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One- and two-dimensional static and magic-angle spinning
(MAS) exchange NMR experiments for quantifying slow (tc > 1
ms) molecular reorientation dynamics are analyzed, emphasizing
the extent to which motional correlation times can be extracted
directly from the experimental data. The static two-dimensional
(2D) exchange NMR experiment provides geometric information,
as well as exchange time scales via straightforward and model-free
application of Legendre-type orientational autocorrelation func-
tions, particularly for axially symmetric interaction tensors, as
often encountered in solid-state 2H and 13C NMR. Under condi-
tions of MAS, increased sensitivity yields higher signal-to-noise
spectra, with concomitant improvement in the precision and speed
of correlation time measurements, although at the expense of
reduced angular (geometric) resolution. For random jump mo-
tions, one-dimensional (1D) exchange-induced sidebands (EIS)
13C NMR and the recently developed ODESSA and time-reverse
ODESSA experiments complement the static and MAS two-di-
mensional exchange NMR experiments by providing faster means
of obtaining motional correlation times. For each of these exper-
iments, the correlation time of a dynamic process may be obtained
from a simple exponential fit to the integrated peak intensities
measured as a function of mixing time. This is demonstrated on
polycrystalline dimethylsulfone, where the reorientation rates
from EIS, ODESSA, time-reverse ODESSA, and 2D exchange are
shown to be equivalent and consistent with literature values. In the
analysis, the advantages and limitations of the different methods
are compared and discussed. © 1998 Academic Press
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INTRODUCTION

Static (i.e., nonspinning) and rotor-synchronized MAS two-
dimensional (2D) exchange NMR experiments have been ex-
tensively used to study slow reorientational dynamics in solid-
state materials for motional time scales ranging from
milliseconds to seconds (1–5). However, these 2D methods can
be exceedingly time-consuming. For random jump motions,
the one-dimensional (1D) MAS methods ofexchange-induced

sidebands (EIS) (6, 7), one-dimensionalexchangespectros-
copy by sidebandalternation (ODESSA) (8), and “time-re-
verse” ODESSA (9) complement the 2D exchange experi-
ments; while sacrificing geometric resolution, these 1D MAS
exchange experiments provide faster means of obtaining mo-
tional correlation times without the need to determine explic-
itly longitudinal (T1) relaxation times, as will be shown later.
This represents a significant advantage to the direct measure-
ment of time scales associated with slow dynamic molecular
processes. After a brief account of the various exchange tech-
niques available, a detailed description of the EIS experiment
will be given, illustrating how motional correlation times may
be extracted directly from experimental data. This leads to
insightful comparisons with analyses of 2D exchange,
ODESSA, and time-reverse ODESSA spectra, from which it
will be shown that direct extraction of motional correlation
times is also possible.

Each of the different solid-state exchange NMR methods is
based on the dependence of the NMR frequency on the orien-
tation of the principal axes system (PAS) of the nuclear spin
interaction tensor relative to the static magnetic fieldB0 (1).
Two-dimensional exchange NMR monitors changes in these
angular-dependent NMR frequencies occurring during a mix-
ing time (tm) by correlating the frequencies in the evolution
(t1) and detection (t2) periods, which bracket the mixing time;
see Fig. 1a. Changes in the NMR frequencies manifest them-
selves as off-diagonal intensity in the 2D exchange spectrum
S(v1, v2; tm), which can be regarded as a correlation map of
the frequencies measured in the evolution and detection peri-
ods,v1 andv2, respectively, and which parametrically depends
on the mixing timetm. In other words, the two-dimensional
spectrumS(v1, v2; tm) represents the joint probability density
of finding a certain PAS orientation with respect to the external
magnetic field, and thus a certain NMR frequencyv1 during
the evolution periodt1, and, after a time intervaltm later,
finding the same PAS with a NMR frequencyv2 during the
detection periodt2 (10). Fast magic-angle sample spinning
averages the anisotropies of these interactions, resulting in
higher-resolution NMR spectra with peaks at the positions of
the isotropic chemical shift values. Under such circumstances,
chemical exchange or conformational transitions are detected
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as cross peaks in non-rotor-synchronized MAS 2D exchange
NMR spectra (11, 12). This can also be achieved at modest
spinning speeds by applying a combination of a TOSS (total
suppression ofsidebands) (13) and time-reverse TOSS pulse
sequences in the evolution and detection periods of a two-
dimensional exchange NMR experiment to effect evolution
under the isotropic chemical shift alone (14), or by chemical
shift scaling techniques (15).

Whereas information on geometrical aspects of slow (tc . 1
ms) jump-type reorientational processes can be obtained from

a single static 2D exchange spectrum, information on the time
scale of the process at any given temperature requires that a set
of 2D exchange spectra be acquired as a function of the mixing
time tm. The time scale can be quantified directly from the
experimental spectra by computing the rise of the ratios of
off-diagonal intensity to overall intensityR2D(tm) from each
individual spectrum (in slices where diagonal and off-diagonal
intensities are well separated), by calculating the time-depen-
dent second-order orientational autocorrelation func-
tion C2(tm) 5 ^v(0)v(tm)& 5 ^v1v2&(tm) 5 *dv1 *dv2

S(v1, v2; tm)v1v2 (1, 16), or by following the loss of corre-
lation from the decrease of the echo intensity of the 2D
exchange time-domain signal for selected values of the evolu-
tion time t1 as a function of the mixing time (17). The latter
provides complementary information to the 2D exchange ex-
periment, because the echo intensity is related to the diagonal
fraction of the 2D exchange spectrum and can be used to probe
the decrease of the spectral diagonal in favor of off-diagonal
exchange intensity.

In quantifying an elementary dynamic process, an activation
energy is often sought, which requires determination of the
temperature dependence of the respective motional correlation
times. This entails the acquisition of series of high-signal-to-
noise-ratio 2D exchange spectra with varying mixing times at
different temperatures, which is typically time-consuming and
often infeasible, especially in the case of dilute nuclei or for
species with long spin–lattice relaxation timesT1. For exam-
ple, one static 2D exchange13C NMR spectrum of benzene,
99% 13C enriched at a single ring site, adsorbed on Ca-LSX
zeolite required 66 h of measurement time (18). Time require-
ments are high even if only the decay of the echo intensity in
the time domain is followed for a few selected evolution times
t1. Furthermore, to extract precisely the motional correlation
time, it is often necessary to correct for spin–lattice relaxation
during the mixing time, which leads to a decrease in the overall
signal intensity, so thatT1 should be known from independent
measurements. Consequently, it is desirable to examine exper-
imental techniques that yield improved sensitivity over the
static 2D exchange experiment, thereby reducing the amount of
time necessary to acquire a spectrum. Moreover, as will be
shown, it is possible to achieve this while still preserving the
direct extraction of time scale information for jump-type re-
orientation processes, without the need to determine the spin–
lattice relaxation timeT1 explicitly.

A variety of techniques that are one-dimensional analogs of
the static 2D exchange experiment exist for quantifying mo-
tional correlation times. For example, selective excitation has
been used to select a narrow band of frequencies from an
inhomogeneously broadened powder spectrum, after which
molecular-motion-induced changes in the angle-dependent fre-
quencies are detected in spectral intensity outside of the ini-
tially selected band of frequencies (1). Although only a one-
dimensional experiment needs to be performed, the reduction
of measurement time is marginal, because most of the signal is

FIG. 1. Schematic diagrams of the pulse sequences used for exchange13C
NMR experiments. (a) Static and MAS 2D exchange and ODESSA experi-
ments. Transverse proton magnetization created by ap/2 pulse is transferred
to 13C by cross-polarization (CP); the information about the NMR frequencies
during the subsequent evolution timet1 is stored along thez-axis by the first
13C p/2-pulse, which initiates the mixing timetm. Molecular reorientations can
take place during the mixing period, thereby altering the NMR frequencies,
which are measured in the detection timet2 after the secondp/2-pulse. A
refocusingp/2-pulse can be used to create a Hahn echo in the detection period.
High-power proton dipolar decoupling (DD) is applied to remove hetero-
nuclear1H–13C dipolar couplings duringt1 andt2. For the MAS and static 2D
exchange NMR experiments, a two-dimensional data setF(t1, t2; tm) is
generated by repeating the experiment with incremented values of the evolu-
tion time t1 while keeping tm constant. For rotor-synchronized MAS 2D
exchange and ODESSA, the additional requirementtm 5 KTR (whereK is an
integer andTR is the rotor period) must be fulfilled. For ODESSA,t1 is set to
half a rotor period. (b) Pulse sequence for time-reverse ODESSA;t1 is set to
half a rotor period, and the mixing time is rotor-synchronized to be a half-
integral number of rotor periods. Acquisition starts one-half rotor period after
the mixing timetm. The same pulse sequence is used for rotor-synchronized
MAS 2D exchange, except signal acquisition begins immediately after the final
p/2-pulse. (c) Pulse sequence for the EIS experiment. A TOSS sequence is
used to suppress spinning sidebands during the preparation period, followed by
a mixing timetm lasting an integral number of rotor periods.
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suppressed by the selective excitation. Alternatively, selective
inversion of a fraction of an inhomogeneously broadened pow-
der lineshape is another one-dimensional analog to the 2D
exchange experiment. This method, however, is applicable
only to systems that do not experience rapid homogeneous
signal decays, that is, shortT2 relaxation times (19). Similarly,
selective inversion MAS techniques using, for example, the
DANTE pulse sequence, can be used to invert selectively one
family of spinning sidebands and monitor their return to equi-
librium as a function of a mixing time (19). These techniques
are experimentally demanding and are typically executed using
specialized instrumentation often not available in commercial
spectrometers (19).

The rotor-synchronized MAS 2D exchange NMR experiment
is directly related to the static 2D exchange experiment in that it
detects molecular reorientation as discrete cross peaks between
different sidebands in the 2D plane (2, 5). Because four different
two-dimensional time domain signals have to be acquired to
obtain pure absorption mode spectra, i.e., two signals with the
pulse sequence depicted in Fig. 1a and two signals yielding the
time-reversed counterparts with the pulse sequence shown in Fig.
1b, the experiment is time-intensive to perform. It is therefore
desirable to use, whenever possible, equivalent 1D methods.

