
Organic semiconductors (OSCs) are extensively 
researched in academic and industrial laboratories, and 
are the basis of established and emerging technologies1–3. 
Although organic light-emitting diodes (OLEDs) are 
commercially available4, research into materials with 
relevant photophysical features, such as thermally acti-
vated delayed fluorescence, remains at the forefront5–8. 
Considerable efforts are focused on the commercial-
ization of other OSC technologies, such as organic 
photovoltaic (OPV) devices9,10 and circuitry that relies 
on organic field-effect transistors (OFETs)11. OSCs are 
also promising materials for biological applications and 
bio–abiotic interfacing, such as neurological sensing 
and the transformation of chemical signals into elec-
tronic signals, in devices such as organic electrochem-
ical transistors12–22. Their appeal as materials for future 
electronic devices is further evidenced by the emergence 
of neuromorphic computing devices based on OSCs23,24.

The extended π conjugation and tunability of the 
chemical composition and structure of OSCs are cen-
tral to their functionality. Technologically relevant bulk 
properties, such as absorbance, luminescence, charge 

transport, bandgaps, thermal stability and mechan-
ical behaviour, are related to the local and long-range 
organization in a material. Charge-carrier mobilities are 
strongly influenced by the electronic coupling between 
neighbouring molecules, which, in turn, is determined 
by the solid-state organization25–27. Material organiza-
tion is mainly controlled at two levels: through mole
cular design and through the processing conditions 
during film formation. The molecular composition and 
structure account for the various non-covalent interac-
tions, such as π–π stacking, van der Waals forces and 
hydrogen bonding, that ultimately direct intermolecular 
interactions28,29. The relatively weak nature of these inter-
actions also, in part, enables OSCs to be processed under 
relatively mild conditions, including from solutions and 
melts or by vacuum thermal evaporation.

Many of the processing methods suitable for gener-
ating thin films produce kinetically stable morpholo-
gies, with degrees of order that span from single crystals 
to amorphous films30–32. It is important to distinguish 
well-ordered phases from regions with lower degrees of 
order, so that the local structures and dependence on  
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processing conditions can be correlated with the macro
scopic properties of an OSC and its performance in 
devices31. Thin-film morphologies are complicated and 
challenging to control because they evolve as individ-
ual ‘molecular’ subunits that self-organize during film 
formation. In the case of solution-processable OSCs, 
flexible alkyl groups are added as substituents on the 
conjugated backbone to achieve solubility33–37. The high  
degree of conformational disorder inherent in alkyl 
chains makes them effective solubilizing groups. 
However, they also discourage crystallization from solu-
tion on the timescales typically associated with solvent 
evaporation. As a result, solution-processed OSC mole
cules and polymers can organize into different types 
of structures38. Crystalline regions exhibit long-range 
structural order, whereas amorphous phases contain 
no structural order and semi-ordered domains exhibit 
intermediate order. The presence, relative populations 
and commingling of these different structures depend 
strongly on the often subtle details of OSC composition, 
architecture and processing, which greatly influence the 
resulting material properties and device performance.

To establish the relationships between the composi-
tion, structure and processing conditions, it is essential 
to characterize and correlate the properties of OSC mate-
rials over molecular to bulk length scales. A particular 
challenge is the disorder often present as a result of the 
weak interactions that govern the self-assembly of OSCs, 
which leads to complex morphologies and structures 
that are challenging to characterize at atomic resolution.

There is a wide variety of solid-state NMR (ssNMR) 
techniques that can be used to study the structures and 
dynamics of OSC materials. ssNMR measurements 
and analyses provide complementary information 
on local structures and site-specific dynamics, which 
can be compared and correlated with the information 
obtained from other techniques, such as X-ray scatter-
ing, vibrational and optical spectroscopies, and compu-
tational modelling, to attain a comprehensive picture 
of OSC structures. In this Review, we start by assessing 
the techniques used to characterize OSCs over different 
length scales, highlighting the versatility of ssNMR. We 
then discuss how ssNMR can be used to gain insight 
into the composition, structure and dynamics of OSCs, 
using recent examples to illustrate its application to these 
materials. The capabilities and the information that can 
be obtained using the techniques discussed herein are 
summarized in Table 1. Finally, we conclude by sharing 
our perspective on the challenges and the future role of 
ssNMR in the characterization and design of OSCs.

Characterization at different length scales
Various techniques are required to characterize OSCs 
at different length scales. X-ray scattering techniques 
can typically provide information on long-range, peri-
odic structural order (in the range of tens to hundreds 
of nanometres) in thin films that is attributable to π–π 
(sub-nanometre) and lamellar (approximately a few 
nanometres) stacking39. However, such features are often 
accompanied by distributions of local environments and 
order that manifest in broad scattering reflections, which 
are difficult to analyse in grazing-incidence wide-angle 

X-ray scattering (GIWAXS) patterns. For example, it can 
be challenging to distinguish reflections associated with 
truly crystalline regions from those associated with par-
tially crystalline regions, such as lamellar domains with 
π–π-stacked backbones and disordered side chains38,40. 
Neutron scattering is based on principles similar to 
those of X-ray scattering but exploits the interactions 
of incident neutrons with nuclei (instead of incident 
X-rays interacting with electrons), and affords comple-
mentary information owing to its sensitivity to chemical 
composition41,42. Electron microscopy can image materi-
als to atomic-scale resolution, although it is best suited 
to robust materials with high degrees of order, which are 
not typically characteristic of OSCs43–45. One limitation 
of these scattering-based and diffraction-based tech-
niques is that they are generally insensitive to disordered 
(that is, amorphous or dynamic) regions or moieties of 
a material. Such disordered regions can constitute an 
important fraction of OSC active layers and are largely 
uncharacterized (Fig. 1).

Scanning probe microscopy techniques, such as scan
ning tunnelling microscopy and atomic force micro
scopy, span the range of relevant length scales for OSC 
materials, from ångströms to micrometres, and have 
proved to be useful for characterizing OSC materials46,47. 
However, these techniques are limited by the need for 
special sample-preparation methods when atomic reso-
lution is desired and by their restriction to probing only 
the surfaces of samples at longer length scales.

The sensitivity of ssNMR spectroscopy to short-range 
interactions allows it to probe diverse material structures, 
such as crystallites, lamellar mesophases and amorphous 
regions. The use of ssNMR techniques has, therefore, 
increased with the realization of its power to analyse 
complicated and heterogeneous material compositions, 
structures and dynamics at an atomic scale46,48–54. In this 
context, ssNMR spectroscopy has emerged as an essen-
tial complementary tool, owing to its compatible length 
scales (sub-nanometre) and timescales (nanoseconds 
to seconds) for ex situ and in situ characterization of 
short-range structures of complex soft materials (Fig. 1). 
Moreover, ssNMR experiments can provide quantitative 
information on the composition of the entirety of a sam-
ple. Early-stage development of ssNMR spectroscopy 
for the study of conjugated materials mostly focused 
on doped molecular and polymeric conductors, such 
as polyanilines and polyacetylenes55–57. Over the past 
two decades, technological advances have enabled the 
investigation of complex heterogeneous OSC materials 
and their blends (examples of OSC materials are shown 
in Fig. 2) with unprecedented sensitivity and resolution.

The broad applicability and versatility of ssNMR 
spectroscopy is due to the abundance of stable 
NMR-active nuclear isotopes and the different types of 
nuclear spin interactions that can be selectively probed 
in diverse inorganic, organic and hybrid materials, 
including those with extensive disorder or heterogene-
ity. The site-selectivity and short-range nature of dif-
ferent nuclear spin interactions enable local structures 
in ordered and disordered regions to be identified and 
distinguished. The sensitivity and resolution of ssNMR 
spectroscopy depends on the gyromagnetic ratio (γ) and 
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the abundance of NMR-active nuclear isotopes in the 
materials under study. The choice of nuclei depends on 
the material (for OSCs, typically 1H, 13C, 15N and/or 19F), 
their natural isotopic abundance and spin. Although an 
in-depth discussion of ssNMR spectroscopy techniques 
is outside the scope of this Review, there are several 
excellent books and reviews in the literature on basic 
concepts and applications58–61 to which readers are 
referred, as well as other works cited herein.

A multi-technique approach
The composition and structure of semicrystalline OSCs 
cannot typically be determined solely using scattering 
methods or microscopy techniques, and instead require 
a combination of complementary analytical techniques 
(Fig. 3). A multi-technique approach relies on proto-
cols through which different methods are combined to 
increase the effectiveness, accuracy and completeness of 
the overall structure-determination process. Modelling 

approaches based on density functional theory (DFT) 
calculations and molecular dynamics (MD) simulations 
have been used to bridge complementary experimen-
tal techniques, such as X-ray diffraction and ssNMR 
spectroscopy, to gain insight into how specific packing 
features and structures affect relevant properties62,63. 
Experimental techniques that help to refine and validate 
computationally predicted structural models by con-
straining structural parameters (for example, distances, 
conformations and interactions) enable the deter-
mination of 3D structures of organic solids64–70. Such 
multi-technique approaches are increasingly pursued to 
determine the structures of OSCs over complementary 
length scales (Fig. 3) using, for example, ssNMR spectros-
copy (ångströms to nanometres), X-ray scattering (a few 
to hundreds of nanometres) and electron microscopy 
(nanometres to micrometres).

