Polymers Plus[®]

POLYMER PROCESS MODELING

With Aspen Plus[®] 10

Examples and Applications

CASE BOOK

COPYRIGHT 1981—1999 Aspen Technology, Inc. ALL RIGHTS RESERVED

The flowsheet graphics and plot components of Aspen Plus were developed by MY-Tech, Inc.

Aspen Aerotran[™], Aspen Pinch[™], ADVENT[®], Aspen B-JAC[™], Aspen Custom Modeler[™], Aspen Dynamics[™], Aspen Hetran[™], Aspen Plus[®], AspenTech[®], B-JAC[®], BioProcess Simulator (BPS)[®], DynaPlus[®], ModelManager[®], Plantelligence[™], the Plantelligence logo[™], Polymers Plus[®], Properties Plus[®], SPEEDUP[®], and the aspen leaf logo[™] are either registered trademarks, or trademarks of Aspen Technology, Inc., in the United States and/or other countries.

BATCHFRAC^{$^{\text{TM}}} and$ **RATEFRAC** $^{<math>^{\text{TM}}} are trademarks of Koch Engineering Company, Inc.</sup>$ </sup>

Activator is a trademark of Software Security, Inc.

Rainbow SentinelSuperPro[™] is a trademark of Rainbow Technologies, Inc.

Élan License Manager is a trademark of Élan Computer Group, Inc., Mountain View, California, USA.

Microsoft Windows, Windows NT, Windows 95 and Windows 98 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other brand and product names are trademarks or registered trademarks of their respective companies.

The License Manager portion of this product is based on:

Élan License Manager © 1989-1997 Élan Computer Group, Inc. All rights reserved

Use of Aspen Plus and This Manual

This manual is intended as a guide to using Aspen Plus process modeling software. This documentation contains AspenTech proprietary and confidential information and may not be disclosed, used, or copied without the prior consent of AspenTech or as set forth in the applicable license agreement. Users are solely responsible for the proper use of Aspen Plus and the application of the results obtained.

Although AspenTech has tested the software and reviewed the documentation, the sole warranty for Aspen Plus may be found in the applicable license agreement between AspenTech and the user. **ASPENTECH MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENTATION, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.**

PREFACE

ABOUT THE EXAMPLES AND APPLICATIONS CASE BOOK

This book is a compilation of simulation examples and steady-state and dynamic applications. The examples section provides step-by-step directions for performing simulations. Most of the steady-state and dynamic applications describe how to simulate the reactor section of a specific polymer production process. A few describe a complete plant flowsheet, and others focus on physical property representation.

Some of the simulations require Fortran files. These are found in the same location as the simulation files (\times mp or \ge bubdirectory of the GUI installation directory. You must compile the accompanying Fortran before running the files.

PRODUCT SUPPORT SERVICES

World Wide Web For additional information about AspenTech products and services, check the AspenTech World Wide Web home page on the Internet at:

http://www.aspentech.com/

Technical resources To obtain in-depth technical support information on the Internet, visit the Technical Support homepage. Register at:

http://www.aspentech.com/ts/

Approximately three days after registering, you will receive a confirmation e-mail and you will then be able to access this information.

The most current Hotline contact information is listed. Other information includes:

- Frequently asked questions
- Product training courses
- Technical tips

AspenTech Hotline If you need help from an AspenTech Customer Support engineer, contact our Hotline for any of the following locations:

If you are located in:	Phone Number	Fax Number	E-Mail Address
North America & the	+1-617/949-1021	+1-617/949-1724	support@aspentech.com
Caribbean	+1-888/996-7001 (toll free)		
South America (Argentina office)	+54-11/4393-5308	+54-11/4394-8621	tecnoba@aspentech.com
(Brazil office)	+55-11/5506-0756	+55-11/5506-0567	tecnosp@aspentech.com
Europe, Gulf Region, & Africa			atesupport@aspentech.com
(Brussels office)	+32-2/724-0100	+32-2/705-4034	
(UK office)	+44-1223/312220	+44-1223/366980	
Japan	+81-3/3262-1743	+81-3/3262-1744	atjsupport@aspentech.com
Asia & Australia			atasupport@aspentech.com
(Hong Kong office)	+85-2/2838-6077	+85-2/2833-5642	
(Korea office)	+82-2/761-5800	+82-2/761-5803	

Comments
and
SuggestionsOur goal is to provide you with Polymers Plus documentation that meets your information
needs. To help us reach this goal, forward your comments and suggestions toAspen Technology, Inc.
Attn: Polymer Technology Coordinator
Ten Canal Park
Cambridge, Massachusetts 02141

USA Telefax: +1-617/949-1030

For your convenience, a Comments form is included at the end of the Case Book.

CONTENTS

SIMULATION EXAMPLES

Example 1 Creating a Simulation Model

Summary	Fv∙1
Summary	
Setup Instructions	Ex•2
Drawing the Simulation Flowsheet	Ex•3
Specifying Setup and Global Options	Ex•4
Specifying Components	Ex•7
Characterizing Polymers	Ex•7
Specifying Physical Properties	Ex•9
Specifying Feed Streams	Ex•9
Specifying Kinetics	Ex•11
Defining the Unit Operation Block	Ex•13
Running the Simulation	Ex•16
Examining Simulation Results	Ex•17
Plotting Distributions	Ex•18
Creating Live Distribution Plots	Ex•20
Pasting and Linking Between Polymers Plus and Excel	Ex•24
Saving the Run and Exiting	Ex•25

Example 2 Predicting Physical Properties

Ex•29
Ex•30
Ex•31
Ex•32
Ex•33
Ex•34
Ex•34
Ex•35
Ex•36
Ex•37
Ex•38
Ex•40

Example 3 Regressing Property Parameters

Summary	Ex•41
Setup Instructions	Ex•42
Specifying Setup and Global Options	Ex•42
Specifying and Characterizing Components	Ex•43
Specifying Physical Property Method	Ex•44
Entering Experimental Data	Ex•45
Specifying a Regression Case	Ex•48
Specifying Physical Property Parameters	Ex•49
Running the Simulation and Examining the Results	Ex•50
References	Ex•53

Example 4 Fitting Kinetic Parameters

Summary	Ex•55
Setup Instructions	Ex•56
Drawing the Simulation Flowsheet	Ex•57
Specifying Setup and Global Options	EX•58
Specifying and Characterizing Components	Ex•59
Specifying Physical Properties	Ex•60
Specifying Polymerization Kinetics	Ex•63
Supplying Process Information	Ex•65
Specifying Data Regression	Ex•67
Running the Simulation and Examining the Results	Ex•72

Example 5 Fractionating Oligomers

Summary	Ex•77
Setup Instructions	Ex•78
Drawing the Simulation Flowsheet	Ex•78
Specifying Setup and Global Options	Ex•79
Specifying and Characterizing Components	Ex•80
Specifying Physical Properties	Ex•82
Supplying Process Information	Ex•85
Running the Simulation and Examining the Results	Ex•86
References	Ex•90

Example 6 Calculating End-Use Properties

Summary	Ex•91
Setup Instructions	Ex•92
Drawing the Simulation Flowsheet	Ex•92
Specifying Setup and Global Options	Ex•93
Specifying and Characterizing Components	Ex•94
Specifying Physical Properties	Ex•95
Supplying Process Information	Ex•97
Creating a Sensitivity Table	Ex•98
Running the Simulation and Examining the Results	Ex•99
References	Ex•102

STEADY-STATE APPLICATIONS

Application 1 Polystyrene Bulk Polymerization by Thermal Initiation

Summary	Ss•1
About This Process	Ss•1
Process Definition	Ss•2
Process Conditions	Ss•2
Physical Property Models and Data	Ss•4
Reactors / Kinetics	Ss•4
Process Studies	Ss•5
Selected Simulation Results	Ss•9
References	Ss•18

Application 2 High-Density Polyethylene High Temperature Solution Process

19
19
20
21
22
22
31
46

Application 3 Low-Density Polyethylene High Pressure Process

Summary	Ss•47
About This Process	Ss•47
Process Definition	Ss•48
Process Conditions	
Physical Property Models and Data	Ss•50
Reactors / Kinetics	
Process Studies	Ss•51
Selected Simulation Results	
References	Ss•64

Application 4 Nylon 6 Caprolactam Polymerization Process

Summary	Ss•65
About This Process	SS•65
Process Definition	SS•66
Process Conditions	Ss•69
Physical Property Models and Data	Ss•70
Reactors / Kinetics	Ss•70
Process Studies	Ss•71
Selected Simulation Results	Ss•79
References	Ss•87

Application 5 Styrene Butadiene Emulsion Copolymerization Process

Summary	Ss•89
About This Process	Ss•89
Process Definition	Ss•91
Process Conditions	Ss•92
Physical Property Models and Data	Ss•93
Reactors / Kinetics	Ss•94
Process Studies	Ss•95
Selected Simulation Results	Ss•99
References	Ss•103

Application 6 Styrene Ethyl Acrylate Free-Radical Copolymerization Process

Summary	Ss•105
About This Process	Ss•105
Process Definition	Ss•106
Process Conditions	Ss•107
Reactors / Kinetics	Ss•108
Parameter Regression	Ss•109
Selected Simulation Results	Ss•119
References	Ss•124

Application 7 Methyl Methacrylate Polymerization in Ethyl Acetate

Summary	Ss•125
About This Process	Ss•125
Process Definition	Ss•126
Process Conditions	Ss•127
Reactors / Kinetics	Ss•128
Process Studies	Ss•129
Selected Simulation Results	Ss•131
References	Ss•140

Application 8 Polystyrene with Styrene Monomer Distillation

Summary	Ss•141
About This Process	Ss•141
Process Definition	Ss•142
Process Conditions	Ss•142
Polymers and Segments	Ss•144
Physical Property Models and Data	Ss•144
Reactors / Kinetics	Ss•144
Inhibitor	Ss•145
Process Studies	Ss•145
Selected Simulation Results	Ss•150

Application 9 Polypropylene Gas Phase Polymerization Processes

Summary	Ss•155
About This Process	Ss•155
Process Definition	Ss•157
Process Conditions	Ss•158
Physical Property Models and Data	Ss•159
Reactors / Kinetics	Ss•159
Process Studies	Ss•161
Selected Simulation Results	Ss•167
References	Ss•173

DYNAMIC APPLICATIONS

Application 1 Polyethylene Terephthalate Semi-Batch/Batch Process

Summary	DN•1
About This Process	DN•1
Process Definition	DN•2
Process Conditions	DN•3
Physical Property Model and Data	DN•4
Reactors / Kinetics	DN•4
Process Studies	DN•4
Selected Simulation Results	DN•5
References	DN•8

Application 2 Polyethylene Terephthalate Continuous Process

Summary	DN•9
About This Process	DN•9
Process Definition	
Process Conditions	DN•12
Physical Property Models and Data	DN•12
Reactor / Kinetics	DN•13
Process Studies	DN•13
Selected Simulation Results	
References	DN•18

Application 3 Polystyrene Dynamic Bulk Polymerization Process

DN•19
DN•19
DN•20
DN•21
DN•22
DN•22
DN•22
DN•24

Application 4 LLDPE / HDPE Dynamic Process

SummaryDN•5	25
About This Process	25
Process DefinitionDN•5	26
Process ConditionsDN•2	27
Physical Property Models and DataDN•2	28
Reactor / KineticsDN•2	28
Process Studies	29
Selected Simulation Results	30
References	34

Application 5 Polyvinyl Chloride Dynamic Polymerization Process

Summary	DN•35
About This Process	DN•35
Process Definition	DN•36
Process Conditions	DN•36
Physical Property Models and Data	DN•37
Reactor	DN•37
Kinetics	DN•38
Selected Simulation Results	DN•39
References	DN•44

Application 6 Expandable Polystyrene Batch Polymerization Process

DN•45
DN•45
DN•46
DN•47
DN•47
DN•48
DN•50
DN•52

1 CREATING A SIMULATION MODEL

SUMMARY

This example describes how to construct a polymer simulation model.