The ODESSA experiment recently proposed by Tekely and
co-workers is closely related to the rotor-synchronized MAS
2D exchange experiment (8). The same pulse sequence is used
as for the 2D exchange experiment with a rotor-synchronized
mixing time and with the evolution period fixed at a valuet1 5
TR/ 2 in the ODESSA experiment; see Fig. 1a. If no reorien-
tation takes place during the mixing time, a MAS spectrum is
obtained in which all of the odd-numbered sidebands are
inverted. Dynamic processes during the mixing time result in a
reduction in the overall intensity of the ODESSA spectrum and
modification of the sideband patterns; see Fig. 2a. The
ODESSA method works properly if the experiment is per-
formed on-resonance and if only one isotropic chemical shift,
and thus one family of sidebands, is present. These shortcom-
ings are overcome in the time-reverse ODESSA experiment,
which generates spectra with all families of sidebands in-
phase, provided only the orientations associated with the nu-
clear spin interaction tensors change and the isotropic values
remain constant (9). Here, too, the evolution time is fixed to
half a rotation period,t1 5 TR/ 2, the mixing time is set to an
odd number of half rotor periods,tm 5 (2K 2 1)TR/ 2, and,
unlike the case of the time-reverse MAS 2D exchange signals,
acquisition starts att2 5 TR/ 2 after the detection pulse; see
Fig. 1b. As shown in Fig. 2b, in the absence of molecular
reorientation dynamics, the time-reverse ODESSA spectrum
resembles a normal MAS spectrum; however, when dynamics
are present, the overall intensity of the time-reverse ODESSA
spectrum is diminished, and the sideband patterns are modified.
For both the ODESSA and time-reverse ODESSA experi-
ments, it has been demonstrated that the time scale can be
extracted directly from the experimental data (8, 9), provided

the T1 relaxation time is known from independent measure-
ments or obtained from a fit to the spectra (an unnecessary
restriction, as will be shown later).

Another 1D exchange MAS method that is closely related to
the 2D exchange experiment is the EIS technique, designed by
Yang et al. (6). As will be shown later, EIS also permits
motional correlation times to be extracted directly from the
data without explicit determination of the longitudinal relax-
ation time T1. In samples with an isotropic distribution of
molecular orientations, the spinning sidebands can be sup-
pressed through the use of the well-known TOSS pulse se-
quence, yielding only peaks at the positions of the respective
isotropic chemical shifts in the 1D TOSS spectra; see Fig. 2c,
top. As shown in Fig. 1c, the TOSS and the exchange NMR
experiments can be combined by incorporating TOSS in the
preparation period of an exchange experiment. This is followed
by a mixing time during which molecular dynamics can occur
and cause frequency changes that reintroduce sidebands in the
1D MAS spectrum acquired in the subsequent detection period;
see Fig. 2c. This combined TOSS/exchange experiment con-
stitutes the EIS technique (6, 7), in which simply the presence
of sidebands provides evidence for frequency changes, such as

FIG. 2. Simulated13C NMR spectra for dimethylsulfone under the con-
ditions of different 1D MAS exchange experiments for a spinning speed ofvR

5 2p 3 1800 Hz, a13C frequency of 125.4 MHz, and the chemical shift tensor
given in Ref. (8): sxx 5 63.5, syy 5 60.7, andszz 5 6.0 ppm. Each series
simulates no exchange (tm ! tc), exchange when the mixing time equals the
correlation time for the motion (tm 5 tc), and full exchange (tm @ tc) for (a)
ODESSA spectra, (b) time-reverse ODESSA spectra, and (c) EIS spectra. The
spectra are normalized to the first spectrum in each series.
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those produced by molecular motion; suppressed sidebands are
restored as a result of molecular reorientation (or magnetiza-
tion transfer via spin diffusion), which allows direct character-
ization of the associated time scale. Other spinning sideband
suppression techniques can also be used instead of the TOSS
sequence, for example, SELTICS (sidebandelimination by
temporaryinterruption of thechemicalshift) (20).

The EIS technique was first demonstrated on polycrystalline
dimethylsulfone (DMS) (6); however, comparison with com-
puter simulations of the spectra appeared to be necessary to
yield motional time constants from the experimental data. The
experiment was later applied to study spin diffusion in a
dipotassium salt ofa-glucopyranose-1-phosphate and in spider
silk (21), but the data were analyzed in a manner that required
the determination of spin–lattice relaxation times. As will be
shown later, the experimental EIS data can be analyzed in
terms of the ratioREIS(tm) of combined sideband intensity to
the total (sideband1 centerband) intensity of the EIS spec-
trum, which is analogous to an analysis of static 2D exchange
spectra using the off-diagonal-to-total intensity ratioR2D(tm).
This work represents a first-time demonstration of the simple
and direct extraction of motional correlation times for a single
random-jump-type motion using EIS, expanding significantly
the description given in the original papers (6, 7b). Further-
more, these results will be shown to be closely related to the
ODESSA, time-reverse ODESSA, and static 2D exchange
experiments. We will demonstrate consistency among the re-
sults obtained from each of these exchange NMR techniques
and other methods for quantifying molecular jump motions,
specifically in dimethylsulfone.

THEORY

In the solid state, the NMR frequency depends on the ori-
entation of a molecule in the external magnetic fieldB0 due to
the anisotropy of the nuclear spin interactions, which are
described by second-rank tensors (1, 22). For the case of a spin
I 5 1

2
nucleus possessing a chemical shift anisotropy (CSA),

the angular dependence of the NMR frequency in the rotating
frame is given by (1, 22)

v~a, b! 5 viso 1
1
2

d~3 cos2b 2 1 2 h sin2b cos~2a!!, [1]

whereviso denotes the isotropic chemical shift frequency,d
specifies the coupling strength, and the asymmetry parameterh
represents the deviation from axial symmetry about thez-axis
of the chemical shift tensors; the polar anglesa and b
describe the orientation of the magnetic fieldB0 in the principal
axes system (PAS) of the interaction tensorsPAS. The principal
axes system for the generally dominating intramolecular con-
tributions is determined by the local symmetry of the molecule
in the vicinity of the nucleus under study. In the case of an
axially symmetric coupling tensor (h 5 0), only the angleb

between thez-principal axis of the coupling tensor and the
external magnetic fieldB0 is relevant:

v~b! 2 v iso 5
1
2

d~3 cos2b 2 1! 5 dP2~cosb!, [2]

where P2(cos b) is the second-order Legendre polynomial.
Note that in 2H NMR, where the dominant interaction is
between the electric field gradient (EFG) tensor and the nuclear
electric quadrupole moment, the angular dependence is given
by the same expressions Eq. [1] and Eq. [2], except for a “6”
sign in front of the angle-dependent term, accounting for the
two transitions of the spinI 5 1 system.

MAS and TOSS

Sample rotation renders the orientation of each molecule
with respect to the external magnetic field time-dependent,
resulting in a time dependence of the NMR resonance fre-
quency. In MAS NMR, sample rotation at a frequencyvR 5
2p/TR, whereTR is the period of rotation, can conveniently be
described in a frame fixed with the sample rotor, called the
rotor frame (RF), with the rotor axis as thezRF-axis inclined at
Um 5 54.74° with respect toB0 and the time-dependent
azimuthal angle given asvRt. This requires that the chemical
shift interaction tensors, as well as the external magnetic field
B0 that constitutes thezLF-axis of the laboratory frame (LF), be
expressed in the RF. AlthoughsPAS can be converted directly
into sRF, it is often convenient to transform from the PAS via
Euler angles (a9, b9, g9) to a molecular frame (MF), fixed to a
local molecular segment, where molecular reorientation is
more easily described. The transformation is then extended
from the MF to the RF using the Euler angles (a, b, g):

PAS, sPASO¡
a9,b9,g9

MF, sMFO¡
a,b,g

RF¢O
0,Qm,vRt

LF, B0.

[3]

In this case, the angular-dependent frequency depends on all
three Euler angles (a, b, g), on all elements of the chemical
shift tensor in the MF (which is usually nondiagonal in this
frame), as well as explicitly on time (1):

v~t! 5 v~a, b, g 1 vRt!

5 C1
ndcos~g 1 vRt! 1 C2

ndcos~2g 1 2vRt!

1 S1
ndsin~g 1 vRt! 1 S2

ndsin~2g 1 2vRt!, @4#

where the isotropic part has been omitted from the equation
and explicit expressions for the coefficientsC1

nd(a, b, sMF),
C2

nd(a, b, sMF), S1
nd(a, b, sMF), S2

nd(a, b, sMF) are given
elsewhere (1, 22, 23). Note that the dependencies in Eq. [4] can
always be written in terms of the sum of (g 1 vRt), because
both g andvRt correspond to rotations about the rotor axis.
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For a single segment, the MAS time-domain signal is then
given by (2, 24)

g~t! 5 expF iE
0

t

dt9v~t9!G
5 exp~iF~a, b, g 1 vRt, sMF!!exp~2iF~a, b, g, sMF!!

5 f * ~a, b, g, sMF! f~a, b, g 1 vRt, sMF!, [5]

where the so-calledf-functions are given by (2)

f~a, b, g 1 vRt, sMF! 5 exp~iF~a, b, g 1 vRt, sMF!!.

[6]

Note that thef-functions are periodic with

f~a, b, g, s! 5 f~a, b, g 1 n2p, s!

5 f~a, b, g 1 nvRTR, s! [7]

for integer n; hence, all calculations can be confined to an
interval of 2p. Sideband intensities are best calculated, as
described by Mehring (22), by using the equalities

exp~iz sin w! 5
1

2p E
0

2p

du d~u 2 w!exp~iz sin u !, and

exp~iz cosw! 5
1

2p E
0

2p

du d~u 2 w!exp~iz cosu !. @8#

Letting w 5 g 1 vRt and inserting

1 5
1

2p E
0

2p

du d~u 2 g 2 vRt! [9]

into Eq. [5], followed by expansion of the delta function into an
infinite series of plane waves,

d~u 2 g 2 vRt! 5 O
N52`

`

exp@2iN~u 2 g 2 vRt!#, @10#

yields the MAS time-domain signal:

g~t! 5 f * ~a, b, g, sMF!

