solid]solution interface.
We have recently developed a similar approach for predict-

ing crystal shape based on the same detailed kinetic princi-
Ž .ples Winn and Doherty, 1998, 1999 . The kink energy is again

the key habit determining factor, but it is calculated with the
use of surface properties of the crystal and solvent. The kink,
though it is a surface of molecular dimensions, is assumed to
be a macroscopic surface with a specific surface free energy.
This property is dominated by internal energy}the breaking
of bonds}whose magnitude can be determined from attach-
ment energy simulations. The solvent property is its surface
free energy, which is generally known for many substances
Ž .Kaelble, 1971 . The two properties can be combined in a

Ž .classical approach Girifalco and Good, 1957 to yield the in-
terfacial free energy at the kink

kink cryst solv cryst solv'g sg qg y2 g g 35Ž .

where g cryst is the surface free energy of the crystal at the
kink site and g solv is the surface free energy of the solvent.

The kink interfacial free energy g kink has units of energy per
kink area, which can be converted to units of energy per kink
to yield the work to form the kink. This method has be used
to predict the effects of solvent on the shape of adipic acid

Ž .and ibuprofen crystals Winn and Doherty, 1998, 1999 .
The two techniques discussed above are similar in that they

are based on detailed kinetic theories, where the kink energy
is the main habit controlling factor. Also, both methods re-
quire information obtained from attachment energy simula-
tions. In the method of Liu and Bennema, the solvent effect
is determined by the molecular level simulation of the sol-
vent]crystal interface. Thus, it may be less efficient for pro-
cess engineering applications than the method of Winn and
Doherty, where the solvent effect is determined from known
properties of the pure solvent. Both methods, however, are
new, and their efficacy and value for morphology prediction
need to be further explored.

Crystal Shape Predictions: Solvent Effects
Adipic acid grown from water

Adipic acid, which is a dicarboxylic acid, has a crystal
structure dominated by hydrogen bonding. The molecules
form chains of hydrogen bonds, which are packed together
with dispersive forces. The interaction of a polar solvent, such
as water, at kink sites on the crystal surface dramatically af-

Ž .fects the shape. Winn and Doherty 1998 have identified the
three principal PBCs on the surface structure of adipic acid;
two are dispersive and the third is hydrogen bonded. The
kink interfacial free energies between crystal and water were

Žcalculated at the dispersive sites using Eq. 35 Winn and Do-
.herty, 1998 , and at the hydrogen bond site using the Karger

Ž . Žet al. 1976 proton donor-acceptor model Winn and Do-
.herty, 1999 . The calculated kink free energies were used in a

screw dislocation model for face growth to produce relative
face growth rates. The predicted crystal shapes are shown in
Figure 7 and are close to the experimental shape shown in
Figure 8.

Figure 7. Predicted morphology of adipic acid grown
from water.
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Figure 8. Two views of an adipic acid crystal grown from
aqueous solution.

Ibuprofen grown from hexane and from methanol
The crystal structure of ibuprofen is an arrangement of hy-

drogen-bonded dimers interacting with dispersive forces. Like
most monocarboxylic acids, it is thought that this packing
stems from dimer formation in solution prior to incorpora-

Ž .tion into the crystal Gavezzotti et al., 1997 . The growth unit
is the nonpolar entity of the ibuprofen dimer. All PBCs in

Ž .the structure Winn and Doherty, 1998 are formed by dis-
persive forces]the crystal surface structures do not form hy-
drogen]bonded interfaces with the solvent.

Because of these characteristics, it is expected that the
crystal will form high free energy interfaces with polar sol-
vents, and low free energy interfaces with nonpolar solvents.
When Eq. 35 was applied to ibuprofen grown from hexane,
the resulting kink free energies were low enough to suggest a

Ž2-D nucleation mechanism of growth Winn and Doherty,
.1998 . Conversely, when the solvent is methanol, the higher

kink free energies suggest the screw dislocation mechanism.
Relative face growth rates have been estimated in both cases,
and the shapes are drawn in Figure 9. These shapes are very
similar to crystals grown experimentally by Storey and York
Ž .Storey, 1997 . See Figures 10 and 11.

Figure 9. Predicted morphology of ibuprofen crystals
( ) (grown from hexane top and methanol bot-

)tom .

Figure 10. Ibuprofen crystals grown from hexane.
Ž .Courtesy of Storey 1997 .
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Figure 11. Ibuprofen crystal grown from methanol.
Ž .Courtesy of Storey 1997 .