The underlying mechanisms of various optoelec-
tronic processes can be studied using a range of optical 

Table 1 | Summary of ssNMR techniques for the study of OSC materials

ssNMR technique Experiment Obtainable structural and dynamical information, and technical considerations

Direct excitation 1D single pulse Identifies chemically distinct species (1H and X = 13C, 19F, 15N, 31P, etc.)

Quantifies relative populations of resolved species in both ordered and disordered regions

Signal 
enhancement

1D X{1H} CP-MAS Identifies and distinguishes X nuclei within ~1-nm vicinity of 1H sites

Enhances signal intensities of X nuclei dipole–dipole-coupled to 1H sites

DNP Enhances signal intensities by polarization transfer from unpaired electron spins to nuclear spins

Useful for studying surfaces and interfaces

Requires a microwave source, polarizing agents, glassy solvents and cooling to temperatures down to 
(or below) 100 K to achieve greater enhancements

2D shift correlation 
and separation of 
spin interactions

DQ-SQ, 
CP-HETCOR, HMQC, 
MQ MAS, etc.

Identifies, resolves and correlates signals and interactions between specific 1H–1H, X–1H and X–X nuclei

Enhances spectral resolution of signals from X nuclei near (~1-nm) 1H nuclei

Elucidates local structures (~1 nm) and intermolecular and intramolecular packing interactions

Relaxometry 1D with T1 and T2 
filters

Measures T1 and T2 in OSCs (milliseconds to seconds) associated with different molecular dynamics

Simplifies spectra with overlapping signals by identifying species with different T1 and T2 values

Influenced by local molecular motions and by the presence of guest species, dopants and 
paramagnetic species

Diffusion and 
relaxation

Dipolar-mediated 
spin diffusion

CP intensity build-up depends on local structures and site-specific dynamics

Longer spin-diffusion times probe weaker 1H–1H and 1H–X interactions (for example, longer length 
scales and higher mobilities)

Can be used to estimate mean domain sizes or the spatial separation of distinct species

2D with T1 and  
T2 filters

Identifies, resolves and correlates signals and interactions between specific 1H and X nuclei in rigid  
and flexible regions of polymers

Selective detection of 2D NMR spectra of ordered or disordered domains

PFG Measures self-diffusion coefficients of ions or small molecules in solutions or porous media

Requires a specialized probehead to create a magnetic field gradient

In situ or operando 
characterization

1D and 2D static and 
MAS experiments

Measures relaxation rates and local mobilities as a function of temperature

Probes local structural changes within ~1 nm upon, for example, phase transitions, crystallization or 
melting

Determines activation energies of molecular rotations, conformational changes or other processes 
using variable-temperature experiments

Elucidates structural changes during solid-to-solution transformations, and vice versa, including the 
identification of intermediate species

May require heat, laser or light source, specialized probeheads and rotors

CP, cross-polarization; DNP, dynamic nuclear polarization; DQ-SQ, double-quantum–single-quantum; HETCOR, heteronuclear correlation; HMQC, heteronuclear 
multiple-quantum correlation; MAS, magic-angle spinning; MQ, multiple-quantum; OSC, organic semiconductor; PFG, pulsed-field gradient; ssNMR, solid-state 
NMR; T1 and T2, spin–lattice and spin–spin relaxation times.
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spectroscopy techniques; however, these methods pro-
vide little direct structural information71,72. To this end, 
the application of ssNMR spectroscopy for the charac-
terization of OSC materials has largely been centred on 
1D and 2D techniques that provide important informa-
tion on the local environments of each type of atom. 
Chemical shifts (δ) and dipole–dipole couplings are 
sensitive to differences in local bonding environments, 
conformations and intermolecular and intramolecular 
interactions. In addition, spin-diffusion analyses enable 
domain sizes to be determined with dimensions from 
a few nanometres to several hundreds of nanometres. 
Pulsed-field gradient (PFG) NMR, which relies on the 
displacement of molecules or ions over length scales 
of 10–100 μm, allows molecular diffusivities to be 
determined in porous polymer networks58. The length 
scales associated with spin-diffusion and PFG NMR 
are complementary to those of morphological features 
characterized by atomic force microscopy and scanning 
tunnelling microscopy. In addition to information on 
electronic structure and dynamics, the frequency range 
associated with electron paramagnetic resonance spec-
troscopy interactions and the accessible nanometre 
(<8 nm) distances from the radical centres could be 
attractive for characterizing soft materials, as these 
length scales close a gap between the distance informa-
tion obtained using NMR spectroscopy and that from 
other long-range techniques73–75.

ssNMR techniques are also sensitive to a wide range 
of timescales (nanoseconds to seconds) and can be used 
to probe various physicochemical, kinetic and thermo-
dynamic processes, such as photophysical processes 
(nanoseconds to microseconds), hydrogen-bonding 
dynamics (approximately nanoseconds), molecular 
reorientations (nanoseconds to microseconds), aromatic 
ring flips, conformational rearrangements (microsec-
onds to milliseconds) and side-chain motions (nano-
seconds to microseconds). Importantly, the sensitivity 
of ssNMR spectroscopy to short-range interactions is 
not predicated on the existence of medium-range or 

long-range order. Correlating atomic-level structural 
and dynamical information obtained from ssNMR 
spectroscopy with scattering and macroscopic property 
analyses across multiple length scales (ångströms to 
micrometres) and timescales (picoseconds to seconds) 
provides fundamental insight into how chemical compo-
sition and processing influence structure and dynamics 
and, ultimately, material and device performance.

Composition and structure
Quantifying the degree of order
Identifying and characterizing short-range order is 
particularly important when relating different mor-
phologies to charge-carrier transport. The nanoscale 
sensitivity associated with ssNMR covers the entirety 
of OSC materials by enabling the local structures of 
ordered and disordered regions to be identified and 
distinguished. However, the quantitative information 
obtained from ssNMR depends on the length scales of 
interactions between adjacent nuclear spins. The iso-
tropic chemical shift is sensitive to the average bonding 
environments of atoms, but other NMR interactions, 
such as chemical-shift anisotropy, dipole–dipole 
interactions, quadrupolar interactions, Knight shifts, 
hyperfine interactions and paramagnetic-induced 
interactions, can arise from the proximities or rela-
tive orientations of different chemical moieties and 
the associated intermolecular and intramolecular 
interactions55,56,58–61. Anisotropic NMR interactions in 
solids often yield broad signals from distributions of 
chemically or structurally different sites that contain a 
wealth of information on the structure and dynamics, 
although often complicate the analyses of heterogeneous 
soft materials76. The resolution of ssNMR signals can 
be enhanced by magic-angle spinning (MAS), which 
involves rapidly rotating a sample in a specially designed 
rotor at an angle — the ‘magic angle’ (54.74°) — relative 
to the static magnetic field to average out anisotropic 
interactions, and/or applying homonuclear and heter-
onuclear decoupling sequences. By comparison, inho-
mogeneous broadening of NMR signals cannot be easily 
narrowed, because it results from distributions of local 
environments that arise from intrinsic disorder within a 
material, such as found in glasses, amorphous polymers 
or semicrystalline solids.

The isotropic chemical shift is the most readily acces-
sible experimental parameter and is typically measured 
by conventional 1D MAS NMR experiments of spin 
½ nuclei, such as 1H, 13C, 15N and 19F. When sufficient 
resolution is attained in 1D MAS NMR spectra, signals 
associated with ordered and disordered regions of OSC 
materials can be distinguished and quantified. For exam-
ple, the 1H chemical shift is sensitive to ring-current 
effects, π–π, CH–π and hydrogen-bonding interac-
tions. A 1H site centred above or below an adjacent aro-
matic ring experiences a large variation in the chemical 
shielding, owing to CH–π interactions, which displace 
the 1H signal towards a lower frequency. By compari-
son, the signal of a 1H site situated to the side of the aro-
matic ring is displaced towards a higher frequency48,50. 
Isotropic 13C chemical shifts are reliable indicators of 
local chemical and structural environments, including 

Increasing structural order

Accessible by diffraction methodsAccessible by ssNMR

CrystallineLamellarAmorphous

Fig. 1 | Order within organic semiconductor materials. The different degrees of  
order within organic semiconductors and the sensitivity of solid-state NMR (ssNMR)  
and diffraction-based methods to those regions are shown. Compared with analytical 
methods such as X-ray, neutron or electron diffraction, ssNMR can probe a broader 
range of structural and dynamic features of organic semiconductor materials, including 
disordered amorphous, lamellar mesophase and highly crystalline regions.