3
1

2p E
0

2p

du d~u 2 g 2 vRt! f~a, b, u, sMF!

5 O
N52`

`

eiNvRteiNgf * ~a, b, g, sMF!

3
1

2p E
0

2p

due2iNuf~a, b, u, sMF!

5 O
N52`

`

eiNvRteiNgf*~a, b, g, sMF!FN~a, b, sMF!, @11#

with FN(a, b, sMF) representing the Fourier transform of
f(a, b, u, sMF) with respect tou (1):

FN~a, b, sMF! 5
1

2p E
0

2p

du e2iNuf~a, b, u, sMF!. [12]

For a macroscopic sample, the contributions from all mo-
lecular orientations with different (a, b, g) must be taken into
account, weighted by the orientational distribution function
P(a, b, g), resulting in the signal for each species:

G~t! 5E
0

2p

daE
0

p

sinb dbE
0

2p

dg P~a, b, g!eiv isotg~t!h~t!.

[13]

In Eq. [13] the evolution of the magnetization due to the
isotropic chemical shift has been reintroduced, along with an
appropriate apodization functionh(t) to take into account
transverse relaxation with the time constantT2, e.g.,h(t) 5
exp(2t/T2). A normalization constant for an isotropic powder

sampleP(a, b, g) 5
1

8p2
, has been used. The integration over

g then effectively produces a second FT with respect tog, see
Eq. [12], yielding the termF*N(a, b, sMF) in Eq. [14]:

G~t! 5 O
N52`

`

eiv isoteiNvRt
1

8p2 E
0

2p

daE
0

p

sin bdb

3 E
0

2p

dg eiNgf * ~a, b, g, sMF! FN~a, b, sMF!h~t!

5 O
N52`

`

eiv isoteiNvRt
1

4p E
0

2p

daE
0

p

sin bdb

3 F*N~a, b, sMF! FN~a, b, sMF!h~t!

5 O
N52`

`

eiv isoteiNvRtI N
MASh~t!, [14]
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resulting in the positive and real valuesF*N(a, b, sMF) FN(a,
b, sMF) 5 uFN(a, b, sMF)u2, a property that is preserved
during integration overa andb, producing positive sideband
intensitiesIN

MAS in the MAS spectrum (25). Fourier transfor-
mation of Eq. [14] yields a spectrum with peaks located atvN

5 v iso 1 NvR, which have intensities given byIN
MAS 5 1/4p

*0
2pda *0

psinbdbF*NFN and absorptive and dispersive line-
shapes determined byh(t):

I ~v! 5 O
N52`

`

@A~v 2 vN! 1 iD ~v 2 vN!#IN
MAS. [15]

Applying the TOSS pulse sequence (13), with four p-pulses
applied at timest1 throught4 and signal acquisition starting at
t5 after cross polarization, essentially suppresses the term
f *( a, b, g, sMF) in Eq. [5]. Thus, instead of Eq. [11], one
obtains the time-domain signal:

g~t! 5 O
N52`

`

eiNvRteiNgFN~a, b, sMF!. [16]

Integration over the angleg then yields a delta function:

G~t! 5 O
N52`

`

eiv isoteiNvRt
1

8p2 E
0

2p

daE
0

p

sin bdb

3 E
0

2p

dg eiNgFN~a, b, sMF!h~t!

5 O
N52`

`

eiv isoteiNvRt
1

4p E
0

2p

daE
0

p

sin bdb

3 FN~a, b, sMF!dN,0h~t!

5
1

4p E
0

2p

daE
0

p

sin bdb F0~a, b, sMF!eiv isoth~t!

5 I 0
TOSSeiv isoth~t!, [17]

with the result that a centerband-only spectrum is obtained,
the intensityI0

TOSSof which is in general different from the
intensity I0

MAS of the centerband in the conventional MAS
spectrum (26).

Monitoring Random Jump Motions with EIS

In the EIS experiment shown in Fig. 1c, at the pointt5 where
the acquisition begins in a standard TOSS measurement, the
transverse13C magnetization is rotated to thez-direction by a
p/2-pulse, and a mixing time begins. The mixing period is

allowed to last an integral number of rotor periods, during
which frequency exchanges can occur that ultimately reintro-
duce spinning sidebands into the spectrum. At the end of the
mixing period, the magnetization is returned to the transverse
plane by anotherp/2-pulse for detection of the signal. Depend-
ing on the phase of the pulse at the beginning of the mixing
period, either the sine or the cosine component of the trans-
verse magnetization (or more precisely, the real or imaginary
part of the complex time-domain signal, respectively) is se-
lected for detection after the mixing period. Both components
have to be measured and added to obtain the EIS spectrum.
Although the summation of the two components can be
achieved in a single experiment by using the appropriate pulse
phases and adding the time-domain signals, it is preferable to
obtain the sine and cosine components in separate experiments
and combine the data afterwards, thereby preserving the pos-
sibility to adjust their respective phases independently. In the
absence of frequency changes, for example due to molecular
motions, the mixing period has no effect other than to allow
spin–lattice relaxation to occur. Under these circumstances, the
spectrum displays only centerband signals at the isotropic
chemical shifts; the effect of magnetization created by spin–
lattice relaxation is eliminated by proper phase cycling. In the
presence of molecular motion (or magnetization transfer by
spin diffusion), however, the delicate nonequilibrium state of
the nuclear spins prepared by the TOSS sequence is perturbed
during the mixing time, with the consequence that sidebands
arise in the spectrum.

Before the mixing time, the signal of a single molecular
segment is thus given by either the real or imaginary part of the
complex TOSS signal,f1(a, b, g 1 vRt5, sMF), depending
on the phase of the pulse precedingtm. After the mixing time,
the signal evolves as a normal MAS free-induction decay
(FID), resulting in the EIS time-domain signal for a single
molecule or molecular segment:

gRe,Im
ij ~t; tm! 5 Im

Re@ f1~a, b, g 1 vRt5, sßß i
MF!#

3 f *2~a, b, g 1 vRt5 1 vRtm, sßß j
MF!

3 f2~a, b, g 1 vRt5 1 vRtm 1 vRt, sßß j
MF!.

[18]

The amplitude of the complex signal detected after the mixing
time is proportional to the real or imaginary part of the signal
prepared by the TOSS sequence before the mixing time. Thus,
the resulting EIS time-domain signal for a particular set of
Euler angles (a, b, g) with respect to the rotor frame is a MAS
FID, phase-shifted byvRtm and multiplied by the real number
Re[ f1(a, b, g, s i

MF)] or Im[ f1(a, b, g, s i
MF)]. The sub-

scripts 1 and 2 on thef-functions refer to the orientations
associated with the chemical shift tensors relative to the mol-
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ecule-fixed (MF) frame at the beginning and at the end of the
mixing time, respectively. The indicesi , j 5 1, . . . , Z label
the number of sitesZ among which exchange takes place, and
s i

MF or s j
MF represent the chemical shift tensors in sitei or site

j , respectively. For a particular molecular segment in the
sample, the contribution to the EIS time-domain signal is

g~t; tm! 5 O
i, j

Z

P9ij~tm!@ gRe
ij ~t; tm! 1 igIm

ij ~t; tm!#, [19]

with

P9ij~tm! 5 @exp~Kßßtm!# jiPi

5 @exp~~Pßß 2 Rßß!tm!# jiPi, [20]

wherePi 5 P(s i) is the equilibrium population of sitei with
chemical shift tensors i, P is the exchange matrix with ele-
mentsPnm, which for m Þ n gives the probability per unit
time for exchange from sitem to siten, and R is a diagonal
matrix with elements 1/T 1

j that account for spin–lattice relax-
ation at the different sites. Assuming that theT1 values are the
same for all sites, Eq. [20] simplifies to

P9ij~tm! 5 expS 2
tm

T1
D @exp~Ptm!# jiPi

5 Pij~tm!expS 2
tm

T1
D , [21]

where the joint probability densityPij (tm) 5 P(s i, s j; tm) is
the fractional population of those nuclei that at the beginning of
the mixing time were in sitei with chemical shift tensors i and
at its end are in sitej with chemical shift tensors j. Note that
even in the absence of motion, the overall signal (Eq. [19])
decays with the relaxation timeT1.

The joint probability densityPij (tm) 5 P(s i, s j; tm) can be
expressed as the product of the probability densityPi 5 P(s i)
of finding a molecule with chemical shift tensors i and the
conditional probability densityWji (tm)5W(s j; tmus i) that its
tensor iss j at time tm, provided it wass i before the mixing
time. In that regard, the matrix W consists ofi column vectors
W i, the j elements of which are recognized as the conditional
probabilitiesW(s j; tmus i) of finding a particle on sitej at time
tm, if it was initially at sitei at t 5 0. For a stationary Markov
process, the conditional probability densityWji (tm) follows the
set of differential equations

­

­t
Wji~t! 5 O

k51

Z

P jkWki~t!, [22]

with the initial conditionWji (t 5 0) 5 d ij . The simple case

of jumps amongZ equally populated equivalent sites (Pj 5
1/Z), with the probabilitykhopof a jump between any two sites
is described by an exchange matrix whose elements are all
khop, except for the diagonal terms, which are2(Z 2 1)khop.
Defining the microscopic rate coefficientkmic as the overall
rate for leaving a single site,kmic 5 (Z 2 1)khop, yields the
relationtc 5 Pj/khop 5 1/(Zkhop) 5 (Z 2 1)/(Zkmic) between
the correlation timetc and the various rate coefficients. The
differential equations (Eq. [22]) can then be solved to obtain

Wji~tm! 5
1

Z
1 Sd ij 2

1

ZDexp~2Zkhoptm!

5 expS 2
tm

tc
Dd ij 1 F1 2 expS 2

tm

tc
DG 1

Z
, @23#

or in terms of the joint probability density

Pij~tm! 5 Wji~tm! Pi

5 expS2
tm

tc
Dd ijPi 1 F1 2 expS2

tm

tc
DGPiPj. @24#

That means Pij(tm) is simply a linear combination of
Pij(tm 5 0) 5 dijPi (no exchange) andPij(tm3 `) 5 PiPj (full
exchange) for arbitrary values oftm. This property is characteristic
for models describing random jumps (all jump rates proportional
to Pj) from an arbitrary orientation to any other orientation among
equivalent sites or random jumps among inequivalent sites with a
single common reorientation geometry.