Other systems
Detailed growth models have successfully predicted the

shapes of other organic crystals grown from solution, includ-
Ž .ing: urea grown from water Liu and Bennema, 1996c , suc-

Žcinic acid grown from water and from isopropanol Winn and
. ŽDoherty, 1999 , biphenyl grown from toluene Liu and Ben-

.nema, 1996c; Winn and Doherty, 1998 , and naphthalene
Ž .grown from toluene Liu and Bennema, 1996c . The general

approach seems a promising direction for future research.

Conclusions and Future Directions
The Wulff construction is the key idea that enables the

calculation of crystal shape. It can be applied to both the
equilibrium and growth forms, using either surface free ener-
gies, or relative growth rates, respectively. Despite the com-
plementary nature of face velocity and surface free energy, it
is necessary to have a clear distinction between the two. As
methods develop for modeling the influence of the solution
environment on crystal shape, it is important to distinguish

Žbetween effects on surface free energy the equilibrium
. Ž .shape , and effects on growth velocities the growth shape .

The BFDH and attachment energy models are first-order
approaches for predicting morphology, and are very effective
at estimating the likely faces on a crystal. Their computer
implementations are fast and easy to use, and they have
proven to be accurate for predicting vapor-grown crystal

shapes. These methods also yield geometric and energetic
data that may be useful as input to more detailed kinetic
models. The main drawback of these approaches is their in-
ability to account for effects of solvent and other process con-

Ž .ditions that is, impurities and supersaturation .
The approaches of Liu and Bennema, and Winn and Do-

herty are the first attempts at using detailed kinetic theory
for crystal shape prediction. The input to the Liu and Ben-
nema model is obtained from molecular simulation of the so-
lution phase, which may be a drawback for process engineer-
ing applications. Both models recognize the significance of
interfacial phenomena in crystal shape modeling, and lead
the way for future developments, such as new simulation
andror group contribution methods for interfacial free en-
ergy prediction.

Some of the key areas for future experimental and model-
ing research are:
Ž .1 Mixed Sol®ents: Crystals grown from a mixture of two

or more solvents can have different characteristics than those
grown from any one of the solvents alone. This effect is espe-
cially significant if the solute has a very different solubility in
each solvent. We are not aware of any modeling studies for
mixed solvents, although it is a natural extension of the work
described in this article.
Ž .2 Growth Unit: The ibuprofen example illustrates that

consideration of the growth unit is an important factor in
morphology. Several researchers have discussed pre-con-
densation in the solution phase, and the need to account for

Žthis effect in morphological modeling Geert-man and van
.der Heijden, 1992; Grimbergen and Bennema, 1996 .

Ž .3 Polymorphs: Polymorphs have always been of interest
in crystallization, but have become a critically important fac-
tor in pharmaceutical production and registration because of
recent FDA requirements. Different polymorphs have differ-
ent crystal structures, optical properties, dissolution rates,
shapes, and interfacial properties. Thus, models of
solution]crystal interactions might be able to predict poly-
morph selection andror transition. Systematic studies along
these lines would be of great practical interest.
Ž .4 Chiral Separations: Single-enantiomer product

molecules are a rapidly growing sector of the pharmaceutical
industry, and crystallization is one of the key technologies for
chiral selection. Crystals of the racemate have different struc-
tures than the individual enantiomers. As with polymor-
phism, interfacial phenomena may influence enantiomeric se-
lectivity, and the challenge is to develop technology, and pro-

Ž .tocols aided by modeling to produce single enantiomer
products.
Ž .5 Process Modeling: An important and challenging area

for chemical engineering research is to link interfacial mod-
els, capable of capturing the above effects, to process models.
Such models would allow for novel designs and operating
protocols to be developed systematically before they are
tested experimentally. This is one of the ways that engineer-
ing can contribute to faster process development.
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Appendix
Liu and Bennema interpretation of the BCFrrrrrCherno©
model

Ž .The pioneering work of Burton, Cabrera, and Frank 1951
is the most well known model of the growth of material on a
crystal surface. The basic premise is that a flat face grows by
the lateral movement of steps across the face. If the velocity
of the lateral movement is ®, the height of each step h, and
the distance between steps y , then the rate of growth nor-o
mal to the face is given by

Rs ®= hry A1Ž .