The steps covered include:

- Drawing the Simulation Flowsheet
- Specifying Setup and Global Options
- Specifying Components
- Characterizing Polymers
- Specifying Physical Properties
- Specifying Feed Streams
- Specifying Kinetics
- Defining the Unit Operation Block
- Running the Simulation
- Plotting Distributions
- Creating Live Distribution Plots
- Pasting and Linking Between Polymers Plus and Excel
- Saving the Run and Exiting

This example uses a process containing two CSTR reactors and a mixer. Free-radical kinetics take place in the reactors. The purpose is to provide you an overview of Polymers Plus.

SETUP INSTRUCTIONS

The step-by-step instructions to construct the simulation model are given below.

First you will need to start Polymers Plus. To do this:

➤ Start Aspen Plus from the Start Menu or by double clicking the Aspen Plus icon on your desktop.

The Aspen Plus main window appears.

To create a new simulation:

1. On the Aspen Plus startup dialog box, click on the **Template** option. Click **OK**.

The **New** template window appears. You can use this window to specify the **Simulation** template and **Run Type** for the new run. Aspen Plus uses the Simulation Template you choose to automatically set various defaults appropriate to your application.

2. Select **Polymers with Metric Units** as your template. The default **Run type**, Flowsheet, is appropriate for this example. Click **OK**.

The Aspen Plus main window is now active.

Drawing the Simulation Flowsheet

The process flowsheet for this example is shown below.

In a flowsheet you can:

- Place blocks
- Place streams
- Rename blocks and streams

To place unit operation blocks:

1. Click on the **Reactors** tab in the model library and click on the **RCSTR** icon.

Available model icons are displayed by clicking on the down-arrow of the RCSTR icon.

- 2. Move the "+" cursor to the process flowsheet window, and click to place the block B1.
- 3. Repeat the same procedure to place the second RCSTR block B2.
- 4. Click on the **Mixers/Splitters** tab in the Model Library and select a **Mixer** icon from the menu list.

Move the "+" cursor to the process flowsheet window, and click to place block B3.

To place streams:

1. Click on the **Material STREAMS** icon and move the mouse to the process flowsheet window.

Red and blue arrows on unit operation blocks will appear. These arrows indicate the location of the required (red) and optional (blue) stream connection ports.

- 2. Place the "+" cursor on the red feed arrow of B1 and click to make the connection. Move the mouse away from the block and click again to place stream 1.
- 3. Place the "+" cursor on the red product arrow of B1 and click to make the connection. Move the mouse to the red feed arrow of B3 and click again to connect two blocks.
- 4. Repeat the above procedure to create a feed stream for B2, connect B2 and B3, and create a product stream for B3.
- 5. After the placing all blocks and streams, turn off the insert mode by clicking on the arrow button that appears to the top left of the **Material STREAMS** icon .

To rename blocks and streams:

- 1. Click on the block to be renamed, such as B3, and click on the right mouse button to display the pop-up menu.
- 2. Select **Rename Block** from the pop-up menu.
- 3. Enter the Block ID as "M" and click **OK**.
- 4. Select the stream to be renamed, such as 1, and click on the right mouse button to bring up the pop-up menu.
- 5. Select **Rename Stream** from the pop-up menu.
- 6. Enter the Stream ID as "FEEDA" and click **OK**.
- 7. Repeat the above procedure to rename other streams.

You will now enter input data for your simulation.

Specifying Setup and Global Options

To enter process and model specifications into Polymers Plus, you can use the Expert guidance system (Next button \mathbb{N}), or use the Data Browser navigation tree. In this example, we will enter the data using the Aspen Plus Data Browser navigation tree.

You will use the **Setup** folder in the Data Browser to give your simulation a title, define your units-sets and review the global options that were set when you selected the **Polymers with Metric Units** simulation template.

To specify a title:

1. Open the Data Browser by clicking on the Data Browser button in the Aspen Plus main window toolbar.

- 2. Double click on the **Setup** folder, and click on **Specifications**.
- 3. On the **Global** tab sheet, type the title of your simulation run as "Creating a Polymers Plus Simulation Model".

🔚 Setup Specifications - Data Bro	wser	
Specifications		· << AII ▼ >> C S N>
Setup Securitications Simulation Options Stream Class Substreams Substreams Substreams Streams	Global Description Accounti Title: Creating a POLYN Units of measurement Input data: SET1 Output results: SET1 Image: SET1 Output results: SET1 Image: SET1 Text to appear on each page of the results: Image: SET1 Image: SET1	ing Diagnostics MER PLUS simulation model Global settings Run type: Flowsheet Input mode: Steady-State Stream class: CONVEN Flow basis: Mole Ambient pressure: 14.69595 psi Valid phases: Use free water calculations export file. See Help.
Input Complete		1

This example requires a user defined units-set for input data and output results.

To define a unit-set:

- 1. In the Data Browser tree view, double click on the **Units Sets** sub-folder to bring up the Units-Sets Object manager.
- 2. Click **New** to create a new set.

Enter an ID (e.g. SET1) for the new units-set and click **OK**.

- 3. On the Aspen Plus dialog box that appears requesting approval to make SET1 the global unit set, click **Yes**.
- 4. A Setup Units Sets form appears.

Use SI units as the basis for your new set by selecting SI from the **Copy from** drop down list.

- 5. Enter user defined units as:
 - Mass Flow = kg/hr
 - Mole Flow = kmol/hr
 - Pressure = atm
 - Temperature = C

A Description sheet is available to enter a more detailed description of the simulation.

To enter the description for this example:

- 1. From the Data Browser, click on the **Specifications** form.
- 2. On the **Specifications** form, click on the **Description** tab.

Type in the following information: "This example describes how to put together a polymer simulation model".

Since you chose the **Polymers with Metric Units** simulation template when you started this example, Aspen Plus has set the following defaults for calculating and reporting stream properties:

- No mole flow
- Mass flow

A user defined stream report format is entered as follows:

- 1. From the Data Browser, click on the **Report Options** form.
- 2. On the **Report Options** form, click on the **Stream** tab.
- 3. In addition to the default options selected, click **Mole** in the **Flow basis** frame and **Mass** in the **Fraction basis** frame. **POLY_M** is defined for **Stream format** which is appropriate for this example.

Other simulation options can be entered as follows:

- 1. From the Data Browser, click on the Simulation Options form.
- 2. On the **Simulation Options** form, click on the **Limits** tab.
- 3. Enter 1000 in the Simulation time limit in CPU seconds field.
- 4. Click on the **System** tab, and click on the **Print Fortran tracebacks when a Fortran error occurs** option.

Specifying **Components**

You can use **Components** forms to select chemical components for your simulation and specify component types (e.g. conventional, solid, assay, blend, polymer, segment, oligomer, and pseudocomponent).

To select components:

- 1. From the Data Browser, double click on the **Components** folder.
- 2. From the **Components** folder, click on the **Specifications** form.
- 3. On the **Selection** tab sheet, enter the components as shown below:

E Components Specifications -	Da	ta Bro	wser				
🕖 Specifications	•	٤	ENG _	- ←→	<< Al 🔹	>> 🔲 🏙	N€
Setup	•	<mark>√Se</mark> l	efine components	m Nonconve	entional 🛛 🗸 Databa	inks	
Stream Class			Component ID	Туре	Component name	Formula	
			AIBN	Conventional	STYRENE	С8Н8	
V Report Options		-	EB	Conventional	ETHYLBENZENE	C8H10-4	
🖻 🔂 Components			STY	Conventional	STYRENE	С8Н8	-
		-	ACN	Conventional	ACRYLONITRILE	C3H3N	-
Assay/Biend		-	XYLENE	Conventional	P-XYLENE	C8H10-3	-
		-	STYSEG	Segment	STYRENE-R	C8H8-R	-
Attr-Comps		-	ACNSEG	Segment	ACRYLONITRILE-	C3H3N-R	-
UNIFAC Groups			SAN	Polymer	STYRENE-ACRYL	SAN	
Comp-Groups				L	•	•	
🗄 🔂 Polymers			Find	Elec Wizard	User Defined	Beor	rder
						J	
		Comp	onent ID. If data ar	e to be retrieved	from databanks, ente	er either Compone	ent Name or
🗄 🐳 😽 Convergence		ll Formu	ла, рее пеір.				
Flowsheeting Options	•	ļ					
Input Complete							

Polymers

Characterizing You must enter additional characterization information for segments, polymers, oligomers and site-based species. You must define the type of segments present. Segments may be repeat units, end groups or branch points attached to three or four branches.

To define the segments:

- 1. From the Data Browser, double click on the **Polymers** sub-folder.
- 2. From the **Polymers** sub-folder, click on the **Characterization** form.
- 3. On the **Segments** tab sheet, assign type REPEAT to segments STYSEG and ACNSEG.

For each polymer you must define the component attributes to be tracked. All components specified as type **Polymer** in the **Specifying Components** section require component attributes.

To specify component attributes for the polymers:

- 1. Click on the **Polymers** tab.
- 2. Select the desired polymer SAN from the **Polymer ID** drop down list.
- 3. In the **Built-in attribute group** field, select **Free-radical selection** as the attribute group.

The attribute summary table, **Attribute list**, is automatically filled out. You can click on the attribute list table or click **Edit** to change the selections.

🔚 Components Polymers Characte	erizal	tion - Data	Browser				_ 🗆 ×
Characterization	Ē	ENG		<	All	- >> 📋	M≯
Setup Components Securications Assay/Blend Petro Characterization Pseudocomponents Attr-Comps Henry Comps UNIEAC Groups		Segments Polymer ID Selection by Built-in attrib	Polymers	Oligomers	Site-Based Sp selection	pecies	
Comp-Groups Characterization Of the sector of		DPN ZMOM LDPN	DPW FMOM LZMOM	PDI SMOM LFMOM	MWN SFLOW LSFLOW	MWW SFRAC LSFRAC	▲ ▼
Blocks Bocks Convergence Flowsheeting Options Model Analysis Tools Results Summary	Po	lymer compor	nent ID	Edit			
Input Complete							

In order to track distributions in your simulation and later generate plots or table, you need to specify the type of distribution, the polymer, and the display characteristics for the generated distribution data.