Static 2D Exchange Orientational Autocorrelation Functions

Before proceeding with the analysis of the EIS experiment,
the static 2D exchange NMR experiment will be discussed
briefly, because it stands out among all of the one- and two-
dimensional exchange NMR experiments in that the 2D ex-
change spectrumS(v1, v2; tm) represents a direct mapping of
the joint probability densityPij (tm) into the (v1, v2)-frequency
space (10). Hence, from Eq. [24] it can be directly concluded
that for random jump-type motions among equivalent sites, the
associated static 2D exchange spectrumS(v1, v2; tm) is a
linear combination of the diagonal spectrum and the spectrum
for full exchange (1, 10b). For any type of reorientation dy-
namics and the special case ofh 5 0 (axially symmetric
interaction tensor), only the Euler angleb between thez-
principal axis of the coupling tensor and the external magnetic
field is needed to describe the reorientation geometry. In these
circumstances, calculating the two-time frequency average:

^v1v2&~tm! 5 ^v~0!v~tm!&

5 EE dv1dv2v1v2S~v1, v2; tm! [25]
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is equivalent to calculating the second-order orientational au-
tocorrelation functionC2(tm) (1):

C2~tm! 5 5^P2~cos~b~t 5 0!!! P2~cos~b~t 5 tm!!!&

5
5

d2 ^v~0!v~tm!&. [26]

This provides direct and model-free access to the motional
correlation timetc from a series of static 2D exchange NMR
spectra that have been acquired as a function of the mixing
time: The experimental spectral intensityS(v1, v2; tm) is
integrated numerically, weighted by the product of the fre-
quency coordinates of the individual points.

Forh 5 0, the 2D exchange spectra are uniquely determined
by a one-dimensional reorientation angle distribution
R(b3; tm), where the reorientation angleb3 5 b2 2 b1 is the
angle between the relative orientationsb1 5 b (t 5 0) andb2

5 b(t 5 tm), of the chemical shift tensor duringt1 and t2,
respectively (1, 10):

S~v1, v2; tm! 5 E
08

908

db3 R~b3; tm!Sb3~v1, v2!. [27]

This integral represents the sum of the subspectra for each
reorientation angle,Sb3

(v1, v2), weighted by factors
Rf(b3; tm) for 0° # b3 # 180°. Because of the equivalence of
the spectra forb3 and 180°2 b3, integration is restricted to 0°
# b3 # 90°:

R~b3; tm! 5 Rf~b3; tm! 1 Rf~1808 2 b3; tm!. [28]

Thus, a relation equivalent to Eq. [26] is obtained by express-
ing the process in terms of the reorientational angleb3 relative
to the initial positionb3 (t 5 0) 5 08:

C2~tm! 5 ^P2~cos~b3 ~t 5 0! 5 08!! P2~cos~b3 ~t 5 tm!!!&

5 ^P2~cos~b3~tm!!!&

5 E
08

908

db3 R~b3; tm! P2~cos~b3~tm!!!. [29]

Equation [29] allows for straightforward calculation of the
autocorrelation functionC2(tm) based solely on the reorienta-
tion angle distributionR(b3; tm). For a random jump-type
motion among equivalent sites, the reorientation angle distri-
bution is given by

R~b3; tm! 5 expS 2
tm

tc
Dd~b3!

1 F1 2 expS 2
tm

tc
DGR~b3; tm3 `!, [30]

which results in the expected monoexponential decay of the
correlation functionC2(tm):

C2~tm! 5 E
08

908

db3 P2(cos(b3(tm)))FexpS2
tm

tc
Dd~b3!

1 F1 2 expS2
tm

tc
DGRSb3; tm3 `DG

5 F1 2 E
08

908

db3 R(b3; tm3 `) P2~cos~b3~tm!!!G
3 expS2 tm

tc
D1E

08

908

db3 R~b3; tm3 `!P2~cos~b3~tm!!!

5 ~1 2 lim
tm3`

C2~tm; b3!!expS2
tm
tc
D 1 lim

tm3`

C2~tm; b3!.

[31]

As indicated, in the limit of long mixing times, a plateau value
limtm3`

C2(tm; b3) is reached, which depends on the reorien-
tation angleb3 and reorientation angle distributionR(b3; tm).
For example, for a random jump motion between four equiv-
alent, equally populated, tetrahedrally arranged sites, limtm3`

C2(tm; b3) 5 0.25*P2(cos(08)) 1 0.75*P2(cos(109.58)) 5
0. This approach to calculating the orientational autocorrela-
tion function from static 2D exchange spectra appears to be a
general one. Its suitability has additionally been demonstrated
for motional processes involving isotropic rotational diffusion,
and also when nonaxially symmetric interaction tensors are
present, in which case the normalization factor in Eq. [26]
needs to be replaced by (5/d2)(1/(1 1 h2/3)) (1, 16).

Comparison of MAS Exchange Experiments

Proceeding with the analysis of the EIS experiment, the
mixing time is set to an integral number of rotor periods
(otherwise sidebands will be present in the EIS spectrum even
in the absence of dynamics.) Consequently, the termvRtm can
be omitted from Eq. [18] because of the periodicity of the
f-functions, so that the EIS time-domain signal for a single
molecule or molecular segment becomes
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g~t; tm! 5 O
i, j

Pij~tm!expS2
tm

T1
D

3 f1~a, b, f, sßß i
MF! f *2~a, b, f, sßß j

MF!

3 f2~a, b, f 1 vRt, sßß j
MF!, [32]

wheref 5 g 1 vRt5. From Eq. [32], the full EIS signal is
obtained after integration over the three Euler anglesa, b, and
g. Introducing again the evolution due to the isotropic chemical
shift and damping functionh(t) yields the EIS time-domain
signal, which can be compared with Eqs. [14] and [17] for the
time-domain MAS and TOSS signals, respectively:

G~t; tm! 5
1

8p2 E
0

2p

daE
0

p

sin bdbE
0

2p

dg eiv isotg~t; tm!h~t!

5 O
N52`

`

eiv isoteiNvRtI N
EIS~tm!h~t!, [33]

whereIN
EIS(tm) is the intensity of theNth-order sideband in the

EIS spectrum, as given by

IN
EIS~tm! 5 O

i, j

Pij~tm!expS2 tm
T1
D IN

ij ,EIS

5 O
i, j

Pij~tm!expS2 tm
T1
D O

M52`

`

eiMvRt5I MN
ij , EIS. [34]

In Eq. [34] we applied the notationIN
ij ,EIS andIMN

ij ,EIS to facilitate
comparison of the expressions for the intensities of the center- and
sidebands in the EIS spectrum with those observed in rotor-
synchronized MAS 2D exchange, ODESSA, and time-reverse
ODESSA experiments,IMN

ij ,2D, IN
ij ,ODESSA and IN

ij ,trODESSA used in
Refs. (2, 5, 8, 9). For these measurements, theIMN

ij ,2D values repre-
sent the unweighted exchange cross peaks (or diagonal peaks if
i 5 j) correlating theMth Fourier component of sitei with theNth
component of sitej, and are given by the expression

IMN
ij ,2D 5

1

4p E
0

2p

daE
0

p

db sin b ~FM
i !* FM2N

i, j FN
j , [35]

where

FN
j 5 FN~a, b, s j

MF! 5
1

2p E
0

2p

dj e2iNjf~a, b, j, s j
MF!

[36]

FM2N
i, j 5 FM2N~a, b, s i

MF, s j
MF!

5
1

2pE
0

2p

dj e2i~M2N!jf1~a, b, j, s i
MF! f *2~a, b, j, s j

MF!.

[37]

Using Eq. [35], the intensites of theNth-order sidebands in
ODESSA or time-reverse ODESSA spectra are calculated as
(8, 9):

IN
ODESSA~tm! 5 O

i, j

Pij~tm!expS2
tm

T1
D IN

ij ,ODESSA, [38]

where

IN
ij ,ODESSA5 O

M52`

`

~21!MIMN
ij ,2D [39]

IN
ij ,trODESSA5 O

M52`

`

~21!M~21!NIMN
ij ,2D. [40]

Applying the same notation to describe the unweighted inten-
sity of theNth-order sideband in the EIS spectrum, the corre-
sponding expressions forIMN

ij ,EIS and IN
ij ,EIS in Eq. [34] become

IMN
ij ,EIS 5

1

4p E
0

2p

daE
0

p

db sin b dM,0FM2N
i, j FN

i , [41]

and

IN
ij ,EIS 5 O

M52`

`

eiMvRt5
1

4p E
0

2p

daE
0

p

sin bdb dM,0FM2N
i, j FN

j

5
1

4p E
0

2p

daE
0

p

sin bdb F02N
i, j FN

j . [42]

Equations [41] and [42] contain a delta functiondM,0 as
opposed to (FM

i )* (Eq. [35]) because of the TOSS sequence in
EIS, analogous to the difference between Eqs. [14] and [17].