The BCF mechanism requires a source of steps. Under the
moderate supersaturation with which most materials will
crystallize, the most likely source of steps are screw disloca-
tion. Growth from these sites leads to spirals of steps that
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propagate continuously while spreading laterally. There is
substantial experimental evidence that crystal faces grow by

Ž .the advancement of spirals Reynolds, 1963; Land et al., 1996 .
The distance between steps on a spiral y is just the dis-

tance between the turns of the spiral. This measure is related
to the geometry of a 2-D nucleus. Bennema and Liu employ

Ž .the result of Cabrera and Levine 1956 who gave the dis-
tance between turns as approximately 19r , where r is thec c

Žcritical radius of a 2-D nucleus see Ohara and Reid, 1973,
.for the derivation of this relationship . The critical nucleus

radius is given by the well known formula:

r sV g steprDm A2Ž .c m

The critical size for the existence of a 2-D nucleus, a disk
of lattice spacing thickness, can be derived as follows: When
solute from a supersaturated solution transforms into a crys-
talline 2-D nucleus, the total Gibbs free energy of the system
increases as a new surface is formed, but decreases as mate-
rial goes from higher to lower chemical potential. This leads
to a maximum in the Gibbs energy at some critical size of the
new solid. The free energy change is DGsy NDmqg A,
where the first term represents the decrease due to the phase
change, and the second term is the increase in energy from
the new surface of area A. If the nucleus is formed on an
existing crystal face, then the new surface is the ‘‘stepped’’
surface}the surface of thickness d and area 2p rd wrapping

2 Žaround the disk. Replacing N with p r drV the volume ofm
.the disk divided by the molecular volume , the maximum in

DG can be determined by setting its first derivative with re-
spect to r equal to zero. Thus, the expression for the critical
radius r sV g steprDm, where g step is the specific step freec m
energy.

In the formula Dmsmym , the difference in the chemi-sat
cal potentials between the solute in solution and in the crys-

Ž .tal in units of energy per molecule , V is the molecularm
volume, and g is the step free energy per step area]thestep
specific energy of forming the surface of monolayer thickness
wrapping around the 2-D nucleus.

Substituting 19r for y in Eq. A1, the expression for thec
normal growth of a crystal face can be written as

®hDm
Rs A3Ž .step19V gm

This equation has three face dependent parameters: ®, h,
and g step. The step height h is assumed to be of monolayer
thickness, and, hence, is approximated by the interplanar

Žspacing d . This assumption has been validated by recenthkl
ŽAFM measurements of step heights Manne et al., 1993; Yip

..and Ward, 1996 . The specific step free energy and lateral
step velocity are face dependent and can be written as g step

h k l
and ® , respectively.hkl

The specific step energy has a single value per face, dictat-
ing that the spirals, like 2-D nuclei, are completely circular.
ŽIn other words, Bennema and Liu have assumed that on any

.given face, the surface energy of a step is anisotropic. How-
ever, the spirals are only approximately circular. They actu-
ally consist of many steps of finite area and orientation that

approximate a circular disk. Therefore, g step is an averagehkl
over many step orientations, and can be expressed as

step 2g sf ra A4Ž .hkl hkl

where f is termed the mean step energy: the mean surfacehkl
energy per molecule on the steps. The step surface area per

2 Žmolecule is a , where a is molecular length. The actual
Ž . Žheight, width, and depth a , a , a of these step sites steph w d

.molecules are generally different from each other, and vary
with step orientation and the face orientation. However, the

Ž .molecular volume a = a = a is a constant. Since only theh w d
volume appears in the final growth rate expression, we leave
off the subscripts in the development. We denote molecular
length with a, area with a2, and volume with a3, which is

.equal to V . If we consider any molecule on the step as am
2step site, then we can refer to f and a as the mean surface

energy and surface area of a step site. Substituting this ex-
pression into Eq. A3

a2 ® d Dmhkl hkl
R s A5Ž .hkl 19V fm hkl

Equation A5 is the exact expression for normal growth by
the screw dislocation mechanism. Its application requires es-
timates of ® and f .hkl hkl

Estimating lateral step ©elocity
Much of the work in the investigation of crystal growth has

focused on the mechanisms for transport and incorporation
Ž .of material at steps see Chernov, 1984 . The overall rate of

step propagation is thought to be a function of one or more
of the following transport processes: bulk diffusion to the
surface of the crystal, surface diffusion to steps, and incorpo-
ration of material into kinks on the step. There exists two
models of step growth that closely match experiments: the

Ž . ŽBCF surface diffusion model Burton et al., 1951 a rate ex-
.pression that includes surface diffusion and incorporation ,

Ž . Žand the Chernov model Chernov, 1984 combining bulk dif-
.fusion and incorporation . The dependence of the overall

growth rate on supersaturation described by these models
closely matches the actual dependence seen experimentally.
The BCF model most closely predicts vapor-phase crystal
growth, while the Chernov model more closely predicts solu-
tion growth.