Nature Reviews | MatERIaLS

R e v i e w s

	  volume 5 | December 2020 | 913



FF

FF
CN

CNNC

NC

F4TCNQ

N
S S

FF
F

F

F

F
O O O O

Li

LiTFSI
N N

NN

O

O O

O

O

OO

O

Spiro-OMeTAD

S
S

C6H13

C6H13

N S
N

NS
N

F F

S

S

C6H13

C6H13

TT

P

O

POPy2

Si

Si

TIPS-pentacene

S

S

ditBu-BTBT

S S

RR

N
SN

CDT–BTZ-C16 : R = C16

CDT–BTZ-C14,10 : R = DT

n

X

S S
S

N OO

C8H17

C4H9

C2H5

P(DTS-TPD): X = Si

C4H9

C2H5

P(DTG-TPD): X = Ge

P(DTC-TPD): X = C

n

N

N

O

O

S

S
F

F

F

F

C8H17

C10H21

C8H17

C10H21

PThDPPThF4

n

S

S

O

O

R1

R1

S

NO

O

R2

PBDTTPD(EH/C8): R1 = EH, R2 = C8
PBDTTPD(C14/EH): R1 = C14, R2 = EH

n

N

N

O

O

S

S

C8H17

C10H21

C8H17

C10H21
S

S

DPP-DTT

n

S

C12H25

P3DDT

n

n
PPV

S

S

O

O

S

S
R1

R1
S

S

O

O

S

S
R2

R2

BDTP-2

n

BDTP-1: R1  = C12H25 R2  =
C8H17

C10H21

R1  =
C8H17

C10H21
R2  = C12H25

C60

Fig. 2 | Molecules used to fabricate high-performance organic 
semiconductor materials. These examples are discussed in the text but are 
not included in other figures and are, thus, provided here for reference. 
BDTP-1, poly(2-(4′-dodecyl-5′-(6-(3-dodecylthiophen-2-yl)-4,8-dimethox
ybenzo[1,2-b:4,5-b′]dithiophen-2-yl)-alt-4-(2-octyldodecyl)-[2,2′-bithi-
ophen]-5-yl)-6-(3-(2-octyldodecyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]
dithiophene-4,8-dione); BDTP-2, poly(2-(5′-(4,8-dimethoxy-6-(3-
(2-octyldodecyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen-2-yl)-alt-4- 
dodecyl-4′-(2-octyldodecyl)-[2,2′-bithiophen]-5-yl)-6-(3-dodecylthiophen- 
2-yl)benzo[1,2-b:4,5-b′]dithiophene-4,8-dione); CDT–BTZ, poly(4-
(4,4-dialkyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophen-2-yl)-alt-benzo[c][1,2,5]
thiadiazole); ditBu-BTBT, 2,7-di-tert-butyl[1]benzothieno[3,2-b]
benzothiophene; DPP-DTT, poly(2,5-bis(2-octyldodecyl)-3,6- 
di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-thieno[3,2-b]
thiophene); DT, 2-decyltetradecyl; EH, 2-ethylhexyl, F4TCNQ, 2,3, 
5,6-tetrafluoro-7 ,7 ,8,8-tetracyanoquinodimethane; LiTFSI, lithium 

bis(trifluoromethanesulfonyl)imide; P3DDT, poly(3-dodecylthiophene-2- 
5-diyl); PBDTTPD, poly(benzo[1,2-b:4,5-b′]dithiophene-alt-thieno[3,4-c]
pyrrole-4,6-dione); P(DTC-TPD), poly(1-(4,4-bis(2-ethylhexyl)-4H- 
cyclopenta[1,2-b:5,4-b′]dithiophen-2-yl)-alt-5-octyl-4H-thieno[3,4-c]
pyrrole-4,6(5H)-dione); P(DTG-TPD), poly(1-(4,4-bis(2-ethylhexyl)-
4H-germolo[3,2-b:4,5-b′]dithiophen-2-yl)-alt-5-octyl-4H-thieno[3,4-c]
pyrrole-4,6(5H)-dione); P(DTS-TPD), poly(1-(4,4-bis(2-ethylhexyl)-
4H-silolo[3,2-b:4,5-b′]dithiophen-2-yl)-alt-5-octyl-4H-thieno[3,4-c]pyrrole-
4,6(5H)-dione); POPy2, phenyldi(pyren-1-yl)phosphine oxide; PPV, 
poly(p-phenylene vinylene); PThDPPThF4, poly(2,5-bis(2-octyldodecyl)-3,6-di 
( thiophen-2-yl )pyrrolo[3 ,4-c ]pyrrole-1,4(2H ,5H ) -dione-alt-
1,2,4,5-tetrafluorobenzene); spiro-OMeTAD, 2,2′,7 ,7′-tetrakis(N,N-di- 
p-methoxyphenylamine)9,9′-spirobifluorene; TIPS-pentacene, 6,13-bis(tri-
isopropylsilylethynyl)pentacene; TT, 7 ,7′-(3,3′-dihexyl-[2,2′-bithiophene]- 
5,5′-diyl)bis(6-fluoro-4-(5-hexylthiophen-2-yl)benzo[c][1,2,5] 
thiadiazole).
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conformation77,78. The γ-gauche effect (not to be con-
fused with the gyromagnetic ratio) can be used to distin-
guish ordered and disordered side chains. For example, 
when two methylene groups in an alkyl chain are in a 
γ position relative to one another and in a trans/trans 
(tt) conformation, the isotropic 13C chemical shifts are 
displaced to higher frequencies than otherwise identi-
cal alkyl chains in trans/gauche (tg) or gauche/gauche 
(gg) conformations, which are displaced to lower 
frequencies78. The analysis of different chemical shifts 
and lineshapes in an NMR spectrum can be used to 
quantify the degree of order and disorder within an OSC 
material. The degree of backbone crystallinity (Xc) can 
be estimated from the integrated signal intensities of the 
crystalline (IC) and disordered (ID) fractions according 
to Xc = IC/(ID + IC) (ref.64). Note that the calculated degree 
of molecular order and disorder depends on the system 
and the analytical methods used.

Proposed quantitative protocols to determine the 
degree of molecular order in semicrystalline OSC poly-
mers combine ssNMR analyses with X-ray scattering and 
computational modelling50,64,79–82. For example, in semi
crystalline regioregular poly(3-hexylthiophene) (P3HT), 
a combination of ssNMR spectroscopy, X-ray scattering 
and mass-density calculations indicated the coexistence 

of crystalline regions with long-range backbone and 
side-chain order, short-range order embedded in amor-
phous domains and fully disordered regions82,83. Good 
agreement has also been demonstrated between the 
fraction of ordered P3HT chain segments estimated by  
13C cross-polarization (CP) MAS NMR experiments and  
by differential scanning calorimetry (DSC), once crys-
tallite size is taken into account80. The degree of order 
observed in melt-annealed Form I P3HT, the polymorph 
most commonly found in devices, can be correlated to 
variations in molecular weight and processing conditions. 
1H ssNMR measurements of Form I P3HT samples with 
molecular weights of 60 kg mol−1 (60k) and 25 kg mol−1 
(25k) revealed 26% and 37% of the polymer chains to be 
ordered, respectively64 (Fig. 4a). Wide-angle X-ray scatter-
ing patterns of shorter (13 kg mol−1 (13k)) melt-annealed 
Form I P3HT chains indicate a crystalline contribution 
of 47%. However, 13C ssNMR spectroscopy points to a 
greater proportion of crystalline regions (66%), owing 
to its sensitivity to nanoscale domains that are invis-
ible to X-ray scattering83. In the case of a spin-coated 
MEH-PPV (Fig. 4a) film, integral-deconvolution analysis 
of the 1D 13C NMR spectrum revealed that only a rela-
tively low fraction (43%) of MEH-PPV backbones were 
locally ordered84.
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A combination of ssNMR spectroscopy and MD 
simulations has been similarly used to distinguish 
crystalline, lamellar and amorphous regions based on 
local ordering in PBTTT backbones and side chains79 
(Fig. 4a,b). Quantification based on 1H and 13C ssNMR 
spectra revealed 51% of PBTTT-C16 backbones to be 
ordered. Analysis of the 1H NMR spectrum was used 
to differentiate and quantify the ordered and disordered 

π-conjugated backbones, whereas the 13C NMR spec-
trum was used to differentiate and quantify the frac-
tion of alkyl side chains in the ordered tt conformation 
from those in the disordered tg or gg conformations. 
In conjunction with MD simulations, this information 
was used to determine that the powder composition of 
PBTTT-C16 consists of 51% ordered regions (compris-
ing 28% neat crystalline phase and 23% lamellar phase, 
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which contains ordered backbones but disordered side 
chains) and that the remaining 49% consists of disor-
dered backbones and disordered side chains (amorphous 
phase). By contrast, PTB7-Th (Fig. 4a) exhibits a much 
larger fraction (>99%) of locally ordered π-conjugated 
moieties, as quantified using 19F ssNMR spectroscopy84. 
However, as 19F nuclei are present only at one site of the 
PTB7-Th conjugated backbone, the short-range order 
determined does not directly correlate to the overall 
degree of order in the backbone.