From Eq. [42], it can be seen that the phase factoreiMvRt5,
which appears in Eq. [34] multiplying the sideband intensities
IMN
ij ,EIS and which could lead to severe phase distortions in the

resulting spectrum, actually has no effect; the delta function in
the integral for IMN

ij ,EIS, Eq. [41], causes the phase to factor
vanish altogether with the sum overM. This results from the
application of the TOSS sequence before the mixing time to
suppress all of the sidebands. More precisely, the cancellation
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of the phase factor is a consequence of the Hahn-echo condi-
tion of the TOSS sequence, which causes the signal to be
refocused at timet5 (1). The Hahn-echo condition is also
responsible for the beneficial circumstance that the occurrence
of different isotropic chemical shifts, and consequently more
than one family of spinning sidebands in the EIS spectrum,
does not result in phase-distorted spectra, as is observed in the
ODESSA experiment (9). There, for a spin system consisting
of several distinct groups of equivalent nuclei with different
isotropic chemical shiftsviso

a , viso
b , . . . , theODESSA time-

domain signal becomes

GODESSA~t; tm! 5 O
a

expS iv iso
a

TR

2 D
3 O

N52`

`

exp~i ~v iso
a 1 NvR!t!IN

a,ODESSA~tm!,

[43]

where¥a reflects summation over the different species present.
It is clear from Eq. [43] that each sideband family is associated
with different phase factorsv iso

a TR/ 2. The EIS signal by
comparison is free of this difficulty, again as a result of the
Hahn-echo condition inherent to the TOSS pulse sequence:

GEIS~t; tm! 5 O
a

O
N52`

`

exp~i ~v iso
a 1 NvR!t!IN

a,EIS~tm!. @44#

The phase difficulties of the ODESSA experiment can, how-
ever, be overcome by performing time-reverse ODESSA (9),
which cancels distortions arising from the preceding phase
factors; see Eq. [43]. Phase distortions, however, can still occur
in the time-reverse ODESSA experiment, if the dynamic pro-
cess involves exchange between groups with different isotropic
shifts, resulting in “phase transfer” (9):

GtrODESSA~t; tm! 5 O
b

O
N52`

`

~21!Nexp~i~viso
b 1 NvR!t!

3 O
ai

O
j

Paibj~tm!expSi~viso
b 2 viso

a !
TR

2 DIN
aibj,

[45]

where the NMR interaction tensors before the mixing time are
labeled with the single indexai, and the sum over the tensors
after the mixing time indexed bybj has been separated into
sums over the isotropicb and anisotropicj parts. When ex-
change occurs between different groups, phase factors (v iso

b 2
v iso

a )TR/ 2 appear, leading to phase distortions. While such
phase distortions in time-reverse ODESSA spectra complicate

analysis of the data, they can nevertheless be used to separate
multiple dynamic processes, such as molecular reorientation
and magnetization transfer via spin diffusion (9). Again, due to
the Hahn-echo condition of the TOSS sequence, such phase
distortions do not exist in EIS spectra, even for the case of
chemical exchange between groups with different isotropic
chemical shifts.

Additionally, differences are apparent between the EIS ex-
periment and MAS 2D, ODESSA, or time-reverse ODESSA
measurements, based on a comparison of Eqs. [35] and [41]. In
the expression forIMN

ij ,EIS in Eq. [41], a delta function replaces
the (FM

i )* term in Eq. [35], indicating that different sideband
intensities are expected for the different experiments. To dem-
onstrate this, Fig. 3 compares the center- and sideband inten-
sities of simulated EIS (Fig. 3(a)) and time-reverse ODESSA
spectra (Fig. 3(b)) (which are identical to the intensities of the
ODESSA spectra), as functions of the reorientation angleb3

for the case of a two-site exchange process involving an axially
symmetric chemical shift tensor in the limit of full exchange
(tm 3 `). The intensities of the centerbands and first- and
second-order sidebands are shown in Fig. 3 for a spinning
speed ofvR 5 2p 3 0.4d (see Eq. [1]), which was selected as
a compromise between rapid spinning with little or no sideband
intensity and very slow spinning with low or negative TOSS
intensity (13c, 24, 26). Specifically, the relative intensities of
EIS and time-reverse ODESSA sidebands are functions of both
reorientation geometry and sample spinning speed (in addition
to chemical shift tensor values). The intensity of the EIS
centerband in Fig. 3a decreases with increasing reorientation
angle, while the EIS sidebands generally increase in intensity
as b3 becomes larger. In contrast, the intensities of all time-
reverse ODESSA peaks in Fig. 3b decrease with increasingb3

at low reorientation angles. The intensity of the time-reverse
ODESSA centerband in Fig. 3b decreases over the entire range
of reorientation angles from 0° to 90°, while the intensity
curves of some sidebands increase slightly at higher reorien-
tation angles. For example, the intensity of theN 5 22
time-reverse ODESSA sidebandI22 decreases with increasing
reorientation angle from 0° to about 35°, then steadily in-
creases at higher jump angles up to 90°. Intensity changes in an
Nth-order time-reverse ODESSA (or ODESSA) peak as a
function of reorientation angleb3 reflect variations in the
corresponding MAS 2D exchange peak intensitiesIMN

ij ,2D

summed overM, for M 2 N even compared toM 2 N odd;
see Eqs. [35] through [40].

Focusing on the relative intensity variations of the sidebands
of the EIS and time-reverse ODESSA spectra, the plots in Fig.
3 reflect a significant dependence on reorientation angleb3.
For small reorientation angles, the EIS sidebands show less
overall change in their intensities relative to the EIS spectrum
obtained in the absence of motion, compared to the respective
time-reverse ODESSA spectra. For example, a reorientation
angle of 20° leads to reductions of both time-reverse ODESSA
and EIScenterbandsby about 8% compared to the total re-
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spective spectral intensities measured by the two experiments
in the absence of such reorientation dynamics. However, the
collective intensity changes of the time-reverse ODESSAside-
bandsare approximately twice those of the EIS sidebands.
While the EIS sidebands rise to a combined intensity of about
8% of the no-exchange EIS spectrum for a reorientation angle
of 20°, such motion yields a decrease in the combined inten-
sities of the time-reverse ODESSA sidebands by about 16%. In
contrast, for reorientation angles from about 65° to 90°, the
increase in intensity summed over all EIS sidebands is slightly
larger than the corresponding decrease in intensity summed
over all time-reverse ODESSA sidebands. These differences
show the EIS experiment under these conditions to be less

sensitive to small reorientation angles and of similar sensitivity
at large (.65°) reorientation angles compared to MAS 2D
exchange or ODESSA.

In the absence of exchange, the shift tensorss i ands j in
Eq. [37] are identical, and thef-functions cancel in the integral
( f * f 5 1). Performing the integration in Eq. [37] then results
in FM2N

i , j 5 dM,N, so that the sideband intensities in Eq. [35]
are equal to the intensities in the conventional MAS experi-
ment (Eq. [14]):

IM,N
2D 5

1

4p E
0

2p

daE
0

p

db sin b F*dM,NFN 5 dM,NIN
MAS. [46]

Analogously, for the EIS spectrum in the absence of exchange,
Eq. [41] becomes

IN
EIS 5

1

4p E
0

2p

daE
0

p

db sin bdN,0F0 5 dN,0I 0
TOSS [47]

and a centerband-only spectrum is observed (Eq. [17]).
Combining Eqs. [24], [34], [42], and [47] yields the expres-

sion for the intensities of the sidebands in an EIS spectrum for
the case of random jump motions amongZ equivalent sites:

IN
EIS~tm! 5 O

i, j

FexpS2
tm

tc
Dd ijPi

1 F1 2 expS2
tm

tc
DGPiPjGexpS2

tm

T1
D IN

ij ,EIS

5 expS2
tm

T1DFOi, j expS2
tm

tcDd ijPiIN
ij ,EIS

1 O
i, j

F1 2 expS2
tm

tc
DGPiPjIN

ij ,EISG
5 expS2

tm

T1
DFdN,0I 0

TOSSexpS2
tm

tc
D

1 F1 2 expS2
tm

tc
DG IN

fe,EISG , [48]

with:

IN
fe,EIS 5 O

ij

PiPj I N
ij ,EIS, [49]

from which the final absorptive EIS spectrumIEIS(v) can be
computed asIEIS(v) 5 ¥N52`

` A(v 2 vN)IN
EIS (analogous to

taking the real part of Eq. [15].)

FIG. 3. Simulated center- (I0) and sideband (IN, N Þ 0) peak intensities
for an axially symmetric chemical shift tensor undergoing a slow two-site jump
motion through a variable jump angle,b3, while the sample is spinning atvR

5 2p 3 0.4d. Peak ordersN for each of the curves are indicated on the graphs.
Peak intensities are normalized to the no-motion (b3 5 0°) limit. (a) The EIS
centerband decays, while the EIS sidebands generally rise with increasing
reorientation angle, so that the sum over all EIS peak intensities remains
constant. The changes in peak intensities with changing reorientation angle are
stronger in the center of the curves (20° to 60°) and weaker at the edges, near
0° and 90°. (b) Time-reverse ODESSA peak intensities, which are the same for
the ODESSA experiment. Note that the dependencies of the peak intensities on
the jump angles are more pronounced over the range 0° to 50° and relatively
weak from 50° to 90°.
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Extraction of Correlation Times

Equation [48] represents the EIS spectrum for random jump-
type motions as being composed of the sum of the no-exchange
TOSS spectrum, which decays as exp(2tm/tc), and the full-
exchange spectrumIN

fe,EIS, which rises to its final value as
exp(2tm/tc), analogous to the case of the static 2D exchange
NMR experiment discussed earlier. Therefore, taking the ratio
REIS(tm) of the combined intensities of all sidebands (exclud-
ing the centerband) and the integrated intensity of the entire
spectrum eliminates the exponential factor associated with the
T1 relaxation. This allows the motional correlation timetc to
be determined directly from a series of EIS spectra that have
been acquired as a function of the mixing time, without the
need for explicit determination ofT1:

REIS~tm! 5
¥NÞ0 IN

EIS~tm!

¥N IN
EIS~tm!

5

¥NÞ0 F1 2 expS2 tm
tc
DGIN

fe,EIS

FI0
TOSSexpS2 tm

tc
D1 ¥N F1 2 expS2 tm

tc
DGIN

fe,EISG .

[50]

To proceed, the sum over all peaks in the full exchange EIS
spectrumIN

fe needs to be evaluated. Using Eqs. [36], [37], [42],
[47], [49] and the relation¥N52`

` exp(iN(u 2 w)) 5
d(u 2 w) (analogous to Eq. [10]), one arrives at

O
N

IN
fe,EIS 5 O

N

O
i, j

PiPj IN
ij ,EIS

5 O
N

O
i, j

Pi Pj

1

4pE
0

2p

daE
0

p

sin bdb F02N
i, j FN

j

5 O
i, j

PiPj

1

4p E
0

2p

daE
0

p

sin bdb
1

4p2

3 E
0

2p

dwE
0

2p

du d~u 2 w! f1~a, b, u, s i
MF!