In the limit of very fast diffusion}andror in the limit of a
small diffusion boundary layer in the Chernov model}both
models reduce to finding the rate of incorporation of solute
at kinks; incorporation becomes the rate limiting step. This
limit may often be reached in well mixed, solution crystalliza-
tion systems. Hence, we will only explore the kinetics of so-
lute incorporation in this section.

Ž .Bennema and Gilmer 1973 have proposed that the rate at
which solute incorporates into kinks is an activated process
that can be modeled using a similar statistical mechanical

Žformalism as gas-phase collision theory see the work of
Ž ..Eyring and coworkers, Glasstone et al., 1941 . In this ap-
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proach, the velocity of a step is expressed as the product of
the frequency of incorporation at kinks and the distance the
step is propagated; the former is just the probability of there
being a kink site times the net frequency of molecules enter-
ing a kink

a
®s a j y j A6Ž .Ž .q yl0

Ž .where a is the propagation distance molecular length , arl0
Žis the probability of a kink the molecular length divided by
.the distance between kinks , and j y j is the net fre-q y

quency of entering molecules.
The frequencies of entering and leaving a kink site depend

on the nature of the fluid phase. For growth from solution,
Ž .they can be expressed as Markov, 1995

y E
j sn X V expq A m ž /kT

D H q EŽ .d
j sn 1y X V exp yŽ .y A m ž /kT

where n is the vibrational frequency of the molecule, as-
sumed to be the same for both entering and leaving the kink.
X V is the concentration of solute at the kink times theA m
molecular volume, which is the probability of a solute

Ž .molecule available for incorporation, and, hence, 1y X VA m
is the probability that there are solvent molecules available

Žfor solvation when solute leaves the kink. Note that later we
will write X as X , because it is the local concentrationA A(hkl)

.of solute on the crystal face. The exponential terms repre-
sent the probability of a molecule having the necessary en-
ergy for enteringrleaving. For liquid to solid transitions, the
necessary energy is the activation energy E for entry into a
kink. For solid to liquid transitions, it is the activation energy
plus the enthalpy of dissolution.

Ž .At equilibrium, both fluxes are equal j s j , and, thusq y

D H X 0Vd A m
exp y s A7Ž .0ž /kT 1y X VA m

where X 0 is the equilibrium concentration. Substituting theseA
expressions into Eq. A6

0a y E X VA m
®s a n exp X V y 1y X VŽ .A m A m 0ž /l kT 1y X V0 A m

A8Ž .

In the case of a dilute solution, X 0V <1, and this ex-A m
pression reduces

a y E
0®s a n exp V X y X A9Ž .Ž .m A Až /l kT0

It is commonly written as

®s b V X y X 0 s b V X 0s A10Ž .Ž .m A A m A

Ž 0. 0where s s X y X rX , the relative supersaturation, andA A A
Ž . Ž .b s a arl n exp y ErkT and is termed the kinetic coeffi-0

Žcient of a step. We have left off the subscript hkl on X andA
X 0 for clarity: they are interfacial concentrations. However,A
we do assume that their relative difference is not anisotropic

.and is equivalent to the bulk supersaturation.
The key parameter in the above expression is b ; it is the

principal anisotropic parameter affecting step velocity. The
anisotropy comes from the mean distance between kinks l0
and the activation energy for incorporation at kinks E. Both

kinkare functions of the mean work to form a kink f , which
Ž .as shown by Liu et al. 1995 , is approximately the same as

the work to form a stepped surface

kink stepf sf sf

Hence, we can employ the BCF relationship for the distance
Ž Ž . .between kinks, l s a 1q 1r2 exp frkT , which in the limit0

of l 4a reduces to0

arl f2 exp yfrkT A11Ž .Ž .0

For the activation energy, we employ the model of Liu and
Ž .Bennema 1996a . They divide the energy barrier into two

contributions: the free energy of desolvation DGY, and the
free energy associated with the transition to an effective
growth unit, which we will term t . The former is thoughthkl
to be isotropic, while the latter is not. From the difference in
chemical potentials, the t term can be approximated byhkl

w eff xy kT ln X rX . Thus, the kinetic coefficient canA(hkl) A(hkl)
now be written as a function of each face

Yb s an 2 exp yf rkT y t yDG A12Ž .Ž .hkl hkl hkl

where f and t are the only unknown anisotropic pa-hkl hkl
rameters.