The disparity between the degree of order deter-
mined by ssNMR and X-ray scattering techniques is 
important to note, particularly when correlating the 
degree of molecular order with bulk electronic prop-
erties (as discussed below). This difference is attri
butable to the different length scales probed by ssNMR 
and X-ray techniques and to the different domain sizes 
of the polymer aggregates: ssNMR methods take into 
account regions that are ordered within ~1 nm, even 
in amorphous domains, whereas these contributions 
are invisible to X-ray scattering. These two methods of 
quantifying solid-state order are, therefore, not entirely 
equivalent, owing to the sensitivity of the ssNMR 
method to highly local interactions. The short-range 
(~1 nm) nature of ssNMR spectroscopy provides a closer 
view of the compositional and structural heterogeneity 
in OSCs. For example, ssNMR spectroscopy can identify 
backbones with a low degree of torsional disorder within 
disordered regions. The decreased electronic disorder of 
these molecules might be correlated to the origin of the 
‘tie-chains’ — polymer backbones linking two separate 
ordered domains — identified in semicrystalline OSC 
polymer films85.

The highly local nature of ssNMR spectroscopy 
can also lead to overestimation of bulk crystallinity if 
the methods for quantification are not vigilantly com-
pared. For example, 19F ssNMR spectroscopy results 
for PTB7-Th (Fig. 4a) indicate that it has nearly uni-
formly ordered backbone structures. However, com-
parison of the charge-carrier mobilities of PTB7-Th 
and PBTTT polymers reveals a more complex picture 
of the relationship between order and charge transport. 
In a diode, in which charges move through the bulk 
of a film, PTB7-Th and PBTTT exhibit hole mobil-
ities of 3.8 × 10−4 cm2 V−1 s−1 and 1 × 10−4 cm2 V−1 s−1, 
respectively84,86. However, in an OFET, in which charge 
transport is generally confined to a few-nanometre-thick 
layer at the semiconductor–dielectric interface, PBTTT 
exhibits a hole mobility of up to 1 cm2 V−1 s−1, 100-fold 
higher than that of PTB7-Th, which has a reported hole 
mobility of 1.2 × 10−2 cm2 V−1 s−1 (refs87,88). As such, it is 
important to take into account the sub-nanometre length 
scale investigated by ssNMR spectroscopy when corre-
lating structural order with bulk properties, for example, 
when long-range structural order is not a prerequisite for 
high performance in OSC materials.

There are other practical considerations and chal-
lenges in quantifying signals and associated popu
lations using ssNMR spectroscopy, especially for 
low-abundance nuclei such as 13C and 15N (see plot in 
Fig. 5). Extracting quantitative information from ssNMR 
spectra requires direct excitation and detection of 

low-abundance nuclei, which involves long experimen-
tal times and sufficient resolution of signals to permit 
confident integration of their intensities. In OSC systems 
with unpaired electrons or paramagnetic dopants, quan-
tifying the degree of order within the sample becomes 
challenging, as paramagnetic nuclei cannot be easily 
observed by conventional NMR spectroscopic meth-
ods. Furthermore, severe overlap of signals originating 
from intrinsically complicated OSC materials often 
hinders the quantitative determination of ordered and 
disordered fractions. Finally, the highly local nature of 
the ssNMR signal means that information regarding 
domain sizes or interfaces cannot be easily extracted 
from conventional 1D ssNMR spectra.

Packing interactions and 3D structures
As heterogeneous OSC materials do not often exhibit 
long-range periodic structural order, different experi-
mental techniques have been combined with computa-
tional modelling to determine the packing interactions in  
crystalline or semicrystalline regions of OSCs (Fig. 5).  
In this pursuit, local structural constraints obtained by 
analysing ssNMR spectra can be combined with struc-
tural information obtained from X-ray scattering meth-
ods and analyses. Homonuclear (for example, 1H–1H) 
and heteronuclear (for example, 13C–1H or 19F–1H) 
dipole–dipole interactions, which originate from the 
interactions between neighbouring nuclear spins, 
contain distance information and are, thus, useful for 
elucidating the local structures of OSC materials. The 
effective strength of dipolar interactions depends on 
several factors, including the gyromagnetic ratios and 
the natural isotopic abundances of the coupled nuclear 
spins, their separation, their orientations with respect 
to the static magnetic field, and the atomic or molecular 
mobilities in the material. 2D NMR spectra that corre-
late chemical shifts of different dipole–dipole-coupled 
1H–1H and 1H–X nuclei (where X is, for example, 19F, 13C, 
14N, 15N or 29Si) can be used to determine intermolecular 
proximities over nanoscale distances.

Several improvements have been sought to acceler-
ate the structure-determination process, such as deriving 
local structural constraints from 2D homonuclear and 
heteronuclear correlation (HETCOR) NMR spectra. 
Such spectra also benefit from the sensitivity enhance-
ment associated with polarization transfer from abun-
dant nuclei (such as 1H or 19F) to less abundant nuclei 
(such as 13C or 15N) through dipole–dipole interactions, 
as exploited in CP-MAS experiments. The increase in 
sensitivity is proportional to the ratio of the respective 
nuclear gyromagnetic ratios (for example, γ1H/γ13C)89 
mediated by internuclear distances and motions. Another 
means of enhancing spectral resolution is to apply a 
series of radiofrequency pulses to average homonuclear 
or heteronuclear dipole–dipole couplings, an approach 
referred to as decoupling90,91. The combination of MAS 
and decoupling techniques averages dipole–dipole 
interactions92, whereas rotor-encoded 2D recoupling 
pulse sequences reintroduce dipolar couplings to yield 
internuclear distance information in ssNMR spectra. 
In this context, 2D homonuclear double-quantum–
single-quantum (DQ-SQ) correlation and heteronuclear  
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multiple-quantum (MQ) correlation or CP-HETCOR 
experiments have been widely used to investigate OSCs 
and their blends. The 2D intensity correlations in these 
spectra originate from dipole–dipole-coupled homonu-
clear or heteronuclear spins at sub-nanometre distances. 
When quadrupolar nuclei (with nuclear spins I > ½) are 
involved, the nonspherical distribution of electric charge 
in the nucleus with its surrounding electric-field gradient 
can dramatically influence lineshapes in the kilohertz to 
megahertz range, resulting in associated quadrupolar 
broadening of signals. In such cases, 2D MQ MAS exper-
iments aid the analysis of non-integer spin quadrupolar 
nuclei (such as 27Al), providing information on both 
anisotropic and isotropic shifts93. Notably, 2D ssNMR 
in combination with electronic-structure calculations 
provide site-specific information about structures and 
dynamics within complex OSC materials64,69,79,94–100. Local  
structural constraints obtained from NMR measure-
ments and complementary analytical techniques such 
as X-ray scattering can be used as input parameters for 
computation-based structure determination, whereby 
the number of conformational degrees of freedom is 
reduced to accelerate the overall structure-determination 
process (Fig. 5). In the following sections, the applica-
tion of the multi-technique approach shown in Fig. 5 
is illustrated with specific examples of OSC materials 

used in OLEDs, OFETs, OPV devices and molecularly 
doped systems.

Organic light-emitting diodes. The molecular-level ori-
gins of different emission wavelengths and optical pro
perties of OLEDs made from structurally similar molecules  
have been studied101–107 to better understand the relation-
ship between solid-state organization and optoelectronic 
properties and to tune the OLED emission properties. 
Tris(8-hydroxyquinoline) aluminium(iii) (Alq3) com-
plexes have isomeric structures with different emission 
wavelengths and quantum yields101. The facial and merid-
ional isomers of Alq3 (Fig. 6a, top), with different ligand 
conformations, are anticipated to exhibit different emis-
sion wavelengths102,103,105,106, which are also thought to be 
affected by different intermolecular interactions104,107.  
The meridional isomers of Alq3, which crystallize in the α  
and β polymorphs, emit green light, whereas the facial iso-
mers crystallize in the γ and δ polymorphs and emit blue 
light108,109. Reaching a consensus regarding the atomic- 
level origins of these different optical properties has been 
challenging, because films of Alq3 often exist as a mixture 
of different crystalline and amorphous forms93,103. In this 
context, 13C and 27Al ssNMR spectroscopy, in conjunc-
tion with DFT calculations, have been used to elucidate 
the intermolecular and intramolecular interactions in 
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different crystalline Alq3 polymorphs, as well as amor-
phous Alq3 (refs93,110–112). Quadrupolar interactions char-
acterized by 1H-decoupled 2D 27Al–27Al MQ MAS NMR 
have shown the presence of relatively well-ordered 27Al 
sites in facial isomers (γ and δ polymorphs), compared 
with the less-ordered 27Al sites in the meridional isomer 
(α polymorph) and the amorphous phase. Analysis of 

2D 27Al–27Al MQ MAS NMR spectra revealed that the 
α polymorph exhibits two distinct, locally ordered struc-
tures, α1 and α2 (Fig. 6a, centre), that can be distinguished 
by their 27Al isotropic chemical shifts (31 ppm and 
30.5 ppm, respectively). By contrast, the amorphous phase 
consists of Alq3 molecules with locally disordered alu-
minium sites, resulting in a broad distribution of signals 
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(Fig. 6a, bottom) centred at a chemical shift of 30.5 ppm. 
The ssNMR results and analyses thus provide some 
insight, at least in part, into the different optoelectronic 
properties associated with Alq3 isomers93,103.