3 f *2~a, b, u, sßß j
MF! f2~a, b, w, s j

MF!

5 O
i, j

PiPj

1

4p E
0

2p

daE
0

p

sin bdb F0

5 O
i, j

PiPjI 0
TOSS5 I 0

TOSS, [51]

so that Eq. [50] can be rewritten as

REIS~tm! 5
¥NÞ0 IN

fe,EIS

I 0
TOSS F1 2 expS2

tm

tc
DG

5 RfeF1 2 expS2
tm

tc
DG , [52]

where the abbreviationRfe denotes the sum over all sidebands
intensities (excluding the centerband) in the full-exchange (fe)
limit ( tm 3 `), normalized with respect to the centerband-
only TOSS spectrum intensity.

Equation [52] is very similar to the expression obtained for the
ratio of the combined intensities of the off-diagonal cross-peaks
to the total integrated area of all peaks in the rotor-synchro-
nized MAS 2D exchange NMR experimentR2D,MAS(tm).
Analogous to Eq. [48], the intensities of the MAS 2D exchange
peaks are given by

IMN
2D ~tm! 5 O

i, j

Pij~tm!expS2
tm

T1
D IMN

ij ,2D

5 expS2
tm

T1
DFdM,NIN

MASexpS2
tm

tc
D

1 F1 2 expS2
tm

tc
DG IMN

fe,2DG , [53]

where Eqs. [24] and [46] have been used and with

IMN
fe,2D 5 O

i, j

PiPjIMN
ij ,2D; [54]

IMN
ij ,2D is given by Eq. [35]. The rotor-synchronized MAS 2D

exchange spectrum for random jump-type motions is the sum of
a no-exchange MAS spectrum (Eq. [46]) which decays as
exp(2tm/tc), and the full-exchange spectrum (Eq. [54]) which
rises to its final value as exp(2tm/tc), yielding for the ratio of the
intensity of off-diagonal cross peaks to total spectral intensity:

R2D,MAS~tm! 5
¥M ¥NÞM IMN

fe,2D

¥N IN
MAS F1 2 expS2

tm

tc
DG . [55]

Similarly, for the case of the static (non-spinning) 2D exchange
experiment:

R2D~tm! 5 O
i

O
jÞi

PiPjF1 2 expS2
tm

tc
DG . [56]

In contrast to Eq. [55] for the 2D MAS exchange experiment,
where the prefactor is comprised of a combination of the site
populations and the sideband intensities, Eq. [56] for the static 2D
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exchange experiment in general yields direct information about
the number of sitesZ involved in the random jump motion,
provided symmetry does not render some of the sites equivalent.3

Executing the double sum in Eq. [56] for equally populated sites
yields

R2D~tm! 5
Z 2 1

Z F1 2 expS2
tm

tc
DG . [57]

For a random jump motion among equivalent sites, ODESSA
spectra are also composed of the sum of a no-exchange spectrum
and a full-exchange spectrum (Eqs. [24], [38]). ODESSA spectra
contain positive and negative peaks, so summing over the inten-
sities of all ODESSA sidebands or the entire spectrum involves
adding large positive and negative numbers to obtain a small
value. Consequently, the ratio of the combined ODESSA side-
band intensities to the total ODESSA spectrum intensity (analo-
gous to the analysis of EIS spectra usingREIS(tm) in Eq. [50]) may
be sensitive to small experimental imperfections, such as noise,
associated with implementation of the ODESSA experiment. Al-
ternatively, taking the ratio of the integrated area of one peak to
the total spectral intensity yields greater sensitivity to reorientation
and still permits the extraction of a motional correlation timetc

without explicitly determiningT1. For convenience, taking the
negative value of the integral intensity when an odd-numbered
sideband appears in the numerator yields a ratio that decreases
monotonically with increasing mixing time:

RN
ODESSA~tm! 5

~21!NIN
ODESSA~tm!

¥N IN
ODESSA~tm!

5
etm/tcIN

MAS 1 @1 2 etm/tc#¥M ~21!M~21!NIMN
fe,2D

etm/tc¥N ~21!NIN
MAS 1 @1 2 etm/tc#¥N ¥M ~21!MIMN

fe,2D ,

[58]

where Eqs. [24], [38], [39], [46], and [54] have been used. The
double-summation term containingIMN

fe,2D in the denominator may
be further simplified, because the sums overM andN are equiv-
alent. The sum over the intensities of the peaks along a given
column or row in the 2D exchange spectrum is constant (neglect-
ing aT1 relaxation factor in both the numerator and denominator
of Eq. [58], which cancels), independent oftm, and equals the
intensity of the corresponding sideband in the 1D MAS spectrum:

O
N

IMN
fe,2D 5 O

M

IMN
fe,2D 5 IM or N

MAS , [59]

with the result that

RN
ODESSA~tm!

5
etm/tcIN

MAS 1 @1 2 etm/tc# ¥M ~21!M~21!NIMN
fe,2D

etm/tc ¥N ~21!NIN
MAS 1 @1 2 etm/tc# ¥M ~21!MIM

MAS

5
¥M ~21!M~21!NIMN

fe,2D 1 ~IN
MAS 2 ¥M ~21!M~21!NIMN

fe,2D!etm/tc

¥N ~21!NIN
MAS .

[60]

Using a direct analogy for the time-reverse ODESSA anal-
ysis, i.e., taking the ratio of one peak to the entire spectrum,
also eliminates the need to determine or fitT1 explicitly. This
ratio is similar to, but not the same as, Eq. [58]:

IN
trODESSA~tm!

¥N IN
trODESSA~tm!

5
etm/tcIN

MAS 1 @1 2 etm/tc# ¥M ~21!M~21!NIMN
fe,2D

etm/tc ¥N IN
MAS 1 @1 2 etm/tc# ¥M ¥N ~21!M~21!NIMN

fe,2D .

[61]

However, the ratio in Eq. [61] will not be used here for analysis
of time-reverse ODESSA spectra, because the double-summa-
tion term in the denominator cannot be simplified using Eq.
[59], due to the appearance of both (21)N and (21)M in the
sums containing theIMN

fe,2D term.
An expression equivalent to Eq. [58], however, may be

obtained for time-reverse ODESSA spectra by modifying the
intensity ratio from that used in Eq. [61]. ODESSA and time-
reverse ODESSA signals are closely related (see Eqs. [39],
[40]), and, in the absence of phase distortion, a time-reverse
ODESSA spectrum can be converted into an ODESSA spec-
trum by inverting all of the odd-numbered sidebands. Doing so
permits the same simplification (Eq. [59]) used to obtain Eq.
[60], thereby allowing the motional correlation time to be more
conveniently extracted from a series of time-reverse ODESSA
spectra:

RN
trODESSA~tm! 5

IN
trODESSA~tm!

¥N ~21!NIN
trODESSA~tm!

5
etm/tcIN

MAS 1 @1 2 etm/tc# ¥M ~21!M~21!NIMN
fe,2D

etm/tc ¥N ~21!NIN
MAS 1 @1 2 etm/tc# ¥M ~21!M~21!2NIMN

fe,2D

5
¥M ~21!M~21!NIMN

fe,2D 1 ~IN
MAS 2 ¥M ~21!M~21!NIMN

fe,2D!etm/tc

¥N ~21!NIN
MAS .

[62]

3 For example, because of the inversion center of a benzene molecule, NMR
frequency changes due to the six-site jump motion in the plane of the molecule
are indistinguishable from frequency changes due to a three-site jump motion.
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Equation [62] has a simpler form and fewer parameters than
Eq. [61], making it more convenient to use in the analysis.

While a correlation timetc may be extracted directly from a
series of static 2D exchange, MAS 2D exchange, EIS,
ODESSA, or time-reverse ODESSA NMR spectra (Eqs. [57],
[55], [52], [60], and [62], respectively) there are important
differences among these experiments. The ratios for 2D ex-
change and EIS spectra contain two fitting parameters, namely
a correlation time and a full-exchange limit, but only the
full-exchange limit of the static 2D exchange ratioR2D(tm)
yields directly the number of sitesZ participating in the ex-
change process. While it is the most experimentally time-
consuming of the experiments discussed here, static 2D ex-
change NMR also gives direct access to the orientational
autocorrelation functionC2(tm), which permits extraction of a
correlation time for types of molecular reorientational motion
other than random jumps. Unlike EIS spectra, ODESSA or
time-reverse ODESSA spectra obtained in the absence of mo-
lecular reorientation contain sidebands: The spectra are MAS
spectra with every odd-numbered sideband either inverted
(ODESSA) or not (time-reverse ODESSA). Consequently, be-
causeRN

ODESSA (tm 5 0) 5 RN
trODESSA (tm 5 0) Þ 0, fitting

the ratios for ODESSA and time-reverse ODESSA spectra
requires three fitting parameters, one of which may be obtained
from MAS peak intensities. The ODESSA and time-reverse
ratios also each contain a sum over (21)NIN

MAS in their de-
nominators, which involves adding positive and negative peaks
to obtain a small value. Thus, the errors for correlation times
obtained from ODESSA and time-reverse ODESSA are ex-
pected to be larger than for correlation times determined on the
basis of EIS spectra. For the conditions considered here (h 5
0, vR 5 2p 3 0.4d), the EIS experiment is less sensitive to
small reorientation angles than the ODESSA, time-reverse
ODESSA, or MAS 2D exchange experiments, although at
large reorientation angles (.65°) the sensitivities are similar.
Finally, when multiple isotropic shifts are present in the spec-
tra, peaks in ODESSA spectra are phase-distorted. The phases
of peaks in time-reverse ODESSA spectra are distorted if
isotropic shifts change during the mixing time, while EIS and
MAS 2D exchange are free of this difficulty. All of these
exchange NMR experiments quantify the same correlation time
tc, and consistency among the exchange NMR experiments
may be checked by conducting several of these experiments on
the same sample, as will be shown later.