To request a distribution:

- 1. From the Data Browser, click on the **Distributions** form.
- 2. On the **Selection** tab sheet, select the desired polymer SAN from the **Polymer ID** drop down list.
- 3. Click Chain-size for Distribution type and enter No. points = 100, Upper = 10000 for Plot characteristics.

Specifying Physical Properties

To define global physical property methods:

- 1. In the Data Browser, double click on the **Properties** folder.
- 2. From the **Properties** folder, click on **Specifications**.
- 3. On the **Global** tab sheet, select POLYNRTL as the **Base method**.

User defined property parameters such as molecular weight for polymers are defined in the **Properties** folder:

- 1. From the Data Browser, double click on the **Parameters** sub-folder.
- 2. In the **Parameters** sub-folder, double click on the **Pure Component** folder.
- 3. In the **Object manager**, click **New** to bring up a **New Pure Component Parameters** pop-up window.
- 4. Enter DATA1 as new name for parameter. Click **OK** to accept the default **Scalar** option.
- 5. Select **MW** from the **Parameters** drop down list.
- 6. Enter the molecular weights for the components: **AIBN**=164.0 and **SAN**=104.150.

Specifying Feed Streams

To enter stream specifications, you either open input forms from the Data Browser navigation tree, or select a stream on the process flowsheet window and right mouse click to bring up a pop-up menu where you select Input to open the input form. Here, we will use the Data Browser navigation tree.

To enter feed stream specifications:

- 1. From the Data Browser, double click on the **Streams** folder.
- 2. From the **Streams** folder, double click on the **FEEDA** sub-folder.
- 3. From the **FEEDA** sub-folder, click on **Input**.

On the **Specifications** tab sheet, enter:

- Temperature =70 C
- Pressure =2 atm
- Total Flow (Mass) = 24000 kg/hr
- Composition = Mass Frac
 - AIBN = 0.002
 - EB = 0.002
 - STY = 0.25
 - ACN = 0.25
 - XYLENE = 0.496

 FEEDA Setup Components Properties FEEDA FEEDA FEEDA FEEDB FEEDB FEEDB FRADEB FRADEB FRADEB FRADEB FReactions Component Value Value All C S N> C S N> C S N N C S N N C S N N C S N N C N N N C S N N C N N N C N N N C N N N C N N N C N N N C N N N C N N N C N N N C N N N C N N N <pc n="" n<="" p=""> C N N N N <pc n="" n<="" p=""> C N N N N<</pc></pc>	🔚 Stream FEEDA (MATERIAL) - Da	ata Browser	_ 🗆 ×
Image: Setup Setup Setup Setup Components Image: Streams Image: Streams Substream name: Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Streams Image: Stream	🚷 FEEDA 💽	ET1 ▼ ← → <	(A ▼ >> C S N>
Perulta Ausilable	Setup Components Properties Streams FEDA FEEDB GRADEA GRADEB GRADEB PropUCT Slocks FOR PRODUCT FM Blocks FM Reactions FM Reactions FM Reactions Model Analysis Tools Propulse Available	✓ Specifications Flash Options P3 Substream name: State variables Temperature Total flow: Mass Add the substream name. Solvent: Solvent:	D Component Attr. Composition Mass-Frac Component Value AIBN 0.002 EB 0.002 STY 0.25 ACN 0.25 ACN 0.25 XYLENE 0.496 SAN Total: 1

- 4. From the Data Browser, double click on the **FEEDB** sub-folder. Click on **Input**.
- 5. On the **Specifications** tab sheet, enter the same temperature, pressure, and total flow rate as FEEDA, and specify mass fractions:
 - AIBN = 0.004
 - STY = 0.1
 - ACN = 0.4
 - XYLENE = 0.496

Specifying Kinetics

Kinetic inputs are specified in the **Reactions** folder. This example uses the free-radical kinetics model.

To specify the free-radical polymerization inputs:

- 1. From the Data Browser, double click on the **Reactions** folder.
- 2. From the **Reactions** folder, double click on the **Reactions** sub-folder.
- 3. In the **Object manager**, click **New** to create a new reaction R1 and select **FREE**-**RAD** as the reaction type. Click **OK**.
- 4. On the **Species** tab sheet, enter components as follows:

Reactions Reactions R1 (FREE-	RAD) - Data Brov	vser			_ 🗆 🗙
🍼 R1 💌	🔁 🔡 SET1		► << A	• >> 🗹 🖄	N≯
Setup Components Components For Properties Streams Blocks Government Reactions Convergence Costing Flowsheeting Options Model Analysis Tools Results Summary	✓ Species ✓ Rea Polymer: SAN Monomers: goes to → Initiators: Coinitiators: Catalysts: Transfer ag.: Solvents:	STY STYSEG AIBN EB XYLENE	ACN ACNSEG	ptions	
Input Complete	Polymer produced			C Generate re	actions

- 5. Click on the comment icon to add the description "Grade A SAN polymerization kinetics". Click **OK**.
- 6. Click the **Generate Reactions** option to generate reactions automatically from the list of reacting species.
- 7. Click on the **Reactions** tab.

An Auto Generation dialog box appears, click Yes to turn off reaction generation.

On the **Reactions** tab sheet, review the automatically generated reactions and delete any unnecessary equations by selecting them in the table and clicking the **Delete** button

Solution. For this example, you can delete the reactions for: chat-agent, chat-sol and term-dis.

8. Click on the **Rate Constants** button to open the **Rate Constant Parameters** popup form for each reaction. Click on the **Summary** tab and enter reaction rate constants.

Refer to the REACTIONS paragraph in Figure 1.1 for the rate constants of R1. After entering the data, click on **Close**.

The Reactions and the Rate Constant Parameters sheets are shown below:

Reactions Reactions R1 (FREE)	·RAD) - Data Browser		
🍼 R1 💌	E 😫 SET1	• 🔶 < Ali 🔹	>> 📝 🕍 N>
Components Components Components Components Streams Streams Components Components Components Components Components Components Convergence Costing Costing Convergence Costing Costing Convergence Costing Convergence Costing Costing Costing Costing Costing Costing Costing Costing	Species Reaction Reaction scheme sum 1) Init-dec 2) Chain-ini 3) Chain-ini 4) Propagation 5) Propagation 6) Propagation 7) Propagation 8) Chat-mon 1 1 1 1 1 1 1 1 1 1 1 1 1	ns ✓Rate Constants ✓Options may. Click New to add reactions. Reactants Aibn → n.F Rate Constant Parameters ✓Details ✓Summary (1) INIT-DEC: Aibn> n.R* Reaction type INIT-DEC Initiator AIBN	Frequets Products 3* k = k_0 exp $\left[\frac{-(Ea + \Delta VP)}{R} \left(\frac{1}{T} - \frac{1}{Tref}\right)\right]$ ko: 3.71E-05 Ea: 0 J/kmol $\Delta V:$ 0 cum/kmol Tref 1E+35 C No. radicals:
		N>	Prev Next Close

- 9. Click on the **Options** tab to specify additional simulation options for the model. Select **Gel effect** for R1.
- 10. Click on the **Gel Effect** tab and enter, reaction number, reaction type, and gel effect correlation number. To input in the **No.** field you need to right click on the field and select **Create** from the pop-up menu. Parameters for the gel effect correlation are specified as shown below:

A1		E11 1 000	<< 4		>>		
Setup Components	Species	All sections All all Co	staturits V Opt	ions	/ Gr	el Ellect	
Properties	Apply gr	e effect to	Car No.	1.1		Dumates	
Bicks		TERMINATION	- 2	-	1	t	
Reactions			21.	÷	2	0	
E Chensly				-	3	2.57	
🕑 R1					4	0.00505	
- S H2					5	3.56	
Costing					ß	-0.0176	
Flowsheeting Options					7	-3.03	
Model Analytes Tools					B	0.00705	
					9	0	
				_	10	2	
				*	11		
	a day de	-					
	-			_	_		

Follow the same procedure and reference the REACTIONS paragraph for R2 in Figure 1.1 to define species, rate constants and gel-effect for R2.

Defining the You must define the operating conditions for unit operations. Unit Operation To enter block specifications for the CSTR reactors: **Block** 1. From the Data Browser, double click on the **Blocks** folder.

- 2. From the **Blocks** folder, double click on the **B1** sub-folder.
- 3. Click on **Setup**, and on the **Specifications** tab sheet enter:
 - Pressure =2 atm
 - Temperature =70 C
 - Valid Phases = Liquid-Only
 - Reactor Volume = 10 cum
- 4. Click on the **Reactions** tab.

Select R1 as the Reaction Set that describes the chemical reactions occurring in B1 by clicking on the button.

- 5. Click on the **Component Attr.** tab and set:
 - Substream ID = MIXED

- Component ID = SAN
- 6. Enter a series of Attribute ID and Component Attribute values as below:
 - Attribute ID = LPFRAC, Component Attribute value = 1E-005
 - Attribute ID = LEFRAC, Component Attribute values = 0.5, 0.5
 - Attribute ID = LSFRAC, Component Attribute values = 0.5, 0.5
 - Attribute ID = LDPN, Component Attribute value = 500
 - Attribute ID = SFRAC, Component Attribute values = 0.5, 0.5
 - Attribute ID = PDI, Component Attribute value = 1.5
 - Attribute ID = DPN, Component Attribute value = 1000

On the **Convergence** form, you specify estimates for the component flow rates in the outlet stream to improve convergence. To do this:

- 1. From the Data Browser, click on the **Convergence** form in the **B1** sub-folder.
- 2. On the **Estimates** tab sheet enter the following component values on a mole basis:
 - STY = 30 kmol/hr
 - ACN = 60 kmol/hr
 - SAN =50 kmol/hr
 - AIBN = 0.2 kmol/hr

You also select the solution algorithm to converge the mass balance equations and specify user required convergence parameters and error tolerance for mass balance calculations. To do this:

- 1. Click on the **Parameters** tab and enter:
 - Max iterations = 500
 - Error tolerance =1E-05
- 2. Click the **Initialize using integration** option.

When this option is checked, CSTR uses an integrator to provide an initial guess to the simultaneous equation solver.

Block Options forms can be used to override global values for physical properties, simulation options, diagnostic message levels and report options. For B1 the control panel diagnostic message level is set higher than the global default value 4. To override values:

- 1. From the Data Browser, click on the **Block Options** form in the **B1** sub-folder.
- 2. Click on the **Diagnostics** tab, set the **On screen** slider bar to level 7.

Repeat the above procedures to define the unit operation block B2. Refer to the BLOCKS B2 paragraph in Figure 1.1 for B2 specifications.

To enter Mixer specifications:

- 1. From the Data Browser, double click on the \mathbf{M} sub-folder.
- 2. From the **M** sub-folder, click on **Input**.
- 3. On the **Flash Options** tab sheet enter:
 - Pressure = 1 atm
 - Valid phases = Liquid-Only

RUNNING THE SIMULATION

To run a simulation:

- 1. Click on the Aspen Plus expert system, Next button №, to confirm that you have finished entering all required input. The Required Input Complete dialog box appears.
- 2. Click OK to open a Control Panel and run the simulation.
- You can also open a control panel and start a run by clicking on Run control panel button and Start button in the Aspen Plus main window toolbar.