Estimating step energy
In analogy to Gibbs’ definition of the surface energy, the

mean step energy can be defined as the average work re-
quired to form a stepped surface. Using the inhomogeneous

Ž .cell model, Liu and Bennema 1993b, 1996a have derived an
expression relating mean step energy to known or measur-
able quantities. This model of the solid-liquid interface has
the following characteristics:
Ž .1 The solid and liquid phase are divided into cells of

equal shape and volume; for example, cubes.
Ž .2 Every cell is occupied by either solid or liquid units.
Ž . Ž3 All of the interaction energy van der Waals, electro-

.static for each cell is a result of only first nearest neighbor
interactions. This is a reasonable assumption since in general
over 85% of the lattice energy of organics comes from first
nearest neighbor interactions.

Within the framework of this model, f can be defined asi
the work required to form one solid-fluid contact in the i
direction. it is given by

1
s f ss f ff sf y f qf A13Ž .Ž .i i i i2
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s f ss f f Ž .where f , f , and f indicate interaction energies bondsi i i
between solid-fluid, solid-solid, and the fluid-fluid units, re-
spectively. This relationship is easily derived from examining
the work required to exchange one solid unit for one fluid
unit in a cubic cell model: 12 solid-fluid contacts are formed
by making 12 solid-fluid bonds, and breaking 6 solid-solid and
6 fluid-fluid bonds. If we further restrict f to being the worki
of forming solid-fluid contacts by the molecules at a crystal-

Ž .fluid interface as opposed to those in the bulk , then for an i
which is a step direction, f is a step energy. The averagei
over all n step directions is the mean step energy

Ýnh k lfis1 i
f s A14Ž .hkl nhkl

where n is the number of first nearest neighbors posi-hkl
tioned laterally around a molecule in a slice; that is, to say,
the number of first nearest neighbors in the ‘‘slice’’ direction.
As well, the sum of all the work to form solid-liquid contacts
is the enthalpy of dissolution per molecule

m
dissD H s f A15Ž .Ýhkl i

is1

where m is the total number of first nearest neighbor bonds.
Note that Eq. A15 defines an enthalpy of dissolution of

material in a surface region, at a face hkl. It has a different
value on different crystal faces, a result of the fact that f isi
itself anisotropic. This is one of the primary features of the
inhomogeneous cell model: the crystal surface has macro-
scopic properties, such as enthalpy, that are different than
those in the bulk. This insight is consistent with experimental

Ž .studies of surface roughening also known as surface melting .
At a temperature below the melting point, flat facets may
roughen as a result of a local phase transition. A discussion
of the existence of surface roughening and face specific en-

Ž .thalpy can be found in the work of Jackson 1958 and Ben-
Ž .nema and Gilmer 1973 .

In order to express f is terms of measurable quantities,hkl
one more assumption is applied to the binding energies: the

Ž .so-called proportionality condition Liu and Bennema, 1994 .
It assumes that the ratio of interactions in any two directions

Ž .in one phase such as the bulk crystal is the same as that for
Ž .another phase such as the surface phase . It is expressed as

f :f sF :Fi j i j

where i and j are directions, and F represents the samei
work as f except that it is for molecules in the bulk crystal.i
Recalling the lattice and slice energies, properties of the bulk

Ž lattcrystal can be defined in terms of the cell model since E
represents the work of formation from a vacuum, F s f andi
F f f are zero, and, hence, E latt sÝm 1r2F ss. This expres-i is1
sion for the lattice energy is consistent with the calculation in

.the attachment energy model.

m
lattE s FÝ i

is1

nh k l
slE s FÝhkl i

is1

we can compare them to the surface properties by means of
the proportionality condition

slf n Ehkl hkl hkl
s A16Ž .diss lattD H Ehkl

The term f n can be thought of as the surface slice en-hkl hkl
ergy, or in other words, the average in-plane contribution to
the enthalpy of dissolution of the face. Rearranging Eq. A16,
and defining E sl rE latt as j , we can express the mean stephkl hkl
energy as

dissf sj D H rn A17Ž .hkl hkl hkl hkl

Using classical solubility thermodynamics, it is possible to
develop an expression that relates the enthalpy of dissolution