RESULTS AND DISCUSSION

The relationship among the EIS, ODESSA, time-reverse
ODESSA, and static 2D exchange NMR techniques can be
clearly seen by examining slow dynamic processes in solid,
polycrystalline dimethylsulfone (DMS), (CH3)2SO2. The sim-
ple, well-studied molecular reorientation dynamics of DMS
make it an excellent compound for comparing the measure-
ments and analyses of motional correlation times obtained

using the different exchange NMR methods. The use of DMS
with 13C in natural abundance (1.1%) renders magnetization
transfer via spin diffusion inefficient; thus, molecular motions
are the sole source(s) of NMR frequency changes giving rise to
exchange features in the13C NMR spectra. Furthermore, these
results can be compared against literature values for DMS
exchange rates determined using other13C and2H NMR mea-
surement strategies (27–29).

In a crystal, DMS molecules undergo slow twofoldp-flips
about their individual C2 symmetry axes, which exchange the
positions of each pair of otherwise chemically equivalent
methyl groups. The reorientation angles for thez-axes of the
13C chemical shift and2H electric field gradient tensors asso-
ciated with the methyl groups are close to the angles between
two vertices of a tetrahedron (b3 5 109.5°). The elliptical
ridges of a static 2D exchange13C NMR spectrum and simu-
lations of static13C lineshapes yield a value of 108° for the
reorientation angle, while the elliptical ridges and a best-fit
reconstruction of selectedv1 slices of a 2D exchange2H NMR
spectrum yield 106° and 108°, respectively (27, 30). Addition-
ally, 13C VACSY experiments (31) and 2D exchange2H NMR
in the intermediate exchange regime (32) have been performed
on DMS, using kinetic parameters based on the Arrhenius
equations reported in Refs.27 and33.

Figure 4 shows experimental ODESSA, time-reverse
ODESSA, TOSS, and EIS13C NMR spectra acquired on DMS
spinning atvR 5 2p 3 1800 Hz and atT 5 289 K. For
ODESSA and time-reverse ODESSA the primary effect of
dynamics is an overall decay of the entire spectrum with
increasing mixing time, diminished further byT1 relaxation;
slight changes in ODESSA and time-reverse ODESSA relative
peak intensities are a subtle secondary effect. As shown in Fig.
4a, top, the ODESSA spectrum acquired with a mixing time of
approximately 3 ms closely resembles the spectrum (Fig. 2a,
top) simulated for the case of no exchange. ODESSA spectra
acquired with mixing times of approximately 16 and 50 ms
(Fig. 4a, middle and bottom) show diminished intensity, con-
sistent with the simulated spectra in Fig. 2a, middle and bot-
tom. The time-reverse ODESSA spectra, shown in Fig. 4b and
acquired with the same parameters as the spectra in Fig. 4a,
also show decreasing intensity with increasing mixing time,
consistent with the simulations in Fig. 2b. Slight differences in
some relative peak intensities between the experimental and
simulated time-reverse ODESSA spectra in Figs. 4b and 2b are
attributed to their sensitive dependence on the cross-
polarization parameters employed.4 The sideband intensities of
the experimental EIS spectra in Fig. 4c rise with increasing
mixing time, while the centerband intensity decreases. The

4 Relative peak intensities are sensitive to the cross-polarization (CP) pa-
rameters; for example, a time-reverse ODESSA spectrum acquired with a CP
contact time of 4 ms (not shown) instead of 2 ms (Fig. 4b, top) was virtually
identical to the simulated spectrum in Fig. 2b, top. All spectra in Fig. 4 were
obtained using identical CP parameters.
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experimental EIS spectra in Fig. 4c show excellent agreement
with the EIS simulations in Fig. 2c.

If the time scale for molecular reorientation and theT1

relaxation time are widely separated (by a factor of about 10 or
greater), both may be extracted simultaneously from a biexpo-
nential fit to the intensity of a single ODESSA peak as a
function of mixing time. The centerband intensityI0

ODESSA(tm)
and N 5 1 sideband intensityI1

ODESSA(tm), for example,
typically show significant decreases with increasing mixing
time. Such biexponential fits to ODESSA and time-reverse
ODESSA peaks have been used to quantify molecular reori-
entation ratesk 5 1/(2tc) in DMS (8, 9). Rates ofk 5 65.2
s21 (tc 5 8 ms) and 112 s21 (tc 5 4 ms) atT 5 298 and 305
K, respectively, have been reported using ODESSA andk 5
71 s21 (tc 5 7 ms) at T 5 298 K using time-reverse
ODESSA; discrepancies were found between the fitT1 values
and those obtained from independent measurements, and the
reason for the discrepancies is not yet known (8, 9). At slightly
lower temperatures theT1 relaxation and motional time scales
are similar. In this case, time scales for molecular reorienta-

tions may be obtained after applyingT1 corrections from
independent measurements, or the data may be analyzed ac-
cording to the ratiosRN

ODESSA(tm) in Eq. [58] orRN
trODESSA(tm)

in Eq. [62], which do not require explicit determination ofT1.
Figure 5a shows that the centerband ratioR0

ODESSA(tm)
(filled symbols) and sideband ratioR1

ODESSA(tm) (open sym-
bols) for ODESSA spectra obtained on DMS atT 5 289 K
both decrease with increasing mixing time. The lines are fits to
a*exp(2tm/tc) 1 b, which yield correlation times oftc 5
17 6 6 ms and 186 6 ms, reflecting self-consistent agreement
between two different peaks in the same series of ODESSA
spectra. The corresponding time-reverse ODESSA ratios (Eq.
[62]) obtained from a series of spectra for DMS atT 5 289 K
are shown in Fig. 5b. The fits toa*exp(2tm/tc) 1 b in Fig. 5b
are similar to Fig. 5a, although not identical; nevertheless, the
correlation timestc 5 196 7 ms and 206 7 ms obtained from
the time-reverse ODESSA results in Fig. 5b agree with the
ODESSA measurements within the experimental uncertainties.

The correlation times for dimethylsulfone measured atT 5
289 K are also in good agreement with the EIS and static 2D
exchange data shown in Figs. 5c and 5d, respectively. As the
EIS sidebands increase with increasing mixing time, the EIS
ratio REIS(tm) (Fig. 5c) rises with increasingtm. The EIS data
are fit toc*(1 2 exp(2tm/tc)) (Eq. [52]), which contains one
less fitting parameter than the fits to the ODESSA and time-
reverse ODESSA results in Figs. 5a and 5b (REIS (tm 5 0) 5 0).
Because changes in relative peak intensities are the dominant
effect of dynamics in the EIS spectra, rather than a secondary
effect as in the ODESSA spectra, the fit in Fig. 5c yields a
correlation time with higher precision,tc 5 16 6 2 ms. The
EIS full-exchange limit ofc 5 Rfe 5 0.346 0.01comprises
a combination of site populations and sideband intensities (see
Eqs. [49], [50]), which are influenced by chemical shift tensor
values and spinning speed, as well as reorientation angles (see
Eqs. [32]–[34]). This is in contrast to the 2D exchange data,
which yield site populations and geometric information di-
rectly. The ratio of off-diagonal to total intensityR2D(tm) of a
single slice in the 2D spectrum, shown by the open symbols in
Fig. 5d, yields a full-exchange limit of 0.506 0.04, a model-
independent verification of a two-site jump process (Eq. [57]).
This is consistent with twofoldp-flips that exchange the po-
sitions of the methyl groups in (CH3)2SO2. A fit to d*(1 2
exp(2tm/tc)) yields a correlation time oftc 5 21 6 4 ms.
Integration over the entire 2D spectrum to obtain the orienta-
tional autocorrelation functionC2(tm) (Eqs. [25], [26]), shown
by the filled symbols in Fig. 5d, better utilizes the information
present in the spectrum. A fit to (12 e)*exp(2tm/tc) 1 e
(Eq. [31]) yields a correlation time oftc 5 19 6 2 ms. Taking
the13C chemical shift tensor of DMS (h ' 0.08) to be axially
symmetric, the full-exchange limit ofC2(tm) in Fig. 5d is
0.32 6 0.02, consistent with a 108° jump angle,
0.5*P2(cos(08)) 1 0.5*P2(cos(1088)) 5 0.32. Results ob-
tained at other temperatures show similar consistency among

FIG. 4. Experimental13C NMR of spectra of DMS obtained using differ-
ent solid-state exchange NMR techniques while spinning atvR 5 2p 3 1800
Hz at a temperature ofT 5 289 K. (a) ODESSA spectra with mixing times of
approximately 3, 16, and 50 ms. (b) Time-reverse ODESSA spectra with
mixing times of approximately 3, 16, and 50 ms. (c) TOSS spectrum and EIS
spectra with mixing times of approximately 16 and 50 ms. The dominant effect
of dynamics for ODESSA and time-reverse ODESSA spectra is a reduction in
the intensity of the entire spectrum with increasing mixing time, whereas for
the EIS spectra it is the reappearance of spinning sidebands.

275MOTIONAL CORRELATION TIMES BY 1D MAS AND 2D NMR



measurements made using the different exchange NMR tech-
niques.

Correlation times from EIS, ODESSA, time-reverse ODESSA,
and static 2D exchange13C NMR measurements in the tempera-
ture range ofT 5 271 to 289 K are tabulated in Table 1. The
ODESSA and time-reverse ODESSA correlation times reported
are averages from the centerbands andN 5 1 sidebands, and the
2D exchange correlation times are averages ofR2D(tm) andC2(tm).
Although there is some scatter, the correlation times generally
agree within the estimated uncertainties. The DMS reorientation
rate ofk 5 29 6 19 s21 (tc 5 17 ms) measured atT 5 288 K
using on-resonance2H selective inversion-recovery (29) is also
consistent with the correlation times measured atT 5 289 K listed
in Table 1; other values reported in Ref. (29) were obtained at
higher temperatures. Decay of the exchange NMR signals due to
shortT1 relaxation times prevents accurate quantification of the
DMS reorientation time scale at temperatures significantly below
271 K using the exchange methods. Static 2D exchange13C NMR
results were obtained at only three different temperatures because
of the increased measuring time requirements of this experiment
compared to the 1D MAS exchange methods.