Organic field-effect transistors. The impact of molec
ular structure on solid-state organization and charge 
transport in OFETs has been elucidated using ssNMR 
spectroscopy, X-ray scattering and computational 
modelling94,96,97,113. Of particular interest are the cyclo-
pentadithiophene–benzothiadiazole (CDT–BTZ) 
polymers (Fig. 2), which differ only in the structure of 
their side chains but show marked differences in their 
charge-carrier mobilities. The CDT–BTZ polymer with 
linear hexadecyl (C16) alkyl chains (CDT–BTZ-C16) 
has well-π–π-stacked backbones and exhibits higher 
charge-carrier mobilities than those of CDT–BTZ 
polymers with branched 2-decyltetradecyl alkyl side 
chains (CDT–BTZ-C14,10). Using 2D 13C–1H and 
1H–1H correlation NMR spectroscopy, together with 
X-ray scattering and DFT calculations, the polymers 
with branched alkyl chains were shown to exhibit 
larger π–π stacking distances, caused by a lateral shift 
of the backbones96,97. It is noteworthy that the modest 
(1–2-Å) longitudinal shift of the conjugated backbones 
can be related to notable differences in electronic struc-
ture. In addition, modelling approaches have identified 
lamellar structures with interdigitated alkyl chains that 
differ in the relative orientation of the side chains with 
respect to the CDT–BTZ backbone96. These subtle 
structural differences were corroborated by compar
ing the simulated GIWAXS patterns and NMR chem-
ical shifts as a function of the relative position of the 
polymer chains with those obtained from experi-
mental GIWAXS and ssNMR results. Similar meth-
ods have been used to investigate the effects of subtle 
structural changes on the charge-carrier properties of 
isoindigo-based polymers114, as well as the C-containing, 
Si-containing and Ge-containing poly(cyclopenta-
dithiophene-alt-thienopyrrolodione)-type polymers, 
P(DTC-TPD), P(DTS-TPD) and P(DTG-TPD), 
respectively100 (Fig. 2). 1H MAS NMR experiments have 
been used to distinguish the syn and anti conform-
ers, indicating that the anti conformation between the 
dithienosilole or dithienogermole and thienopyrrolo-
dione moieties is preferred in the Si-containing and 
Ge-containing polymers, whereas the C-containing 
polymer does not exhibit a preference for a particular 
conformer. These results are corroborated by 2D 1H–1H 
DQ-SQ NMR experiments, which provide evidence for 
aromatic–aromatic correlations in the Si-containing 
and Ge-containing polymers that are absent from the 
C-containing one, indicating substantial differences 
in the backbone π–π stacking arrangements. ssNMR 
has also recently been used to understand the impact 
of thermal annealing on the structure of the polymer 
PThDPPThF4 (Fig. 2), which exhibits charge-transport 
properties similar to those of a single crystal113. Ex situ 
2D 19F–19F DQ-SQ NMR experiments revealed that 
films thermally annealed at the melting endotherm 
temperature result in a slip-stacked packing arrange-
ment, in which the electron-poor diketopyrrolopyrrole 

(DPP) and tetrafluorophenyl (F4) units in one chain 
π–π stack with the electron-rich thiophene (Th) units 
of neighbouring chains. Specifically, the three pairs of 
cross-correlation intensities in the 2D 19F–19F DQ-SQ 
NMR spectrum suggest the presence of two distinct 
planar packing modes in which the polymer chains are 
slipped in different directions relative to one another, as 
well as a non-planar conformation.

For thin films, the acquisition of ssNMR spectra 
becomes challenging, owing to the low signal sensitiv-
ity associated with the small sample volume, especially 
for film thicknesses on the order of a few hundreds of 
nanometres that are typical of OSCs. To compensate, 
it is necessary to fabricate and stack a large number of 
thin films or alter processing protocols to prepare films 
with substantially larger areas or thicknesses to satisfy 
the sensitivity limits of conventional ssNMR meth-
ods, especially when low-γ nuclei (Fig. 5) are involved. 
High-field NMR spectrometers and state-of-the-art 
probeheads enable 13C ssNMR spectra to be acquired 
for powders or thin films of unlabelled materials with 
sample sizes of as little as a few milligrams. However, 
the acquisition times of NMR experiments must be 
increased to compensate for the small volumes of mate
rial, with the increase in signal and signal-to-noise 
ratio scaling as factors of N and √N, respectively, where 
N is the number of scans acquired. In addition to con-
ventional CP-MAS signal-enhancement techniques, 
dynamic nuclear polarization (DNP) NMR tech-
niques have been developed to exploit the much higher 
intrinsic polarization associated with the transfer of 
microwave-irradiated paramagnetic electron spins to 
nuclear spins115–118. DNP NMR can theoretically yield 
signal enhancements of γe/γn, where γe and γn are the 
respective gyromagnetic ratios of the electron and 
nuclear spins, which would lead to sensitivity enhance-
ments of up to ~660, ~2,600 and ~6,600 for 1H, 13C and 
15N nuclei, respectively. Sensitivity gains depend on 
material composition, the type of polarizing radical, 
solvent, temperature, microwave power and magnetic 
field strength. However, DNP NMR can be challenging 
to implement, as it requires specialized instrumenta-
tion, sample cooling to below 100 K and care to ensure 
that the DNP formulation (typically, a paramagnetic 
biradical species in a solvent) does not adversely affect 
the OSC material being investigated. A combined DFT 
and 2D 13C–1H DNP-enhanced NMR spectroscopy 
approach enabled the packing interactions to be deter-
mined in the bulk material and drop-cast 440-nm-thick 
films of diketopyrrolopyrrole-dithienylthieno[3,2-b]
thiophene (DPP-DTT; Fig. 2), revealing that the poly
mer adopts a highly planar backbone conformation 
with a slip-stacked donor-on-acceptor arrangement69.

Photovoltaic materials and blends. Combined ssNMR, 
X-ray scattering and DFT modelling approaches that 
can be used to derive packing models and measure the 
domain sizes of each component in a bulk heterojunc-
tion (BHJ) are relevant to OPV research64,69,79,95,98,99. 
Unit-cell parameters and space groups derived from 
X-ray scattering experiments have been combined with 
spatial constraints obtained from 2D ssNMR techniques 
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to aid in silico verification of specific packing models in 
different structures obtained from quantum-chemical 
studies (Fig. 5). In such strategies, interatomic dis-
tances are first measured by analysing 1H–1H, 13C–1H, 
13C–13C and 13C–2H dipole–dipole couplings, which are 
often determined by 2D ssNMR techniques (Fig. 6b, 
discussed further below) or selective isotopic label-
ling, and then used as structural constraints to build 
molecular packing models. This approach was used 
to, for example, determine the 3D structure of semic-
rystalline P3HT polymers with different molecular 
weights64,99. A similar approach was used to determine 
the 3D structure of a PBTTT-C14:PC71BM bimolecular 
blend119 (where PC71BM is [6,6]-phenyl-C71-butyric 
acid methyl ester; Fig. 7). First, X-ray diffraction and 
2D grazing-incidence X-ray scattering measurements 

were used to obtain constraints for the dimensions of  
the monoclinic unit cell (a = 31 Å, b = 12.8 Å and c = 13.5 Å;  
α = 108°, β = γ = 90°) and lamellar stacking distance 
(31 Å). Two-dimensional ssNMR analyses were used to 
calculate distance constraints for intermolecular H–H 
proximities (3.6 Å and 3.8 Å) of the aromatic backbone 
protons. An initial 3D structure was then generated 
based on the experimentally determined constraints. 
The model was subsequently refined and validated by 
minimizing the energy of intermolecular interactions 
using molecular mechanics simulations. The final 
3D structure, supported by molecular mechanics and 
MD simulations, as well as the experimental ssNMR 
and diffraction constraints, was determined to be 
a triclinic lattice in which a PC71BM molecule inter-
calates between the alkyl chains of each PBTTT-C14 
monomer. This finding has significant implications 
for understanding the structure–processing–property 
relationships of BHJ active layers as it provides a pow-
erful method to study the mixed-phase structure of 
polymer–fullerene blends.

Information on domain sizes can be obtained using 
dipolar-mediated spin-diffusion ssNMR spectros-
copy, which is sensitive to magnetization exchange 
between dipole–dipole-coupled spins120–122. In 2D dipolar- 
mediated spin-diffusion experiments, spin magnetiza-
tion is allowed to exchange between nuclear spins as a 
function of mixing time (that is, spin-diffusion time). 
This exchange leads to migration of the nuclear polar-
ization among dipole–dipole-coupled spins, which 
results in 2D correlated signal intensities associated with 
spatially proximate and chemically distinct moieties. 
Analysis of the build-up of CP or spin-diffusion inten-
sity as a function of mixing time enables spin-diffusion 
coefficients and mean domain sizes (from a few to hun-
dreds of nanometres) to be measured and distinguished. 
As a proof of concept, 1H spin-diffusion NMR together 
with high-resolution optical and electron microscopy 
was used to probe P3HT:PC61BM (where PC61BM is 
[6,6]-phenyl-C61-butyric acid methyl ester) materials, 
revealing that the domain sizes are ~3 nm and that there 
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results from molecular mechanics and molecular dynamics 
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validation yielded a triclinic lattice with a fullerene 
molecule (shown in blue) intercalated between the alkyl 
chains (shown in orange) of each PBTTT-C14 monomer 
(backbone shown in red). E, total energy calculated for the 
molecular mechanics model; GIWAXS, grazing-incidence 
wide-angle X-ray scattering; PBTTT-C14, poly(2,5-bis
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PC71BM, [6,6]-phenyl-C71-butyric acid methyl ester.  
Adapted with permission from ref.119, Wiley.
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is an average of two neighbouring P3HT chains around 
each PC61BM molecule122.