As the run proceeds status messages appear in the Control Panel. When the calculations are complete, the message **Results Available** appears in the status bar at the right bottom corner of the Aspen Plus main window.

EXAMINING SIMULATION RESULTS

When the message **Results Available** appears in the status bar you can examine your simulation results.

To examine the results:

- 1. From the Data Browser, double click on the **Results Summary** folder.
- 2. In the **Results Summary** folder, click on **Run Status**.

The **Summary** sheet appears.

The Aspen Plus version, run starting time and run status are summarized on this sheet.

3. From the **Results Summary** folder, click on **Streams**.

The **Material** sheet appears with the stream results.

Since you selected the **Polymers with Metric Units** Simulation Template, POLY_M is used as the stream result format and reports stream Temperature, Pressure, Average MW, and other results. Mass Flow, and Mass Fraction are reported based on the selections made in the Specifying Setup and Global Options section. Since the **Material** sheet contains a scrolling table, you can click the scroll bar to review the stream results that are off the screen.

🔚 Results Summary Streams - Da	ata Browser			_	
🔽 Streams	• 🗈 🖹 🔄 • 🤄	• 🔿 << Al	• >>		↓ >
Setup Components Components Foreams Streams Streams Convergence Costing Flowsheeting Options Model Analysis Tools Model Analysis Tools Streams Convergence Convergence Convergence Convergence Convergence Convergence	Material Heat Work Display: All streams Image: Constraint of the stream o	Vol.≫ Curves Format: POLY_N FEEDA ▼ 48.00000 48.00000 6000.000 6000.000 1100.400	Wt. % Curves M FEEDB 96.00000 2400.000 11904.00	Petro. D Stream Tal GRADEA 45.86794 48.00000 3296.610 4716.235 11904.00	
Results Available	p				

You select **Results** from the drop down list between the \checkmark and \gg buttons and use the browser forward button \gg to navigate to the next form with results.

1. After reviewing the **Material** sheet, click the \rightarrow button.

The **Poly. Curves** sheet appears. You can review the polymer structural property distribution results for the streams.

2. Click the \rightarrow button.

The Stream FEEDA Results form appears.

3. Repeat steps 1 and 2 to review the rest of your results.

Plotting Distributions

You can display and plot the distribution data for a polymerization reactor or you can display a distribution table for a stream or for the entire flowsheet.

To display and plot the distribution data for a polymerization reactor:

- 1. From the Data Browser, click on the **Results** form in the **Blocks** folder **B1** sub-folder.
- 2. Click on the **Distributions** tab.
- 3. Select **Plot Wizard** from the **Plot** pull-down menu on the menu bar.
- 4. Click **Next**, then select **Chain Size Distr.** as the plot type by clicking on the appropriate button.
- 5. Click **Next** to review your plot options.

You can click Next again to review further plot options

– or –

Click **Finish** to display the plot.

You can modify the plot by right mouse clicking on the objects in the plot window and selecting **Edit**, **Properties** and **Modify** from the pop-up menu.

To display a distribution table for a stream or for the entire flowsheet:

- 1. From the Data Browser, click on the Streams form in the Results Summary folder
- 2. On the Streams tab sheet, click on the Poly. Curves tab.
- 3. Select **Plot Wizard** from the **Plot** pull-down menu on the menu bar.
- 4. Click **Next**, then select **Chain Size Distr.** as plot type by clicking on the CSD curve button.
- 5. Click **Next**, highlight the stream(s) you want to plot from the **Available** box and click the button to select each stream you want to plot. In this example all streams are selected.
- 6. Click **Next** to review your plot options.

– or –

Click **Finish** to display the plot.

Creating Live Distribution Plots

The distribution plotting capability allows you to create live plots which are automatically refreshed when you rerun the simulation.

To create a live distribution plot for a reactor:

- 1. From the Data Browser, click on the **Results** form in the **Blocks** folder **B1** subfolder.
- 2. Click on the **Distributions** tab.

- 3. Select **Plot Wizard** from the **Plot** pull-down menu on the menu bar.
- 4. Click on **Next** then select **Chain Size Distr.** as the plot type by clicking on the appropriate button.
- 5. Click on **Next** to set the plot style. Make sure the **Show average properties** option is checked.
- 6. Click on **Next** to set more plot styles. In the frame asking if you would like to update the plot when new results are available, choose **Yes**.
- 7. Click **Finish** to display the plot.

If you did not choose the right option for refreshing the plot in step 6. You can still do this. With the plot window active, click on **Edit** in the menu bar. Select **Live Plot** from the **Edit** pull-down menu.

You are now ready to make another simulation and see the plot change.

To change the specifications for B1:

- 1. Keeping the plot window on your screen, from the Data Browser, click on the **Setup** form in the **Blocks** folder **B1** sub-folder.
- 2. On the **Specifications** tab sheet change temperature to 5°C and reactor volume to 70 cum.
- 3. Run the simulation by clicking on the **Start** button in the control panel or on the toolbar.

Watch the distribution curve and average properties change in the plot window.

To manually superimpose distribution plots for several simulations:

- 1. Make the plot window active. From the **Edit** pull-down menu, turn off the **Live Plot** option.
- 2. Select the average property text on the plot, right mouse click and **Delete**.
- 3. From the Data Browser, click on the **Setup** form in the **Blocks** folder **B1** sub-folder.
- 4. On the **Specifications** tab sheet change temperature back to 70°C and reactor volume to 10 cum.
- 5. Run the simulation by clicking on the **Start** button in the control panel or on the toolbar. This time the plot does not change.
- 6. From the Data Browser, click on the **Results** form in the **Blocks** folder **B1** sub-folder.
- 7. Click on the **Distributions** tab. You are going to select manually the x-axis values and y-axis values for the new plot.
- 8. Click on **DPn** to select the degree of polymerization column as the x-axis. That column changes color, an indication that it is selected.
- 9. From the **Plot** pull-down menu, select **X-Axis Variable** to set DPn as the x-axis.

ASPEN PLUS - polytut.bkp		
<u>File E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ools <u>R</u> un	<u>Plot Window H</u> elp	
	Plot <u>Type</u>	
F # 7 Grid 0.1 💌 🔊	X-Axis Variable Ctrl+Alt+X Y-Axis Variable Ctrl+Alt+Y	
	Parametric Variable Ctrl+Alt+Z	
Block B1 (BCSTB) Besults - D	Display <u>Plot</u> Ctrl+Alt+P Add <u>N</u> ew Curve	
Results	Plot <u>W</u> izard Ctrl+Alt+W	
Setup Setup Secup Secup Simulation Options Stream Class Substreams Substreams Solution Streams Secup StreamResults StreamRe	Summary Balance Distrib Polymer distributions Type: Chain-Size DPn Mass frac. 1 1 1.2186E-08 101 101 1.8405E-06 201 201 4.7449E-06 301 301 8.545E-06 401 401 1.3079E-05 501 501 2.379E-05 701	

- 10. Go back to the **Distributions** tab sheet, click on **Mass frac.** to select the mass fraction column as the y-axis.
- 11. From the **Plot** pull-down menu, select **Y-Axis Variable** to set mass fraction as the y-axis.
- 12. From the **Plot** pull-down menu, select **Add New Curve** to superimpose this new data on the previous plot.
- 13. In the **Plot Window List** window, select **B1: Chain Length Distribution** as the plot on which the new curve should be superimposed. Click **OK**.

Plot Window List	×
Block B1: Chain Length Distribution	
block bit. Chain Eorigin biombaildh	
1	
OK	Cancel

14. The plot window now has two superimposed curves with each having a separate y-axis. To use a single y-axis, click on the curve line, right mouse click and select **Properties** to go to the plot properties.

15. Click on the **AxisMap** tab. Click the **All in One** button. Then click on **Apply** to update the plot. You can also change the legend for the new plot to define the reactor conditions.

Pasting and	You use OLE linking to establish connections between Aspen Plus and other application	ns
Linking	Γο paste and link the distribution table of B1 to an Excel application:	
Between	. From the Data Browser, open the Blocks folder.	
Polymers Plus	2. Open the B1 sub-folder, click on Results .	
and Excel	3. Click on the Distributions tab, select the entire DPn column by clicking on the column selector, then right mouse click to bring up pop-up menu and select Copy .	

4. Open an Excel work sheet and enter DPn as the title of the first column.

Place the mouse on the second row, right mouse click to bring up the pop-up menu and select **Paste Special**.

- 5. Select **Paste Link** and **Text** in the **Paste Special** pop-up form then click **OK**.
- 6. Repeat the same procedure for **Mass frac.** column.

The distribution table is generated in Excel and will be updated when the simulation results change in Aspen Plus.

To obtain reaction rate constants from Excel:

- 1. Open an Excel file containing the reaction rate constant parameters.
- 2. Select a column of reaction constants, such as Pre-Exp (ko), right mouse click and select **Copy** from the pop-up menu.
- 3. In Aspen Plus, from the Data Browser, open the **Reactions** folder.
- 4. From the **Reactions** folder, click **R1** and click the **Reactions** tab.
- 5. Click **Parameters** and click on the **Summary** tab of the **Rate Constant Parameters** pop-up form.
- 6. Place the cursor in the top cell on the **Pre-Exp** column and right mouse click to select **Paste Special**.

Click the **Paste Link** option and select the **Text** option.

The reaction constants will be copied to Aspen Plus and will be updated when changes are made in Excel.

Saving the Run and Exiting

Before you exit Aspen Plus, save the run as a Backup file (*.bkp) or a Quick Restart file (*.apw). It is recommended that you use the backup file format to save disk space and for future version compatibility.

To save an .apw and a .bkp file:

- 1. Select **Save As** from File pull-down menu.
- 2. Enter a file name, then select .apw or .bkp in the **Save as type** field. Click **Save** to apply.

To exit Aspen Plus:

► Select **Exit** from the File pull-down menu.

When the dialog box appears asking if you want to save the run, select **Yes** if you have not saved the run.

Congratulations! You have just built and run a complete polymerization example using Polymers Plus.