Žto saturation concentration in solution. Since the partial mo-
lar Gibbs energy of fusion DG f is non-zero for temperatures
below the melting point at which solute dissolves in solution,

Ž . f 0we can write see Sandler, 1989 yDG s RT ln g X , whereA A
g is the activity coefficient and X 0 is the saturation concen-A A
tration. Also DG f sD H f yTDS f, where the changes in en-
tropy and enthalpy are at the system temperature T. Recall-

f Ž m. m f Ž m.ing that D H T sT DS T , and ignoring the variation
of enthalpy and entropy with temperature, we can write

0 f Ž m. EXRT ln g X syD H 1yTrT . Since RT ln g sG , thenA A A
for a regular solution where SEX s0, RT ln g sD H mix.A
Defining the enthalpy of dissolution as the sum of the en-
thalpies of mixing and fusion, we now have ln X 0 sA
yD H dissrRT qD H frRT m. For an ideal liquid mixture, or one
close to ideal where D H mix is small, we can write ln X 0 fA

dissŽ m. m .D H T yT rRTT . It is sometimes termed the van’t
Ž .Hoff equation Liu and Bennema, 1993b , and be applied to

both bulk and surface properties

ln X 0 fD H diss T yT melt rkTT melt A18Ž . Ž .A

ln X 0Žeff . fD H diss T yT melt rkTT melt A19Ž . Ž .AŽh k l . h k l

where X 0 is the equilibrium concentration of solute in bulkA
solution at a given T , and X 0Žeff. is the local concentration ofAŽhkl.
effective growth units near the crystal face. The existence of
this local concentration of solute has been suggested by both

Žcomputational and experimental interface studies Schwinn
.et al., 1994; Curry and Cushman, 1995 . The ‘‘effective’’

growth units are those in the adsorbed layer whose orienta-
tion and conformation allow them to effectively participate in
dynamic equilibrium with the molecules at the crystal sur-

Ž Ž .face. See Liu and Bennema 1993b for further discussion of
.effective growth units. For structurally simple molecules,

X eff ( X , which is just the total concentration of localA(hkl) AŽhkl.
growth units. Either quantity can be estimated from molecu-
lar modeling of solute and solvent in contact with the crystal

Ž .face such as molecular dynamics Boek et al., 1994 and self-
Ž .consistent field methods Liu and Bennema, 1993a . There-
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fore, the mean step energy can be completely defined as a
function of measurable andror known quantities

dissf sj C D H rn A20Ž .hkl hkl hkl hkl

where C is termed the surface scaling factorhkl

diss ln X 0Ž e f f .D H AŽh k l .h k l
C s s A21Ž .hkl diss 0D H ln XA

It is possible to directly estimate D H diss, and, hence, C ,hkl h k l
from experimental measurements of the surface roughening

Ž .temperature Liu and Bennema, 1996c . If the data are not
available, molecular modeling must be implemented to mea-
sure C . In the case where C s1, the adlayer has thehkl hkl
same composition as the bulk solution, and the surface ther-
modynamic properties are the same as those of the bulk crys-
tal. This is known as the equi®alent wetting condition: no ef-
fect of the solvent on the surface properties, and, hence, no
effect on the growth rate. This is unlikely to occur in prac-
tice; the deviation of C from unity is what distinguisheshkl
the effect of one solvent from another on the crystal shape.

Complete growth rate expression
Combining the equations for the normal growth rate, the

lateral step velocity, the kinetic coefficient, and the mean step

Ž .energy Eqs. A5, A10, A12, and A20 , we can write

2n d V X 0 s 2
h k l m AŽh k l .

R shkl 19j C ernhkl hkl hkl

exp yj C ern y t yDGY A22Ž .Ž .hkl hkl hkl hkl

where e sD H dissrkT. Leaving only the face dependent pa-
rameters

C y1h k l0R A d n X j C exp yj C ernŽ . Ž .hkl hkl hkl A hkl hkl hkl hkl hkl

A23Ž .

Using values of d and j from BFDH and attachmenthkl hkl
energy calculations, along with n from visual examinationhkl
of the slice structure, and C from solid-fluid interfacehkl
modeling, we can estimate the relative growth rates and shape
of solution grown crystals.
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