Characterizing interfacial structures
There are additional complexities in structural organ-
ization in multicomponent systems, such as blends or 
molecularly doped materials. Blends of two or more 
OSC materials include donor–acceptor BHJ photo-
active layers123, ternary and quaternary BHJ blends124 
and small-molecule-doped OSCs for OFET and OLED 
applications125–127. The BHJ concept was a milestone in 
the design of high-performance OPV materials, pro-
moting extraordinary activity in the search for new 
donor and acceptor materials and ways to optimize 
blend compositions and morphologies37,128,129. Molecular 
dopants can be added to alter the energy levels of the 
host material and, thus, modify charge transport or to 
act as emitters130–132. As charge transport in OSC blends 
is governed by intermolecular electronic coupling, con-
trolling the molecular packing, interfaces and thin-film 
morphology is essential to attain high efficiency and 
device-to-device reproducibility. Much is unknown 
about the structural details of interfaces, particularly 
across different length scales (Fig. 3). In this regard, 
ssNMR, combined with other characterization tech-
niques, is providing insight into the intermolecular con-
tacts in OPV blends, such as those in and between donor 
and acceptor domains, at donor–acceptor interfaces and 
between molecular dopants and polymers.

Bulk heterojunctions. During film formation, differ-
ences in chemical structure result in phase separation 
and the development of the BHJ morphology. The 
resulting interfaces are central to the performance 
of an OPV device133–138. Differences in intermolecu-
lar contacts between electron-donating polymers and 
electron-accepting fullerenes lead to major differ-
ences in electron delocalization, charge separation and 
power-conversion efficiency137,139. Owing to the inher-
ently small volume fraction relative to the bulk material, 
as well as to the disorder of the donor–acceptor inter-
face, it remains a challenge to probe this key region of 
the active layer. ssNMR spectroscopy has been applied 
to establish the structure of donor–acceptor interfaces 
within numerous BHJ blends, such as P3HT:PC61BM, 
PBDTTPD:PC61BM (where PBDTTPD is poly(1-(4,8- 
dialkoxybenzo[1,2-b:4,5-b′]dithiophen-2-yl)-alt-
5-alkyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione), 
BDTP-1:C60, BDTP-2:C60, PSBTBT:PC61BM and 
PBTTT-C14:PC71BM (refs119,140–143) (Fig. 2). The inter-
facial contacts between fullerene acceptors and donor 
PBDTTPD derivatives (functionalized with either 
2-ethylhexyl and octyl groups (EH/C8) or tetradecyl 
and 2-ethylhexyl groups (C14/EH)) have been elucidated 
using 2D 13C–1H ssNMR140. The efficiencies of devices 
based on different blends show that contact between the 
fullerene and the electron-deficient thienopyrrolodione 
unit of the polymer, promoted by steric hindrance from 
the branched 2-ethylhexyl alkyl chain on the benzo-
dithiophene moiety, improves charge generation and 
increases the power-conversion efficiency140. In 2D 13C–1H  
ssNMR spectra of these blends, intensity correlations 

between the 13C signals associated with the PC61BM 
acceptor and 1H signals of the PBDTTPD-EH/C8 donor 
are reliable indicators of the close spatial proximities 
(<1 nm) required for efficient charge transfer in BHJs. 
Analysis of 2D ssNMR spectra of BHJ blends serves as 
the basis to understand interfacial contacts. Comparison 
of 2D spectral maps of neat compounds with those of 
blends enables direct correlation of the displacement  
of chemical shifts and lineshapes to molecular order.

Two-dimensional ssNMR spectroscopy has also 
been used in conjunction with transient absorption 
pump–probe spectroscopy to correlate structure with 
charge transport in PCPDTBT:PC61BM BHJ blends 
processed from different solvents144,145. The impact of 
solvent on the nanoscale structures was determined 
by directly comparing the 2D 13C–1H HETCOR 
spectrum of PCPDTBT:PC61BM drop-cast from 
ortho-dichlorobenzene with that of the same material 
processed from ortho-dichlorobenzene with 2.44% by 
volume of the solvent additive octanedithiol (ODT)144. 
Solvent additives such as ODT increase the drying 
time, allowing BHJ blends to adopt morphologies more 
favourable to optimal device performance146–150. The  
2D 13C–1H HETCOR spectra of PCPDTBT:PC61BM 
processed with and without ODT (Fig. 6b) show obvious 
differences in the correlation intensities. The presence 
and absence of the 2D correlation intensity correspond-
ing to the methylene group (C6) next to the bridgehead 
carbon atom (δ (13C) ~45 ppm and δ (1H) 1.7 ppm) of 
the 2-ethylhexyl side chains in the 2D spectra (green 
rectangles in Fig. 6b) is suggestive of the changes in the 
arrangement of the side chains in PCPDTBT:PC61BM 
processed without and with ODT, respectively. Changes 
in the side-chain arrangements in PCPDTBT:PC61BM 
were also evidenced by the difference in the 2D 13C–1H 
correlation intensities in the region δ (13C) ~20–40 ppm 
and δ (1H) ~7.9 ppm, corresponding to the 13C signals of 
the alkyl side chains and the 1H signal of the C11 pro-
tons, respectively (blue circles in Fig. 6b). The 2D 13C–1H 
HETCOR spectrum of a drop-cast PSBTBT:PC61BM 
blend, where PSBTBT differs from PCPDTBT in the 
replacement of the bridgehead carbon with silicon 
(Fig. 6b, top), showed relatively narrow 13C linewidths, 
corresponding to the highest average local ordering  
of these three materials, even in the absence of ODT144. 
These examples illustrate the suitability of ssNMR as 
an atomic-level technique to probe the differences in 
side-chain organization.

Molecularly doped OSC materials. ssNMR spectros-
copy provides insight into intermolecular interactions in 
doped conducting polymers151–153. For example, ssNMR 
has been applied to analyse OSCs doped with 2,3,5,6-tet
rafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ; 
Fig. 2). Electrical conductivities ranging from 0.1 S cm−1 
to 22 S cm−1 can be obtained upon doping P3HT with 
F4TCNQ using different processing conditions154,155. The 
semicrystalline polymer PBTTT-C14 has also been doped 
with F4TCNQ. A favourable energetic offset between 
the ionization energy of PBTTT-C14 and the electron 
affinity of F4TCNQ facilitates charge transfer in solu-
tions and thin films156–160. Analysis of a combination of  

www.nature.com/natrevmats

R e v i e w s

922 | December 2020 | volume 5	



1D 19F and 2D 13C–1H ssNMR spectra of PBTTT-C14: 
F4TCNQ films at molar ratios of 0.075 and 0.25 pro-
vided crucial insight into the co-facial arrangement of 
F4TCNQ and PBTTT-C14, for which charge transfer can 
be 100% efficient in the solid state152.

As an example of the in-depth characterization 
of molecularly doped OSCs achievable with ssNMR 
spectroscopy, we highlight here its application to 
poly(4-(9,9-dihexadecyl-9H-f luoren-2-yl)-alt- 
[1,2,5]thiadiazolo[3,4-c]pyridine) (PFPT) doped with 
the Lewis acid tris(pentafluorophenyl)borane (BCF) 
(Fig. 8a). Both the delineation of the binding properties 
of BCF to the polymer and the mechanisms of band-
gap engineering in PFPT:BCF thin films have been 