Figure 1.1 Input Summary TITLE 'Creating a Polymers Plus Simulation Model' IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' PRESSURE=atm & TEMPERATURE=C PDROP='N/sqm' DEF-STREAMS CONVEN ALL SYS-OPTIONS TRACE=YES RUN-CONTROL MAX-TIME=1000.0 DESCRIPTION " This example describes how to put together a polymer simulation model." DATABANKS PURE93 / POLYMER / SEGMENT / NOASPENPCD PROP-SOURCES PURE93 / POLYMER / SEGMENT COMPONENTS AIBN C8H8 AIBN / EB C8H10-4 EB / STY C8H8 STY / ACN C3H3N ACN / XYLENE C8H10-3 XYLENE / STYSEG C8H8-R STYSEG / ACNSEG C3H3N-R ACNSEG / SAN SAN SAN FLOWSHEET BLOCK B1 IN=FEEDA OUT=GRADEA BLOCK B2 IN=FEEDB OUT=GRADEB BLOCK M IN=GRADEA GRADEB OUT=PRODUCT PROPERTIES POLYNRTL PROP-DATA DATA1 IN-UNITS SI PROP-LIST MW PVAL AIBN 164.0 PVAL SAN 104.150 POLYMERS SEGMENTS STYSEG REPEAT / ACNSEG REPEAT POLYMERS SAN ATTRIBUTES SAN DPN DPW PDI MWN MWW ZMOM FMOM SMOM SFLOW & SFRAC LDPN LZMOM LFMOM LSFLOW LSFRAC LEFLOW LEFRAC & LPFRAC DISTRIBUTION SAN CHAIN-SIZE NPOINTS=100 UPPER=10000. STREAM FEEDA SUBSTREAM MIXED TEMP=70.0 PRES=2.0 MASS-FLOW=24000.0 MASS-FRAC AIBN .0020 / EB .0020 / STY .250 / ACN .250 & / XYLENE .4960
Figure 1.1 Input Summary (cont.)

```
STREAM FEEDB
   SUBSTREAM MIXED TEMP=70.0 PRES=2.0 MASS-FLOW=24000.0
   MASS-FRAC AIBN .0040 / STY .10 / ACN .40 / XYLENE &
       .4960
BLOCK M MIXER
   PARAM PRES=1.0 NPHASE=1 PHASE=L
BLOCK B1 RCSTR
   PARAM VOL=10. TEMP=70.0 PRES=2.0 NPHASE=1 PHASE=L &
       MB-MAXIT=500 MB-TOL=.000010 TRACE=1.0000E-08 &
       ALGORITHM=INTEGRATOR MAX-NSTEP=100
   MOLE-FLOW MIXED STY 30.0
   MOLE-FLOW MIXED ACN 60.0
   MOLE-FLOW MIXED SAN 50.0
   MOLE-FLOW MIXED AIBN .20
   COMP-ATTR MIXED SAN LPFRAC ( .000010 )
   COMP-ATTR MIXED SAN LEFRAC ( .50 .50 )
   COMP-ATTR MIXED SAN LSFRAC ( .50 .50 )
    COMP-ATTR MIXED SAN LDPN ( 500.0 )
   COMP-ATTR MIXED SAN SFRAC ( .50 .50 )
   COMP-ATTR MIXED SAN DPN ( 1000.0 )
   COMP-ATTR MIXED SAN PDI ( 1.50 )
   BLOCK-OPTION TERM-LEVEL=7
   REACTIONS RXN-IDS=R1
BLOCK B2 RCSTR
   PARAM VOL=10. TEMP=70.0 PRES=2.0 NPHASE=1 PHASE=L &
       MB-MAXIT=500 MB-TOL=.000010 ALGORITHM=INTEGER
   MOLE-FLOW MIXED STY 10.0
   MOLE-FLOW MIXED ACN 100.0
   MOLE-FLOW MIXED SAN 50.0
   MOLE-FLOW MIXED AIBN .20
   COMP-ATTR MIXED SAN LPFRAC ( .000010 )
    COMP-ATTR MIXED SAN LEFRAC ( .50 .50 )
   COMP-ATTR MIXED SAN LSFRAC ( .50 .50 )
   COMP-ATTR MIXED SAN LDPN ( 500.0 )
    COMP-ATTR MIXED SAN SFRAC ( .50 .50 )
   COMP-ATTR MIXED SAN DPN ( 1000.0 )
   COMP-ATTR MIXED SAN PDI ( 1.50 )
    BLOCK-OPTION TERM-LEVEL=7
    REACTIONS RXN-IDS=R2
STREAM-REPOR MOLEFLOW MASSFLOW MASSFRAC
REACTIONS R1 FREE-RAD
   DESCRIPTION "GRADE A SAN POLYMERIZATION KINETICS"
    PARAM
    SPECIES INITIATOR=AIBN MONOMER=STY ACN CHAINTAG=EB &
       SOLVENT=XYLENE POLYMER=SAN
   MON-RSEG STY STYSEG / ACN ACNSEG
   INIT-DEC AIBN .00003710 0.0 0.0 EFFIC=1.0 NRADS=2
   CHAIN-INI STY 4820.0 0.0 0.0
   CHAIN-INI ACN 225.0 0.0 0.0
```

Figure 1.1 Input Summary (cont.)

PROPAGATION STY STY 4820. 0.0 0.0	
PROPAGATION STY ACN 10277. 0.0 0.0	
PROPAGATION ACN STY 7165.6 0.0 0.0	
PROPAGATION ACN ACN 225. 0.0 0.0	
CHAT-MON STY STY 0.289 0.0 0.0	
CHAT-MON STY ACN 0.289 0.0 0.0	
CHAT-MON ACN STY .0060 0.0 0.0	
CHAT-MON ACN ACN .0060 0.0 0.0	
TERM-COMB STY STY 13900000. 0.0 0.0	
TERM-COMB STY ACN 358000000. 0.0 0.0	
TERM-COMB ACN STY 358000000. 0.0 0.0	
TERM-COMB ACN ACN 10200000. 0.0 0.0	
GEL-EFFECT TERMINATION 2 MAX-PARAMS=10 GE-PARAMS=1.0 0.0	&
2.570005050 9.56001760 -3.030 .007850 0.0 2.0	
REACTIONS R2 FREE-RAD	
DESCRIPTION "GRADE B SAN POLYMERIZATION KINETICS"	
PARAM	
SPECIES INITIATOR=AIBN MONOMER=STY ACN CHAINTAG=EB &	
SOLVENT=XYLENE POLYMER=SAN	
MON-RSEG STY STYSEG / ACN ACNSEG	
INIT-DEC AIBN 3.71E-005 0.0 0.0 EFFIC=1.0 NRADS=2	
CHAIN-INI STY 4820.0 0.0 0.0	
CHAIN-INI ACN 225.0 0.0 0.0	
PROPAGATION STY STY 4820.0 0.0 0.0	
PROPAGATION STY ACN 10277.0 0.0 0.0	
PROPAGATION ACN STY 7165.60 0.0 0.0	
PROPAGATION ACN ACN 225.0 0.0 0.0	
CHAT-MON STY STY .2890 0.0 0.0	
CHAT-MON STY ACN .2890 0.0 0.0	
CHAT-MON ACN STY .0060 0.0 0.0	
CHAT-MON ACN ACN .0060 0.0 0.0	
TERM-COMB STY STY 1.3900E+08 0.0 0.0	
TERM-COMB STY ACN 3.5800E+09 0.0 0.0	
TERM-COMB ACN STY 3.5800E+09 0.0 0.0	
TERM-COMB ACN ACN 1.0200E+08 0.0 0.0	
GEL-EFFECT TERMINATION 2 MAX-PARAMS=10 GE-PARAMS=1.0 0.0	&
2.570005050 9.56001760 -3.030 .007850 0.0 2.0	

2 PREDICTING PHYSICAL PROPERTIES

SUMMARY

This example demonstrates how to use Polymers Plus to predict pure component properties of polymers using the Van Krevelen group contribution method.

The steps covered include:

- Drawing the Simulation Flowsheet
- Specifying Setup and Global Options
- Specifying and Characterizing Components
- Specifying Physical Properties
- Supplying Process Information
- Defining Molecular Structure
- Creating Property Sets
- Creating Property Tables
- Running the Simulation and Examining the Results

The Van Krevelen method is based on the chemical structure of the polymers (Van Krevelen, 1990). It uses additive molar functions based on group contribution. Using this technique a variety of polymer properties can be predicted. In Polymers Plus the Van Krevelen method is used to estimate heat capacity of both liquid and solid polymers, liquid viscosity for both polymer melt and polymer solution, and density. In this example heat capacity, enthalpy and density are predicted at atmospheric pressure in the temperature range of 500 to 600 K for a liquid copolymer of polystyrene with n-butyl-acrylate.

A convenient approach is to use the Flowsheet option of Polymers Plus. Therefore, in the following example, a feed stream containing the copolymer, with a degree of polymerization of 1000 and consisting of fifty percent by weight polystyrene and fifty percent by poly(butyl-acrylate) is flashed at 500 K and 1 bar.

The copolymer considered in this example is not available in the Polymers Plus databanks, hence the generic polymer component is used to describe it. In addition, for demonstration purposes, it is assumed that the properties of n-butyl-acrylate segment are not available and they are estimated using Van Krevelen group contribution method, by providing the groups constituting this segment.

Property tables and property sets are used to tabulate liquid heat capacity, enthalpy and density of the copolymer.

SETUP INSTRUCTIONS

In this example you will create a Polymers Plus flowsheet, run the simulation and examine the results.

In the flowsheet, there is a single feed stream containing equal amounts of styrene and nbutyl-acrylate monomers and styrene-butyl-acrylate copolymer. Components considered in the simulation are summarized as:

Component	Name	Туре	Databank
n-butyl acrylate	ВА	Conventional	PURECOMP
Styrene	STYRENE	Conventional	PURECOMP
Copolymer	SBA	Polymer	POLYMER
b-butyl-acrylate	BA-R	Segment	SEGMENT
Styrene-R	Sty-R	Segment	SEGMENT

The feed stream consists of 1 kg/hr of styrene, 1 kg/hr of n-butyl-acrylate and 1 kg/hr of the copolymer at one atmosphere pressure and 500 K. The feed is flashed at 500 K and 1 atm.

The step-by-step instructions to construct a simulation model are given below.

Start Aspen Plus from the Start Menu or by double clicking the Aspen Plus icon on your desktop.

The Aspen Plus main window appears.

To create a new simulation:

1. On the Aspen Plus startup dialog box, click on the **Template** option. Click **OK**.

The **New** template window appears. You can use this window to specify the **Simulation** template and **Run Type** for the new run. Aspen Plus uses the Simulation Template you choose to automatically set various defaults appropriate to your application.

2. Select **Polymers with Metric Units** as your template. The default **Run type**, Flowsheet, is appropriate for this example. Click **OK**.

The Aspen Plus main window is now active.

Drawing the Simulation Flowsheet

To place unit operation blocks:

- 1. On the model library palette, click on the **Separators** tab. The icons in the separator category are displayed in the model menu.
- 2. Click on the **Flash2** icon. Move the cursor to the process flowsheet window and click at the desired location.

The Flash2 block will appear on the flowsheet window.

To place streams:

1. Click on the **Material STREAMS** icon and move the mouse to the process flowsheet window.

Red and blue arrows will appear. These arrows indicate the location of required (red) and optional (blue) stream connection ports to the inlet port of FLASH2.

- 2. Click on the red feed arrow, drag the mouse to a proper location and click again. Repeat the procedure to create two product streams.
- 3. Click on the arrow symbol that appears to the top left of the **Material STREAMS** icon to switch the mouse out of the insert mode.

If the mouse is showing cross-hair, +, it means the mouse is still in the insert mode.

To rename streams:

- 1. Click on the name box of the stream to be renamed.
- 2. Click the *right* mouse button and select **Rename Stream** from the pop-up menu.

Insert a proper name for each stream by repeating the procedure.

Your flow diagram should look like this:

Specifying Setup and Global Options

In this example you will use the Expert guidance system (Next button \mathbb{N}) rather than the Data Browser navigation tree to enter process and model specifications in Polymers Plus.