TABLE 1
Motional Correlation Times tc for Dimethylsulfone (DMS) over

the Temperature Range 271 to 289 K, as Determined from the
Different Exchange 13C NMR Experiments Indicated

Temperature
(K)

EIS
tc (ms)

ODESSA
tc (ms)

Time-reverse
ODESSA
tc (ms)

2D exchange
tc (ms)

271 1256 16 1346 47 1326 46 —
275 926 12 1056 37 1156 40 1146 17
280 536 7 496 17 646 22 —
284 296 4 406 14 376 13 406 6
289 166 2 176 6 206 7 206 3

FIG. 5. Extraction of motional correlation times from experimental DMS
exchange13C NMR data atT 5 289 K. (a) The ratios of ODESSA centerband
intensities andN 5 1 sideband intensities to the total intensity of the spectra,
R0

ODESSA(tm), filled symbols, andR1
ODESSA(tm), open symbols, respectively, Eq.

[58]. Corresponding fits to the data points are shown usinga*exp(2tm/tc) 1 b,
which for the centerband ratio yieldsa 5 1.76 0.2,b 5 1.26 0.1, andtc 5 176
6 ms and for the sideband ratioa 5 1.46 0.2,b 5 0.76 0.1, andtc 5 18 6 6
ms. (b) The corresponding ratios for time-reverse ODESSA centerband intensities
andN 5 1 sideband intensities,R0

trODESSA(tm), filled symbols, andR1
trODESSA(tm),

open symbols, respectively, Eq. [62]. The data have been fit usinga*exp(2tm/tc)
1 b, yieldinga5 1.46 0.2,b5 1.56 0.1, andtc 5 196 7 ms for the centerband
ratio anda 5 1.26 0.2,b 5 0.66 0.1, andtc 5 206 7 ms for the sideband ratio.
(c) The ratioREIS(tm) of the EIS sideband intensities to total intensity, which has
been fit usingc*(1 2 exp(2tm/tc)), yieldingc 5 0.346 0.01 andtc 5 166 2 ms.
(d) The ratioR2D(tm) of static 2D exchange off-diagonal-to-total intensity (open
symbols) for one slice of the spectrum where exchange and diagonal peaks are
well separated and resolved. The data have been fit usingd*(1 2 exp(2tm/tc)),
yielding d 5 0.506 0.04 andtc 5 21 6 4 ms. The orientational autocorrelation
function C2(tm) (filled symbols) is also shown and has been fit using (12
e)*exp(2tm/tc) 1 e, yielding e 5 0.326 0.02 andtc 5 19 6 2 ms.
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The correlation times reported in Table 1 have been converted
to ratesk 5 1/(2tc) for direct comparison to literature values
obtained at higher temperatures, which are compiled in the Ar-
rhenius plot in Fig. 6. A single fit to all data, spanning an
approximately 100-K temperature range from 271 K to 368 K and
spanning four orders of magnitude in the rate coefficients, yields
an Arrhenius prefactor ofk0 5 4 3 1016 s21 6 1

2
decade and

an apparent activation energy ofEa 5 83 6 3 kJ/mol. At this
scale, the rate coefficients measured using EIS, ODESSA,
time-reverse ODESSA, and static 2D exchange13C NMR from
T 5 271 to 289 K overlap so tightly that it is difficult to
distinguish their individual data points in the lower right-hand
corner of the plot, a sign of their excellent agreement. Simu-
lated 2D exchange2H NMR spectra obtained using this new set
of kinetic parameters are in good agreement with the data of
Kaufmannet al. (32). Brown et al. (29) have rationalized the
large magnitude of the apparent preexponential factor by using
a model in whichk0 was taken to be independent of temper-
ature and a linearly temperature-dependent activation energy
term was included. However, they also indicated that any weak
temperature dependencies in the apparent Arrhenius parame-
ters may lead to significant errors when extrapolating far from
the data, with which we concur. Regardless, the reorientation
jump rates for slow molecular reorientation in DMS, as mea-
sured by a variety of13C and 2H NMR strategies, show
excellent agreement over four orders of magnitude. Moreover,
the rates determined from the EIS, ODESSA, time-reverse
ODESSA, and static 2D13C exchange NMR measurements

over the temperature rangeT 5 271 to 289 K (Fig. 6, lower
right corner) show greater consistency and less scatter com-
pared to the rest of the data set.

CONCLUSIONS

In the study of slow molecular reorientation, static 2D ex-
change NMR gives information on the geometry and time scale
of the motion directly and model-free. Quantification of the
time scale, however, requires a series of spectra with varying
mixing times, which is experimentally time-consuming, often
prohibitively so. Measuring time requirements for characteriz-
ing random jump-type motions can be significantly reduced by
using 1D MAS exchange techniques, namely EIS, ODESSA,
or time-reverse ODESSA, which still permit the direct extrac-
tion of a correlation time without the need for explicit infor-
mation onT1 relaxation. ODESSA is suitable for samples in
which only a single isotropic chemical shift is observed, while
time-reverse ODESSA may be used on samples with multiple
species yielding more than one isotropic shift; however, if
exchange occurs between different isotropic shifts, then phase
distortion of the time-reverse ODESSA spectrum will result.
The EIS experiment is more flexible in this regard and yields
generally more precise quantitative timescale measurements
for large angle motions. However, sideband suppression using
TOSS can be experimentally demanding, and EIS appears to be
less sensitive than ODESSA or time-reverse ODESSA to small
angle motions.

Molecular reorientational rates in DMS obtained using EIS,
ODESSA, time-reverse ODESSA, and static 2D exchange13C
NMR are shown to be consistent among the various exchange
experiments over the temperature range ofT 5 271 to 289 K, as
well as with other NMR techniques applicable to faster reorien-
tation rates at higher temperatures. In addition, the direct extrac-
tion of motional correlation times using EIS has been recently
demonstrated for benzene adsorbed on Ca-LSX zeolite (18). It
appears that these approaches may be beneficial for extending the
utility of the ODESSA and time-reverse ODESSA experiments
into the regime where motional correlation times are on the order
of T1. The direct quantification of slow (tc 5 1023 to 101 s)
molecular reorientation dynamics is relevant to a more thorough
understanding of the properties of a wide variety of solids, includ-
ing polymers, crystals of small organic molecules, and adsorbed
molecules in nanoporous zeolites.

EXPERIMENTAL

EIS, ODESSA, and time-reverse ODESSA13C NMR spectra
of DMS were measured on a Chemagnetics CMX-500 spectrom-
eter operating at a13C frequency of 125.4 MHz and a1H fre-
quency of 498.6 MHz. The sample was spun atvR 5 2p 3 1800
Hz in a 7.5-mm outer diameter zirconia PENCIL rotor. Long-term
stability of better than65 Hz was achieved using a Chemagnetics
automatic spinning speed controller. For each of the foregoing

FIG. 6. Arrhenius plot of DMS reorientation rates as measured using a
variety of 2H and 13C NMR techniques, including2H selective inversion
on-resonance (filled diamonds) (29), 2H selective inversion off-resonance
(open circles) (29), 2H static lineshape (filled circles) (29), 13C static
lineshape (open diamonds) (27), 13C MAS (filled triangles) (28), 13C EIS
(open triangles),13C ODESSA (filled squares),13C time-reverse ODESSA
(open inverted triangles), and 2D exchange13C NMR (open squares). To
permit direct comparison, the rates from Ref. (27) have been divided by 2
and the exchange correlation times converted to rates usingk 5 1/(2tc). A
single Arrhenius fit to all data yieldsk0 5 4 3 1016 s21 6 1

2
decade andEa

5 83 6 3 kJ/mol.
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experiments, spectra were acquired at temperatures ofT 5 271,
275, 280, 284, and 289 K. The temperature was calibrated with
methanol (34) and controlled using a standard variable tempera-
ture unit from Chemagnetics, with the accuracy, stability, and
reproducibility estimated to be61 K.

During the preparation period of the EIS experiment (Fig.
1c), a TOSS pulse sequence was used, with timingst1/TR 5
0.8111, t2/TR 5 1.7699, t3/TR 5 2.1888, t4/TR 5
3.2301, andt5/TR 5 4.0 (35). Suppression of the sharp,
narrow sidebands in a DMS spectrum with TOSS is experi-
mentally demanding (36), and phase cycling of the TOSS
sequence was essential to achieving effective sideband sup-
pression (1, 37). The13C p/2 pulse length varied between 5.2
and 5.5ms; a CP contact time of 2 ms and a recycle delay of
1 s were used. For each of the 1D MAS exchange experiments,
two signals, which differed only in the phase of the pulse
preceding the mixing time, were added to obtain the final
spectrum. A total of 128 scans of 1024 complex points with a
dwell time of 50 ms were collected for both the real and
imaginary signals, resulting in a measuring time of about 4 min
per spectrum. ODESSA and time-reverse ODESSA spectra
were collected with mixing timestm of approximately 3, 5, 7,
11, 16, 24, 34, 50, 74, 110, and 160 ms, while EIS spectra were
collected at mixing times of approximatelytm 5 5, 11, 16,
24, 30, 40, 50, 60, 70, 80, 110, and 160 ms.5

Static (nonspinning) 2D exchange13C NMR spectra were
measured in off-resonance mode on a Chemagnetics CMX-500
spectrometer, at temperatures of 275, 284, and 289 K. A13C
p/2 pulse length of 5.5ms, CP contact time of 2 ms, a recycle
delay of 1 s, and a delay between the two pulses of the Hahn
echo of 60ms were used for the static experiments. In the
detection period, 128 complex points with a dwell time of 18
ms were acquired; 45 to 50 points in 36-ms increments were
used for the evolution period. Prior to Fourier transformation,
the data array was zero-filled to dimensions (v1 3 v2) 5
2563 512. The final spectrum, with a spectral width of 2p 3
13.9 kHz in both dimensions, was obtained by cutting the 2D
array to dimensions 1283 128 and discarding the7

8
of the 2D

Fourier transform that contains either only baseline (v2) or the
completely equivalent spectrum in thev1 dimension. Static 2D
exchange spectra were measured at mixing times oftm 5 1,
10, 20, 30, 50, and 100 ms, as well as 120 ms at the lower
temperatures; typical measuring times for one spectrum ranged
from 2 to 6 h.
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