Problem Set No. 4

Due October 20, 2005

Problem 10:

Show that the exponential form of a Fourier series representation of a function $f(x)$ over a period L,

$$
f(x)=\sum_{n=-\infty}^{+\infty} c_{n} e^{\frac{i n 2 \pi x}{L}}
$$

can be converted into a sine/cosine Fourier series representation,

$$
f(x)=a_{o}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n 2 \pi x}{L}\right)+b_{n} \sin \left(\frac{n 2 \pi x}{L}\right)\right] .
$$

Determine how the constants c_{n}, a_{o}, a_{n}, and b_{n} are related.

Problem 11: (Wylie, pg. 507, \#s 5, 12, 13, 14)

Find the Fourier expansions of the periodic functions whose definitions on one period are
(a) $\quad f(t)=\geq\left\{\begin{aligned} 1, & 0<t<1 \\ 0, & 1<t<3 \\ -1, & 3<t<4\end{aligned}\right.$
(b) $\quad f(t)=\cos t, \quad-\pi / 2 \leq t \leq \pi / 2$
(c) $\quad f(t)=e^{-t}, \quad 0<t<1$
(d) $\quad f(t)=t^{2}, \quad 0<t<1$

Problem 12: (Wylie, pg. 507, \#24)

Find the Fourier expansion of the periodic function whose definition over one period is:

$$
f(t)=e^{t} \quad-\pi<t<\pi .
$$

Use your result to find the sum of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{1+n^{2}}$

Problem 13:

Find the Fourier series of the periodic function that is obtained by passing the voltage $v(t)=k \cdot \cos (100 \pi t)$ through a half-wave rectifier, which clips the negative portion of the wave, as shown in the figure below.

Problem 14:
(Kreyszig, pg. 588, \#s 3, 13, 19)

Represent the following function $f(x)$ by a Fourier sine series and sketch the corresponding periodic extension of $f(x)$.
(a) $\quad f(x)=x^{2} \quad(0<x<L)$

Represent the following functions $f(x)$ by a Fourier cosine series and sketch the corresponding periodic extension of each $f(x)$.
(b) $\quad f(x)=x^{2} \quad(0<x<L)$
(c) $\quad f(x)=\sin \frac{\pi x}{L} \quad(0<x<L)$