To specify setup and global options:

1. Click on the **Setup** button **a** on the toolbar.

The **Specifications** form is displayed. The cursor will appear in the title space of the **Global** tab sheet.

Type the title of your run as "Van Krevelen predictions for Cp, H and Rho for Copolymers".

Make sure that the **Run type** is specified as Flowsheet.

2. Click on the **Description** tab.

Type the following information: "The objective of this example is to demonstrate how to use Polymers Plus to predict pure component properties of polymers using the Van Krevelen group contribution method".

3. Click on the **Next** button **№**.

A Components Specifications form appears.

Specifying and Characterizing Components

To specify and characterize components:

1. On the **Selection** tab sheet, enter the **Component ID**, **Type**, **Component name**, and **Formula** for monomers, segments and copolymer.

Your form should look like this:

🔚 Components Specifications - Data Browser				
🝼 Specifications 💽	ENG	• + +	<< Al 🔹	>> 🛄 🏙 N>
Setup Components Specifications Assau/Blend	Selection Petrole	eum Nonconvi s	entional ∫√ Databa	nks
Petro Characterization	Component II) lype	Component name	Formula
	SBA	Polymer	GENERIC-PULYM	PULYMER
Attr-Comps	STY	Conventional	STYRENE	C8H8
	STY-R	Segment	STYRENE-R	C8H8-R
UNIFAC Groups	BA	Conventional	N-BUTYL-ACRYLA	C7H12O2
Elements	BA-R	Segment		
🗄 🔂 Streams				
🗄 🔂 Blocks				
	Find	Elec Wizard	User Defined	l Reorder
Howsheeting options Howsheeting options				
	Carrante for the form	م الم م الم الله أنه ما - 4 - 4	anta Clistan da Ci	ad built and the same the a First
I component formula from the built-in databanks. Ulick on the Find button to use the Find Idialog box to guickly search for components in the databank.				
Input Complete	P.			

For the segment BA-R, the name and formula slots are left empty because as part of this exercise you will provide molecular structure for this segment. Also, for the polymer the generic polymer component is selected since this copolymer is not in the databank

2. Click on the **Next** button **N**.

A Components Polymers Characterization form appears.

- 3. In the **Segments** tab sheet, select REPEAT from the **Type** drop down list to define STY-R and BA-R as the repeat segments.
- 4. Click on the **Polymers** tab.

For polymer SBA, select **Properties selection** as the **Built-in attribute group** from the drop down list.

Specifying Physical Properties

To specify physical properties:

- 1. Click on the **Next** button **P**.
 - A **Properties Specifications** form is displayed.
 - 2. On the **Global** tab sheet, select POLYNRTL from the **Base method** drop down list.
- 3. Click on the **Next** button **N**.

A Required Properties Input Complete pop-up form appears.

4. Click OK to Go to Next required input step.

Supplying Process Information

- 1. The Stream FEED Input form is displayed.
- 2. Enter 500K for Temperature, 1 atm for Pressure and 1 kg/hr for the Mass-Flow rate for each component.

Your form should look like this:

To supply process information:

🗖 Stream FEED (MATERIAL) Inpu	ut - Data Browser	<u>- 0 ×</u>
🝼 Input 💽	E HET ▼ ←→ << AI ▼ >> □ 🕲	N≯
Setup Components Properties Streams FEED Setup Streams Floperties Streams Floperties Streams Floperties Floperties	Specifications Flash Options PSD Component Attr. Substream name: MIXED State variables Composition Temperature Mass-Flow kg/hr 500 K Component Value Pressure SBA 1 Total flow: Mass STY 1 BA 1 Total: 3	
Results Available		

3. Click on the **Component Attr.** tab.

From the Attribute ID drop down list, select DPN and enter 1000 in the Value cell.

From the **Attribute ID** drop down list, select SFLOW and enter 1 in the **Value** cell for STY-R and BA-R.

4. Click on the **Next** button **Next**.

The **FLASH Input** form is displayed.

5. In the **Specifications** tab sheet, enter 500K for **Temperature** and 1 atm for **Pressure**.

To define the molecular structure for the segment BA-R:

Defining Molecular Structure

- 1. From the Data Browser **Properties** folder, click on the **Molecular Structure** subfolder.
- 2. In the **Object manager**, click on the name **BA-R** and click **Edit**.
- 3. Click on the **Functional Group** tab.

From the **Method** drop down list select the **VANKREV** (Van Krevelen) method.

4. Enter the Group number and Number of occurrences as shown:

Properties Molecular Struct	ure B	BA-R - Data Browser 📃 🗆 🗙	
🍼 BA-R	•		
Setup Components Components Properties Specifications Property Methods Strams Advanced Streams Streams Streams Convergence	•	General Functional Group Enter functional groups in the molecule Method: VANKREV Group number Number of occurrences 100 4 131 126 152 1 *	
Input Complete			1

Creating Property Sets

To be able to list desired polymer properties, you need to create property sets and property tables. To do this:

- 1. In the Data Browser **Properties** folder, click on the **Prop-Sets** sub-folder.
- 2. In the **Object manager**, click **New**.

A **Create new ID** pop-up form appears, click **OK** to accept the name PS-1.

3. On the **Properties** tab sheet, select **CP** (in J/kg-K), **H** (in J/kg) and **RHO** (in kg/cum) from the **Physical properties** drop down list.

Your form should look like this:

Properties Prop-Sets PS-1 - Dat	a Browser	
🍼 PS-1 💽	🛍 🔢 MET 🔽 🗢 🔿 🔨 All	▼ >> <u> </u>
Setup Components Properties Property Methods Molecular Structure Molecular Structure Analysis Prop-Sets Molecular Structure Analysis Streams Blocks Streams Convergence Costing Flowsheeting Options Model Analysis Tools Model Analysis Tools Model Analysis Tools	✓Properties ✓Qualifiers Properties Physical properties ▶ CP H RHO ★	Units Units J/kg-K J/kg kg/cum I I Search
Input Complete		

4. Click on the **Qualifiers** tab.

Select **Liquid** in the **Phase** drop down list and enter SBA, STY, and BA in the **Component** row.

Creating Property Tables

To create property tables:

- 1. In the Data Browser, click on the **Analysis** sub-folder.
- 2. In the **Object manager**, click **New**.

The **Create new ID** pop-up form appears.

- 3. Select **GENERIC** from the **Select type** drop down list and accept PT-1 by clicking on **OK**.
- 4. On the **System** tab sheet, click to select **Reference flowsheet stream**.
- 5. Select stream FEED from the Stream ID drop down list and select Temperature & pressure for the Flash type.
- 6. Click on the **Variable** tab and select **Temperature** as the adjusted variable from the drop down list.
- 7. Click on the **Range/List** button.

On the **Adjusted Variable Range/List Options** pop-up form select **Range** from the drop down list and enter 500K to 600K with Increments of 20. Click **Close**.

		ad and
Components	Vasidata Vasidata	spec (200)
Provide Int Call Propriets Int Call Advanced	Regelat	
B M Steam		

8. Click on the **Tabulate** tab, and select Prop-Set **PS-1** by clicking on the button.

Your simulation is now complete.

RUNNING THE SIMULATION AND EXAMINING THE RESULTS

To run the simulation:

- 1. In the Aspen Plus main window toolbar, click on the **Run Control Panel** button **I** to open the **Control Panel**.
- 2. Click on the Start button **b** to run the simulation.

To examine the results:

The results can be checked by selecting the **Results** option from the drop down list between the \leq and \geq buttons and using the browser forward button \geq to navigate to the next form with results.

The input summary is shown in Figure 2.1.

Figure 2.1 Input Summary

```
TITLE 'Van Krevelen Predictions for Cp, H and Rho for Copolymers'
IN-UNITS MET
DEF-STREAMS CONVEN ALL
DESCRIPTION "
        The objective of this example is to demonstrate how to use
        Polymers Plus to predict pure component properties of polymers using
        the Van Krevelen group contribution method. "
DATABANKS POLYMER / SEGMENT / PURE93 / NOASPENPCD
PROP-SOURCES POLYMER / SEGMENT / PURE93
COMPONENTS
   SBA POLYMER SBA /
   STY C8H8 STY /
   STY-R C8H8-R STY-R /
   BA C7H12O2-D1 BA /
   BA-R * BA-R
FLOWSHEET
   BLOCK FLASH IN=FEED OUT=VAPOR LIQUID
PROPERTIES POLYNRTL
STRUCTURES
   VANKREV BA-R 100 4 / 131 1 / 126 1 / 152 1
POLYMERS
    SEGMENTS STY-R REPEAT / BA-R REPEAT
   POLYMERS SBA
   ATTRIBUTES SBA SFRAC SFLOW DPN ZMOM FMOM
PROP-SET PS-1 CP H RHO UNITS='J/kg-K' 'J/kg' 'kg/cum' &
       SUBSTREAM=MIXED COMPS=SBA STY BA PHASE=L
STREAM FEED
   SUBSTREAM MIXED TEMP=500. <K> PRES=1.
   MASS-FLOW SBA 1. / STY 1. / BA 1.
   COMP-ATTR SBA SFLOW ( 1. 1. )
   COMP-ATTR SBA DPN ( 1000. )
BLOCK FLASH FLASH2
   PARAM TEMP=500. <K> PRES=1.
STREAM-REPOR NOMOLEFLOW MASSFLOW
PROP-TABLE PT-1 FLASHCURVE
   STREAM FEED FLASH-CODE=TP
   VARY TEMP
    RANGE LOWER=500. UPPER=600. INCR=20.
    TABULATE PROPERTIES=PS-1
```

REFERENCES

Van Krevelen, D. W., Properties of Polymers, 3rd Ed., Elsevier, Amsterdam (1990).

3 REGRESSING PROPERTY PARAMETERS

SUMMARY

This example demonstrates how to use the data regression (DRS) capabilities to fit the mixture parameters of an equation of state (EOS) model to binary vapor-liquid equilibrium (VLE) data.

The steps covered include:

- Specifying Setup and Global Options
- Specifying and Characterizing Components
- Specifying Physical Property Method
- Entering Experimental Data
- Specifying a Regression Case
- Specifying Physical Property Parameters
- Running the Simulation and Examining the Results

Correlative models that are used to describe thermodynamic properties of mixtures often contain binary interaction parameters. These parameters account for mixture non-idealities, and are necessary for accurate representation of the mixture behavior. For each constituent pair of a multicomponent mixture, these parameters are obtained by regressing some form of binary experimental information.

In this example, binary VLE data of ethylene-polyethylene mixture are regressed to obtain the two binary interaction parameters of the Sanchez-Lacombe EOS, k_{ii} and η_{ii} . You can

find the details of this model in Section 3.9 of the *Polymers Plus User Guide*. Ethylenepolyethylene binary mixture is encountered in polyolefin production, and at high pressures the thermodynamic behavior of this mixture can be described by an EOS such as the Sanchez-Lacombe model.

In this example you will create a Polymers Plus data regression (DRS) session, run the DRS, and examine the results.

SETUP INSTRUCTIONS

The step-by-step instructions to define the simulation model are given below.

➤ Start Aspen Plus from the Start Menu or by double clicking the Aspen Plus icon on your desktop.