corroborated using 1D and 2D ssNMR spectroscopy153. 
Spatially resolved maps of interfacial contacts in 
PFPT:BCF thin films were realized by analysing the 
1D 11B, 13C{1H} and 13C{19F} CP-MAS NMR spectra, 
as well as the 2D 1H–1H and 1H–19F correlation NMR 
spectra (Fig. 8). The 1D 11B MAS NMR spectrum of a 
1:1 PFPT:BCF complex exhibits a signal at −1.8 ppm 
(Fig. 8b), which is characteristic of tetrahedrally coor-
dinated boron atoms. Comparison of the 1D 13C{1H} 
and 13C{19F} CP-MAS NMR spectra (Fig. 8c,d) allowed 
13C signals of different intensities, associated with dif-
ferent BCF and PFPT moieties, to be distinguished. 
In the 13C{1H} spectrum, the partially resolved signal 
centred at 129 ppm corresponds to the aromatic carbon 
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atoms (coloured red, cyan and purple in Fig. 8a) that 
are directly bonded to protons in the fluorene moieties 
of PFPT. The relatively narrow 13C signal at 153 ppm is 
assigned to the seven carbon atoms of PFPT coloured 
in grey in Fig. 8a. The 1D 13C{19F} CP-MAS spectrum 
shows 13C signals (at 145–150 ppm and 132–138 ppm) 
enhanced by 19F nuclei that are directly bonded to the 
carbon atoms (black in Fig. 8a) in the BCF moieties. Of 
particular interest, the 13C signal at 123 ppm associated 
with the carbon atom adjacent to the pyridyl nitrogen 
in the pyridylthiadiazole moiety of PFPT (green in 
Fig. 8a) is also slightly enhanced by 19F spin-polarization, 
indicating its proximity to the fluorine atoms in BCF. 
In the 1H DQ-SQ correlation spectrum (Fig. 8e), the 
off-diagonal intensity correlations at 1H SQ chemical 
shifts of 1.1 ppm and 8.2 ppm, and at the 1H DQ chem-
ical shift of 1.1 + 8.2 = 9.3 ppm are due to the intramo-
lecular proximity of the C16 alkyl chains and aromatic 
fluorene moieties of PFPT, and not to the proximity of 
the alkyl chains to other side chains or the pyridylthi-
adiazole groups of PFPT. Intensity correlations in the  
2D 1H–19F heteronuclear MQ correlation NMR spectrum  
(Fig. 8f) between 1H signals at 8.2 ppm (aromatic groups of 
PFPT) and 1.1 ppm (branched alkyl side chains of PFPT) 
with the 19F signals at −163 ppm and −158 ppm from the 
meta and para fluorines in the pentafluorophenyl groups 
of BCF establish the close spatial proximities of these 
PFPT and pentafluorophenyl moieties. By contrast, no 
correlated intensity is observed between the aromatic  
1H signals of PFPT and the ortho 19F signal of the penta
fluorophenyl moieties (−133 ppm), reflecting weaker 
19F–1H dipole–dipole interactions with the PFPT back-
bone and side-chain 1H sites. These 1D and 2D NMR 
analyses are consistent with the formation of a polymer–
Lewis acid adduct in which BCF molecules bind near 
the pyridyl nitrogen atoms of PFPT. Such measurements 
and analyses can be easily extended to study the binding 
properties of various molecular dopants incorporated in 
OSC materials.

Application of ssNMR spectroscopy goes beyond 
the identification of short-range interactions by, for 
example, offering intimate details on doping mech-
anisms. 7Li MAS NMR spectroscopy was used to 
uncover the roles of lithium bis(trifluoromethanesul-
fonyl)imide (LiTFSI; Fig. 2) in 2,2′,7,7′-tetrakis(N,N-
di-p-methoxyphenylamine)9,9′-spirobifluorene 
(spiro-OMeTAD)-based solid-state dye-sensitized solar 
cells. This insight was obtained by comparing the spectra 
of neat LiTFSI, spiro-OMeTAD doped with LiTFSI and 
the oxidized product of LiTFSI:spiro-OMeTAD formed 
upon exposure to air for 12 h (ref.151). A broad 7Li sig-
nal was observed for neat LiTFSI, indicating a solid-like 
environment, whereas narrow 7Li signals were observed 
at higher frequencies (that is, a displacement towards 
higher ppm values) for the doped LiTFSI:spiro-OMeTAD 
before and after exposure to moisture. The chemical-shift 
displacements could be attributable to the changes in the 
local 7triggered by consumption of Li+ ions during device 
operation. Such a mechanism is troublesome, because 
it is necessary to maintain the concentration of Li+ at 
~20 mol% with respect to spiro-OMeTAD for optimal 
device performance151.

Kinetic processes and dynamics
Molecular motions occur in OSC materials at different 
timescales (picoseconds to milliseconds) and include 
fluctuations in local structures, aromatic ring flips, 
rotational dynamics of flexible alkyl groups, free rota-
tions around sigma bonds and the exchange of hydrogen 
atoms49,50,161. As rotational and vibrational motions (Fig. 3) 
occur on much faster timescales than the acquisition 
times of ssNMR (milliseconds to seconds) and X-ray 
diffraction experiments (seconds to minutes), both of 
these techniques lead to inherently time-averaged struc-
tures. It is noteworthy in this context that dipole–dipole 
interactions are proportional to the internuclear distance 
r−3, and, thus, the relevant time-averaged parameter  
for NMR is <r>−3, rather than the typical r dependence for 
Bragg diffraction. Thus, for disordered or semicrystal-
line OSC materials, the interatomic distances measured 
by ssNMR are expected to have smaller uncertainties 
than those measured by X-ray diffraction. It is difficult  
to measure molecular motions in amorphous regions of 
OSC materials using X-ray diffraction methods owing to 
the lack of periodic order. ssNMR observables are sensi-
tive to site-selective dynamics at much faster timescales 
than those of diffraction-based techniques, enabling the 
effects of dynamic processes to be probed. In particular, 
motional averaging of specific functional groups, such as 
rapidly rotating methyl groups or phenyl ring flips, can 
lead to partially averaged anisotropic interactions and 
improved resolution in ssNMR spectra, thereby, ena-
bling site-specific dynamics of molecular entities to be 
measured and distinguished58. Nuclear spin-relaxation 
processes, such as spin–lattice (T1) or spin–spin (T2) 
relaxation, influence lineshapes, which can be used to 
elucidate dynamics associated with the backbones and 
side chains of OSCs, which influence performance 
properties and stability82,162–165.

Phase transitions and molecular motions
The timescales associated with NMR spectroscopy 
enable the measurement of several dynamic processes 
in OSC materials: fast dynamics associated with molec
ular rotations (that is, rotational correlation times) and 
phenyl ring flips, which can be determined through 
temperature-dependent nuclear spin-relaxation rates 
and related to activation energies; chemical exchange 
between different sites, which is characteristic of NMR 
lineshapes58; and slow dynamics involving the breaking 
of bonds or substantial structural rearrangement49,50. 
Analysis of fast–slow limits can be attained by measur-
ing the signal full width at half maximum as a function 
of temperature, providing insight into the nature of the 
dynamic process. Temperature-dependent ssNMR tech-
niques, together with optical microscopy, single-crystal 
X-ray diffraction, DSC and Raman spectroscopy, have 
been applied to investigate the molecular origin of coop-
erative phase transitions in molecular crystals166. It was 
found that rotational disorder of the bulky side chains in 
2,7-di-tert-butyl[1]benzothieno[3,2-b]benzothiophene 
(ditBu-BTBT) and 6,13-bis(triisopropylsilylethynyl)
pentacene (TIPS-pentacene) (Fig. 2) can be used as a 
molecular design tool to control cooperative changes in 
molecular packing.
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The study of nuclear spin-relaxation rates, referred 
to as ssNMR relaxometry, has helped to elucidate the 
impact of molecular structure on site-specific dynam-
ics and phase properties162–164. These studies have 
shown that the temperature-dependent 13C spin–
lattice relaxation rates (R1) associated with different 
13C sites (Fig.  9a) provide site-specific information 
about the dynamics of the backbones and side chains 
of poly(3-alkylthiophene) (P3AT) derivatives, enabling 
the determination of the activation energies for the 
motion of the alkyl groups162,163,167. It is suggested that, at 
~240 K, the side-chain motions contribute to twisting of 
the thiophene rings, leading to a plastic-crystal state163. 

Comparison of the 13C spin–lattice relaxation rates of 
the C6 side chains below and above 270–290 K sug-
gests that a transition from a crystal to a plastic crystal 
occurs upon heating. At ~300 K, a transition to a regime 
with extremely narrow spin–lattice relaxation rates 
indicates that rapid alkyl group motion occurs in the 
plastic-crystal state. Above 300 K, molecular motions 
associated with the side chain and thiophene groups 
both enter into the narrow regime, which leads to a 
decrease in R1. Apparent activation energies associated 
with the motions of the alkyl groups were determined 
from ssNMR measurements to exhibit non-Arrhenius 
behaviour and were found to be between 8.2 kJ mol−1 
and 15.0 kJ mol−1 above 290 K. The side-chain dynam-
ics also influence the dynamics of the main-chain 
carbon atoms at different temperatures, caused by the 
twisting of thiophene rings, with activation energies of 
6.5–8.2 kJ mol−1 (<240 K), 18.0–22.0 kJ mol−1 (240–270 K) 
and 24.8–29.7 kJ mol−1 (>310 K). The dynamic processes 
determined from temperature-dependent ssNMR meas-
urements are consistent with thermodynamic phase dia-
grams constructed based on DSC, variable-temperature 
ultraviolet–visible spectroscopy, and infrared spec-
troscopy data and analyses (Fig. 9b). In another study,  
1H and 13C T1 relaxation measurements of neat P3HT 
and P3HT:PC61BM BHJ blends were used to understand 
their dynamic behaviour, revealing different morphol-
ogies and phase properties before and after thermal 
annealing at 150 °C (ref.164).

The interplay between different dynamic processes 
associated with backbone and side-chain motions has 
been inspected by correlating R1 relaxation rates with 
MD simulations for model P3AT derivatives165. The 
faster motions associated with longer side chains con-
tribute to thiophene ring motions. MD simulations 
corroborate these results by showing that the motion 
of poly(3-dodecylthiophene-2-5-diyl) (P3DDT; Fig. 2) 
backbones occurs on faster timescales than those of 
P3HT — a feature attributed to the longer side chains 
in P3DDT. This idea was further supported by reveal-
ing differences in the dynamic behaviour of two P3HT 
films, fabricated using different drying conditions, by 
X-ray scattering, DSC and 13C ssNMR measurements82. 
The thiophene 13C NMR peak widths broadened at tem-
peratures below 273 K, whereas at temperatures above 
273 K, narrower thiophene signals were observed, con-
sistent with the faster side-chain motions promoting 
thiophene-ring fluctuations. The conformational rear-
rangement of thiophene occurs on timescales in the 
range of sub-milliseconds to milliseconds (<3 ms), such 
that the P3HT backbones are conformationally disor-
dered at ambient temperature82, which is consistent with 
the glassy phase (referred to as ‘glassy crystal’ in ref.163) 
shown in Fig. 9b.