The Aspen Plus main window appears.

To create a new simulation:

1. On the Aspen Plus startup dialog box, click on the **Template** option. Click **OK**.

The **New** template window appears. You can use this window to specify the **Simulation** template and **Run Type** for the new run. Aspen Plus uses the Simulation Template you choose to automatically set various defaults appropriate to your application.

2. Select **Polymers with Metric Units** as your template. Select **Data Regression** as the **Run type**. Click **OK**.

The Aspen Plus main window is now active.

Specifying Setup and Global Options

In this example you will use the Expert guidance system (Next Button N) rather than the Data Browser navigation tree to enter process and model specifications in Polymers Plus.

To specify setup and global options:

1. Click on the **Setup** button **a** on the toolbar.

A **Specifications** form is displayed. The cursor will appear in the title space of the **Global** tab sheet.

Type title of your run as "Regression of binary parameters for the POLYSL model".

- 2. Select the **Run type** as **Data Regression** (DRS), in the **Units of measurement** frame, select SI for **Input data** and **Output results**.
- 3. Click on the **Description** tab.

Type the following information: "The objective of this example is to demonstrate how to use the data regression capabilities to fit the mixture parameters of an EOS model to binary VLE data".

4. From the Data Browser, click on the **Units Sets** sub-folder and click **New**.

Click **OK** to accept US-1 as the Unit set ID.

A dialog box appears requesting approval to make US-1 the global unit set, click No.

- 5. On the Standard tab sheet, select Eng from the Copy from drop down list.
- 6. Change the following units to:

Pressure = bar Temperature = K

- 7. Click on the **Transport** tab and set Density=kg/cum.
- 8. Refer to steps 4-7 to create unit set US-3 in which **Copy from**=SI, Pressure=bar, Delta P=bar.
- 9. Click on the **Next** button **N**

The Components Specifications form is displayed.

Specifying and The component information necessary for this DRS run is: Characterizing Components

Component ID	Туре	Component Name	Formula
PE	Oligomer	POLY(ETHYLENE)	PE
ETHYLENE	Conventional	ETHYLENE	C2H4
C2H4-R	Segment	ETHYLENE-R	C2H4-R

In this example the polymer is identified as oligomer. This is because no chemical reaction or any other unit operation involving the polymer is present. Consequently, you do not need to specify any polymer attributes. By defining the polymer as an oligomer, the need to enter any attribute information is eliminated. However, you need to supply the true molecular weight of the oligomer as described in Specifying Physical Property Parameters below. The results of the DRS run are not be affected by this choice. (Currently DRS runs can be accomplished only for oligomers, but not for polymers).

To supply the information given above:

1. On the **Selection** tab sheet displayed, enter the **Component ID**, **Component name**, and **Formula** for ethylene, polyethylene and ethylene segment.

At the end of this procedure, your form should look like this:

Components Specifications - Data Browser
Specifications
Setup Securitications SimulationDiptions Define components Define components Component ID Type Component name Find ETHYLENE Poperties Securitions Poperties Securities Properties Find Elec Wizard User Defined Results Summary Component formula from the built-in databanks. Click on the Find button to use the Find dialog box to quickly search for components in the databank.

- 2. From the Data Browser, double click on the **Polymers** sub-folder, and click on **Characterization**.
- 3. On the **Segments** tab sheet, select REPEAT from the **Type** drop down list for segment C2H4-R.
- 4. Click on the **Oligomers** tab, select C2H4-R as the segment and enter 1132 for PE in the oligomer row.
- 5. Click on the **Next** button **P**.

The **Properties Specifications** form is displayed.

Specifying Physical Property Method

The Sanchez-Lacombe model physical property method (POLYSL) is used in this example. To choose this method:

- 1. On the **Global** tab sheet already displayed, select POLYSL from the **Base method** drop down list.
- 2. Click on the **Next** button **N**.
- In the Enter the sets of data to be regressed dialog box that appears, click OK. The Properties Data form is displayed

Entering Experimental Data

The experimental data to be used in this DRS run are from Hao, and they are presented in Table 3.1 (Hao, et al, 1992). To enter the data:

1. In the **Object manager**, click **New**.

Enter ID as C2PE399 (for data at 399K), and select **MIXTURE** from the drop down list. Click **OK**.

A Properties Data data browser for C2PE399 appears.

2. From the drop down lists, select **Phase equilibrium** as the **Category** and TPXY as the **Data type**.

A Change Data Type dialog box appears. Click OK to continue.

From the **Available Components** frame, select ETHYLENE and PE by using the button.

3. Click on the **Constraints** tab, you need to delete PE from the **Component** column since PE is considered involatile in this example.

This is done by clicking the right mouse button while the cursor is on PE, and choosing **Clear** from the pop-up menu.

4. Click on the **Data** tab, from the drop down lists, select K for **Temperature** and kPa for **Pressure**. In the table enter the data at 399.15K given in Table 3.1.

After the first four entries, your data sheet should look like this:

📄 Properties Data C2PE399 (I	IIXTU	RE) - Data Brow	ser			
✓ C2PE 399	• 1	🖬 🔝 🛛		<< Al 🔹	>> C S N	>
Specifications SimulationOptions Units-Sets SeportOptions Components		✓ Setup ✓ Data Data type: TP> ⊂ Experimental dat	✓ Constraints ☆		Generate data	i
Specifications Secifications Secifications Secification Secification Secification Secification Secification Secification		Usage	TEMPERATURE	PRESSURE	X ETHYLENE	PE E
Attr-Comps		Std-Dev	0	1%	.001	0 13
Henry-Comps		Data	399.15	455.8	.0018	0.9982 1
B Bolymers		Data	399.15	790.30	.0037	0.9963 1
🖶 📄 Properties		Data	399.15	1135	.0055	0.9945 1
Specifications		Data	399.15	1479	.0075	0.9925
B	•		▲			

5. From the Data Browser, click on the **Data** folder and repeat the steps for data entry at 413.15K and 428.15K.

In the first row, standard deviation for the data type in each column is shown. The standard deviation gives an estimate for the magnitude of random error in a particular piece of data. The default inserts can be overwritten if necessary. For example, here you need to enter zero for temperature, one percent for pressure and 0.001 for mole fraction. Complete data entry by entering all data points given in Table 3.1.

Data Type TPXY								
Composition	Composition Basis MASS-FRAC							
Usage	Temp., K	Pressure, KPA	X, Ethylene	X, PE				
STD-DEV	0	1%	.001	0				
DATA	399.15	455.8	.0018	0.9982				
DATA	399.15	790.30	.0037	0.9963				
DATA	399.15	1135	.0055	0.9945				
DATA	399.15	1479	.0075	0.9925				
DATA	399.15	1824	.0107	0.9893				
DATA	399.15	2168	.0136	0.9864				
DATA	399.15	2513	.0158	0.9842				
DATA	399.15	2857	.0175	0.9825				
DATA	399.15	3202	.0198	0.9802				
DATA	399.15	3546	.0221	0.9779				
DATA	399.15	3891	.0242	0.9758				
DATA	399.15	4235	.0255	0.9745				
DATA	399.15	4580	.0285	0.9715				
DATA	399.15	4924	.0305	0.9695				
DATA	399.15	5269	.0330	0.967				
DATA	399.15	5613	.0359	0.9641				
DATA	413.15	455.8	.0015	0.9985				
DATA	413.15	790.30	.0034	0.9966				
DATA	413.15	1135	.0048	0.9952				
DATA	413.15	1479	.0068	0.9932				
DATA	413.15	1824	.0087	0.9913				
DATA	413.15	2168	.0112	0.9888				
DATA	413.15	2513	.0131	0.9869				
DATA	413.15	2857	.0151	0.9849				
DATA	413.15	4580	.0250	0.975				
DATA	413.15	4924	.0277	0.9723				
DATA	413.15	5269	.0296	0.9704				
DATA	413.15	5613	.0328	0.9672				
DATA	428.15	455.8	.0013	0.9987				

Table 3.1 Binary VLE Data of Ethylene+Polyethylene (MWn=31700)

continued

Table 3.1 Binary VLE Data of Ethylene+Polyethylene (MWn=31700) (cont.)

Temp., K	Pressure, KPA	X, Ethylene	X, PE
428.15	790.30	.0029	0.9971
428.15	1135	.0039	0.9961
428.15	1479	.0055	0.9945
428.15	1824	.0074	0.9926
428.15	2168	.0090	0.991
428.15	2513	.0105	0.9895
428.15	2857	.012	0.988
428.15	3202	.0146	0.9854
428.15	3546	.0164	0.9836
428.15	3891	.0178	0.9822
428.15	4235	.0207	0.9793
428.15	4580	.0222	0.9778
428.15	4924	.0242	0.9758
428.15	5269	.0265	0.9735
428.15	5613	.0286	0.9714
	Temp., K 428.15	Temp., KPressure, KPA428.15790.30428.151135428.151479428.151824428.152168428.152513428.152857428.153202428.153546428.153891428.154235428.154280428.155269428.155613	Temp., KPressure, KPAX, Ethylene428.15790.30.0029428.151135.0039428.151479.0055428.151824.0074428.152168.0090428.152513.0105428.152857.012428.153202.0146428.153546.0164428.153545.0207428.154235.0207428.154580.0222428.154580.0242428.155269.0265428.155613.0286

Specifying a Regression Case

After data entry, click on the **Next** button **No.** A **Regression Cases Incomplete** popup form appears.

To specify a regression case:

- 1. Select the Specify the data regression cases option. Click OK.
- 2. Click New in the Object manager. Click OK to accept R-1.
- 3. Click on the **Parameters** tab, refer to the form below to enter the **Initial value** and **Lower bound** values, also select the drop down list options as shown:

Properties Regression R-1 I	nput	- Da	ta Browser			
🥑 Input	•	٤	🔡 SI		AI • >>	🛄 🛄 N
🕀 🔂 Setup		√ S	etup √Paramete r	s Report Algori	thm Diagnostics	Generic prc 💶 🕨
Components Specifications Assay/Blend SetroCharacterization Pseudocomponents Attr-Comps Henry Comps UNIFAC Groups UNIFAC Groups Polymers		- 1	Parameters to be reg Type Name/Element Component or group	Binary paramete SLKIJ PE ETHYLENE	Binary paramete SLETIJ PE ETHYLENE	
Properties				_		
🗄 🛃 Property Methods			▶ Usage	Regress	Regress	<u> </u>
Estimation			Initial value	0.01	-0.09	
H Molecular Structure H Parameters		1	Lower bound	-0.09	-0.99	
Data				•	1	
Analusis	•					
Input Changed						

Note that unlike the unary parameters, the binary parameters are specified for the oligomer-conventional species pair, not for the segment-conventional species pair.

Specifying Physical Property Parameters

To specify physical property parameters:

1. Click on the **Next** button **N**.

A Required Properties Input Complete pop-up form appears.

- 2. Click to select the Enter property parameters option. Click OK. An Additional property parameters pop-up form appears.
- 3. Accept the Pure component parameters option. Click OK.

In the Sanchez-Lacombe model, for each component, three pure component constants, T^* , P^* , and ρ^* are needed.