Crystallization and film formation
The notable changes in bulk properties, such as opti-
cal absorption, that occur during phase transitions can 
be related to changes in local structure and dynamics. 
Understanding changes in the intramolecular and supra-
molecular organization during phase transitions, such as 
thermal annealing, crystallization and solid-to-solution 
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transformations, would be beneficial for further refine-
ment of molecular-design principles. In this respect, an 
understanding of changes in molecular shape, as well as 
intermolecular and intramolecular interactions, can be 
attained using ssNMR techniques. Applications of in situ 
and ex situ ssNMR methods are particularly relevant for 
examining the evolution of molecular order at heterogene-
ous OSC interfaces. Such techniques have previously been 
used to monitor phase transitions between complex crys-
talline phases or labile supramolecular assemblies and to 
‘view’ structural changes in molecular self-assembly upon 
liquid-to-solid phase transitions168–175. For example, a bith-
iophene derivative, 7,7′-(3,3′-dihexyl-[2,2′-bithiophene]- 
5,5′-diyl)bis(6-fluoro-4-(5-hexylthiophen-2-yl)benzo[c] 
[1,2,5]thiadiazole (referred to as TT; Fig. 2), which exhib-
its unusual behaviour during its transition to the solid 
state, was shown to undergo conformational changes 
during crystallization176,177. In situ 13C ssNMR experi-
ments combined with DFT calculations were used to 
ascertain that TT initially forms an amorphous glass, 
which slowly transitions into a crystalline film, while 
the molecule simultaneously adopts a planar confor-
mation. This in situ NMR study provided unequivocal 
information about site-specific differences in 13C fre-
quencies observed for the planar and twisted molec-
ular topologies. Static ssNMR can be used to quantify 
the degree of orientational order in thin films. For 
example, 1D and 2D static 13C NMR measurements 
and analyses have been used to elucidate the degree of 
orientational order in cold-stretched poly(p-phenylene 
vinylene) (PPV; Fig. 2) films that were uniaxially aligned 
by stretching the precursor film prior to conversion to 
PPV through a thermal elimination reaction178. Similarly, 
static DNP-enhanced ssNMR was used to analyse orien-
tational order in OSC thin films179. The relative orienta-
tion of P=O bonds in vacuum-deposited and drop-cast 
phenyldi(pyren-1-yl)phosphine oxide (POPy2; Fig. 2) 
were shown to exhibit anisotropic and isotropic distri-
butions, respectively, thus revealing the molecular ori-
gin of differences in charge-transport properties. These 
studies emphasize how information on local structure 
and dynamics obtained from ssNMR can be used to 
understand the correlation between local structures and 
macroscopic properties.

Future perspectives
Owing to its subnanoscale-to-nanoscale sensitivity and 
nanoseconds-to-seconds timescales, ssNMR spectros-
copy is proving to be an invaluable tool in the study of 
OSC materials and their blends. The advances in the 
development and application of ssNMR to OSCs are pro-
viding unprecedented insight into the roles of intermolec-
ular and intramolecular interactions and dynamics in the 
solid-state organization, morphology, phase transitions 
and bulk optoelectronic properties. Indeed, as many stud-
ies have revealed, crystallinity and long-range structural 
order are not a requisite for high-performance devices85. 
Instead, locally ordered backbones may be a general 
feature for achieving high performance in OSC-based 
optoelectronic devices85,180–182. Thus, ssNMR charac-
terization is seemingly suitable for studying structure– 
property relationships. However, several challenges 

must be overcome to reach the full potential of ssNMR 
techniques in the investigation of OSCs. Although the 
composition of a material can be determined by direct 
excitation of the nuclei of interest, low-abundance nuclei 
and low-volume fraction components, such as surfaces 
or interfaces and dilute concentrations of small-molecule 
dopants, require signal enhancement to improve the 
signal-to-noise ratio or to decrease acquisition times. 
Moreover, the measurement and analysis of many OSC 
materials is complicated by overlapping signals or by 
blends of materials with similar molecular structures, 
such as polymer–non-fullerene acceptor blends. In 
these cases, the signal resolution can be improved by 
using 2D shift-correlation techniques, spin-diffusion or 
spin-relaxation filters. Molecular motions can be identi-
fied and measured by spin-diffusion and relaxation tech-
niques, as well as in situ and operando measurements, 
which necessitates the development of suitable probe-
head and multidimensional NMR experiments that can 
overcome sensitivity and resolution issues.

It is anticipated that advances in high-field spec-
trometers, combined with very fast MAS rates, will 
enable the acquisition of high-resolution ssNMR 
spectra of OSC thin films at sub-milligram quantities. 
Furthermore, the signal enhancements achieved using 
DNP NMR spectroscopy or paramagnetic dopants are 
providing new insight into the structures of surfaces and 
interfaces115–117, although these techniques have, so far, 
been rarely applied to OSCs69,179,183. ssNMR techniques 
with even greater sensitivity and resolution are needed 
to detect the low-γ quadrupolar isotopes (Fig. 5), such as 
14N, 17O, 33S, 43Ca, 115In, 117Sn, 119Sn and 197Au, present in 
OSC devices184. Analysis of the ssNMR spectra of these 
nuclei would aid further understanding of the interfaces 
between OSC active layers, interlayers and electrodes at 
atomic-level resolution. However, acquiring the NMR 
spectra of these nuclei is challenging because of their low 
natural isotopic abundance, low γ (an order magnitude 
lower than γ of 1H) and large quadrupolar interactions 
(up to several megahertz). Ultra-high magnetic fields 
(>25 T), together with improved probehead technologies 
(such as increasingly fast MAS with very small sample 
volumes)185,186, are expected to enhance the sensitivity 
and resolution in ssNMR spectra of OSCs. Advances 
in ssNMR methodologies for the selective detec-
tion of local domains70,187,188, as well as new detection 
techniques189, can potentially be used to probe specific 
nuclei in OSC materials and thin films. The structural 
and dynamics information obtained from NMR spec-
troscopy can be combined with that from comple-
mentary experimental and computational methods 
to establish structure–property relationships in OSC 
materials with complex architectures and processing 
histories. Inspiration can be taken from previous efforts 
to understand the relationship between local structures 
and the dynamics of ionic transport in systems such as 
batteries190, supercapacitors191–193 and covalent organic 
or metal–organic frameworks194–197, as well as biological 
macromolecules198–200.

As OSC technologies develop, they will require new 
and more complex materials and blends, which could 
challenge the capabilities of existing ssNMR techniques. 
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For example, organic electrochemical transistors and 
neuromorphic computing chips require the develop-
ment of materials that couple electronic and ionic charge 
transport. The presence of a solvent or additives in these 
devices introduces another layer of complexity to an 
already multifactorial system. In addition, the sensitivity 
and resolution of ssNMR will be challenged by the com-
plexity of OSC materials such as ternary and quaternary 
BHJ blends123,124, as well as conjugated oligoelectrolytes 
and polyelectrolytes interacting with biological systems 
for use in medical and bioelectronics applications16,201–205. 
Characterization of materials in working OSC devices at 
the atomic level is key to understanding device function, 
stability and degradation. However, this presents a for-
midable challenge, owing to the difficulties in designing 
integrated sample preparation and detection techniques, 
such as spinning rotors compatible with the incorpo-
ration of intact optoelectronic devices, and requires 
further advances in the instrumentation.

Further development of integrated analysis workflows 
that incorporate ssNMR (as depicted in Fig. 5) will be 
central to increasing our fundamental knowledge of a 
broader range of OSC materials. Advances in ssNMR 
spectroscopy, such as the use of ultra-high magnetic 
fields or DNP NMR, coupled with sample-preparation 

methods, fast MAS and in  situ experimental con-
ditions, will yield increasingly detailed local struc-
tural information. The use of chemical-shift-based 
3D structure determination will aid in the refinement 
and validation of structural models derived from DFT 
or MD calculations206. To this end, the accuracy of 
chemical-shift calculations using advanced plane-wave 
DFT approaches and machine-learning algorithms have 
been compared207. Such methods are yet to be developed 
and applied to complex organic polymers. However, the 
machine-learning-based ShiftML, which can predict 
chemical shifts within DFT accuracy at much lower 
computational cost, has the potential to overcome the 
costs associated with quantum-chemical calculations 
of large organic molecules. Structural models derived 
from ssNMR and computational-modelling analyses 
could then be validated with input from the comple-
mentary experimental techniques discussed above. 
Integration of these methods will enable structure– 
processing–property relationships to be established and 
promote advances in the molecular design of OSCs, 
as well as in other materials in which local structures 
govern bulk properties.
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