To enter these pure component constants:

1. In the **Pure Component** form displayed, click **New**.

Enter PCES-1 for the new name. Click **OK** to accept the **Scalar** option and PCES-1.

2. On the **Input** tab sheet enter three Sanchez-Lacombe constants for ethylene and segment of PE and for the local unit sets select **US-1** from the data browser menu bar drop down list as shown.

📄 Properties Parameters Pure Component PCES-1 - Data Browser								
Ø PCES-1	•	1	1	US-1	•	→ <<		>> C S N>
⊕∰ Setup ⊕∰ Components ⊜∰ Properties	•		nput Pure	component	scalar parame	eters		
				Parameters	Units	Data set	Component C2H4-R	Component
🕀 👿 Molecular Structure			•	LPSTR 🔻	bar	1	4250	3339
Parameters			S	LRSTR	kg/cum	1	887	660
Pure Component MW			S	LTSTR	К	1	673	291
PCES-1			*					
🗄 🔂 Binary Interaction			_				•	•
Electrolyte Pair								
Electrolyte Lenary								
UNIFAC Group								
Besults								
⊡ ⊡ Data								
🗄 한 👔 Regression		E.	foronc		parameter for l	the Sanck	ez-l acombe equa	ation of state model
🗌 🦳 🧰 Analysis	-1		rerent	e pressure p	Jarameter für i	une parici	iez-Lacombe equa	ation of state model.
Prop-Sets	<u> </u>							
Input Complete								

These constants are reported in Appendix F of the *Polymers Plus User Guide*. Note that unary parameters are entered for segment of the polymer, rather than the polymer itself.

3. From the Data Browser, click on the **Pure-Component** sub-folder.

4. In the **Object manager**, click **New**.

Enter MW for the new name. Click **OK** to accept the **Scalar** option.

5. On the **Input** tab sheet, select MW from the **Parameter** drop down list and PE from the **Component** drop down list.

Enter 31756.85 in the PE cell.

This is necessary when the oligomer option is used to identify a polymeric molecule.

6. Select the local unit set as US-3 from the data browser menu bar drop down list.

RUNNING THE SIMULATION AND EXAMINING THE RESULTS

To run the simulation:

1. Click on the **Next** button **N**.

A Required Properties Input Complete pop-up form appears.

2. Click **OK** to accept the default selected.

A Required Data Regression Input Complete dialog box appears.

3. Click OK.

A Data Regression Run Selection pop-up form appears.

4. Click **OK** to accept R-1 as the run selection.

The **Control Panel** window appears.

The simulation starts running and diagnostic messages appear in the control panel. When you see the message **Data Regression completed**, the results are present.

To examine the results:

Select **Results** from the drop down list between the \checkmark and \triangleright buttons and use the browser forward button \triangleright to navigate to the next form with results.

The input summary is given in Figure 3.1.

Figure 3.1 Input Summary for DRS Run

```
TITLE 'Regression of binary parameters for the POLYSL model'
IN-UNITS SI
DESCRIPTION "
       The objective of this example is to demonstrate how to use the
       data regression capabilities to fit the mixture parameters of
       an EOS model to binary VLE data. "
DATABANKS POLYMER / SEGMENT / PURE93 / NOASPENPCD
PROP-SOURCES POLYMER / SEGMENT / PURE93
COMPONENTS
   ETHYLENE C2H4 ETHYLENE /
    PE PE PE /
   C2H4-R C2H4-R C2H4-R
PROPERTIES POLYSL
PROP-DATA MW
   IN-UNITS SI PRESSURE=bar PDROP=bar
   PROP-LIST MW
   PVAL PE 31756.8563
PROP-DATA PCES-1
   IN-UNITS ENG DENSITY='kg/cum' PRESSURE=bar TEMPERATURE=K &
       PDROP=psi
   PROP-LIST SLPSTR / SLRSTR / SLTSTR
   PVAL C2H4-R 4250 / 887 / 673
   PVAL ETHYLENE 3339 / 660 / 291
PROP-DATA SLETIJ-1
   IN-UNITS SI PRESSURE=bar PDROP=bar
    PROP-LIST SLETIJ
    BPVAL PE ETHYLENE -.4040175320
   BPVAL ETHYLENE PE -.4040175320
PROP-DATA SLKIJ-1
   IN-UNITS SI PRESSURE=bar PDROP=bar
    PROP-LIST SLKIJ
   BPVAL PE ETHYLENE -.090000000
   BPVAL ETHYLENE PE -.090000000
PARAMETERS
   BIPARAMETER 1 SLKIJ PE ETHYLENE 1 1.0000000E-02 &
       -9.0000000E-02 1.1000000E-01 1.0000000E+00
   BIPARAMETER 2 SLETIJ PE ETHYLENE 1 -9.0000000E-02 &
       -9.90000000E-01 8.10000000E-01 1.00000000E+00
CASE R-1
   DATA-GROUPS C2PE399 CONSISTENCY=YES / C2PE413 &
       CONSISTENCY=YES / C2PE428 CONSISTENCY=YES
    PARAMETERS BINARY=1 2
DATA-GROUP C2PE399
    IN-UNITS SI PRESSURE=kPa PDROP=atm
    SYSTEM-DEF TPXY ETHYLENE PE COMPOSITION=MASS-FRAC
    PHASE-EQ VL ETHYLENE
   DATA 1 399.15 455.8 .0018 1 /
        2 399.15 790.30 .0037 1 /
         3 399.15 1135 .0055 1 \scriptscriptstyle/
         4 399.15 1479 .0075 1 /
```

```
Figure 3.1 Input Summary for DRS Run (cont.)
         5 399.15 1824 .0107 1 /
         6 399.15 2168 .0136 1 /
         7 399.15 2513 .0158 1 /
         8 399.15 2857 .0175 1 /
         9 399.15 3202 .0198 1 /
         10 399.15 3546 .0221 1 /
         11 399.15 3891 .0242 1 /
         12 399.15 4235 .0255 1 /
         13 399.15 4580 .0285 1 /
         14 399.15 4924 .0305 1 /
         15 399.15 5269 .0330 1 /
         16 399.15 5613 .0359 1
    STD-DEV 1 0 -1 .001 -1
DATA-GROUP C2PE413
    IN-UNITS SI PRESSURE=kPa PDROP=atm
    SYSTEM-DEF TPXY ETHYLENE PE COMPOSITION=MASS-FRAC
    PHASE-EO VL ETHYLENE
    DATA 1 413.15 455.8 .0015 1 /
2 413.15 790.30 .0034 1 /
         3 413.15 1135 .0048 1 /
         4 413.15 1479 .0068 1 \scriptscriptstyle/
         5 413.15 1824 .0087 1 /
         6 413.15 2168 .0112 1 /
         7 413.15 2513 .0131 1 /
         8 413.15 2857 .0151 1 /
         9 413.15 3202 .0166 1 /
         10 413.15 3546 .0189 1 /
         11 413.15 3891 .0208 1 /
         12 413.15 4235 .0235 1 /
         13 413.15 4580 .0250 1 /
         14 413.15 4924 .0277 1 /
         15 413.15 5269 .0296 1 /
         16 413.15 5613 .0328 1
    STD-DEV 1 0 -1 .001 -1
DATA-GROUP C2PE428
    IN-UNITS SI PRESSURE=kPa PDROP=atm
    SYSTEM-DEF TPXY ETHYLENE PE COMPOSITION=MASS-FRAC
    PHASE-EQ VL ETHYLENE
    DATA 1 428.15 455.8 .0013 1 /
          2 428.15 790.30 .0029 1 /
         3 428.15 1135 .0039 1 /
         4 428.15 1479 .0055 1
         5 428.15 1824 .0074 1
         6 428.15 2168 .0090 1 /
         7 428.15 2513 .0105 1 /
         8 428.15 2857 .012 1 /
         9 428.15 3202 .0146 1 /
         10 428.15 3546 .0164 1 /
         11 428.15 3891 .0178 1 /
         12 428.15 4235 .0207 1 /
         13 428.15 4580 .0222 1 /
         14 428.15 4924 .0242 1 /
         15 428.15 5269 .0265 1 \scriptscriptstyle/
         16 428.15 5613 .0286 1
    STD-DEV 1 0 -1 .001 -1
POLYMERS
    SEGMENTS C2H4-R REPEAT
    OLIGOMERS PE C2H4-R 1132
PROPERTY-REP NOPCES PROP-DATA DFMS
```

REFERENCES

Hao, W., Elbro, H. S. and Alessi, P. "*Polymer Solution Data Collection*", Chemistry Data Series, Vol. XIV, Part 1, DECHEMA (1992).

EXAMPLE Regressing Property Parameters

4 FITTING KINETIC PARAMETERS

SUMMARY

The objective of this example is to demonstrate how to fit kinetic rate constant parameters to available data for a single reactor flowsheet. This example describes the basic procedure for setting up a simulation to fit kinetic parameters. The Styrene Ethyl Acrylate process in the Steady-State Applications section provides strategies for fitting parameters for complex systems.

The steps covered include:

- Drawing the Simulation Flowsheet
- Specifying Setup and Global Options
- Specifying and Characterizing Components
- Specifying Physical Properties
- Specifying Polymerization Kinetics
- Supplying Process Information
- Specifying Data Regression
- Running the Simulation and Examining the Results

In this process, vinyl acetate is polymerized in solution in a batch reactor with methanol as a solvent and methyl peroxide as the initiator. The reactor is operated isothermally with the polymerization temperature maintained at the boiling point of methanol, 64.7°C, 1 atm.

The reactor is considered liquid filled. Therefore, vapor-liquid equilibrium calculations will not be accounted for in this simulation. In practice, there is usually some vapor space in the reactor and reflux condenser. This has some effect on the concentration in the liquid phase, however, the effect is not considered significant for this homopolymerization example. The simulation can be easily modified to include VLE calculations if necessary.

Component ID	Туре	Component Name	Formula
MPO	Conventional	VINYL-ACETATE	C4H6O2-1
VAC	Conventional	VINYL-ACETATE	C4H6O2-1
MEOH	Conventional	METHANOL	CH4O
POLY	Polymer	POLY(VINYL-ACETATE)	PVAC
VAC-SEG	Segment	VINYL-ACETATE-R	C4H6O2-R-3

The component information is summarized below:

The feed stream consists of 100 kg/hr of vinyl acetate, 80 kg/hr of methanol, 0.0258 kg/hr of initiator at one atmosphere and 64.7°C. The initial charge is determined by multiplying the flowrates by the cycle time needed to prepare the charge.

SETUP INSTRUCTIONS

The step-by-step instructions for setting up the simulation are given below.

Start Aspen Plus from the Start Menu or by double clicking the Aspen Plus icon on your desktop.

The Aspen Plus main window appears.

To create a new simulation:

1. On the Aspen Plus startup dialog box, click on the **Template** option. Click **OK**.

The **New** template window appears. You can use this window to specify the **Simulation** template and **Run Type** for the new run. Aspen Plus uses the Simulation Template you choose to automatically set various defaults appropriate to your application.

2. Select **Polymers with Metric Units** as your template. The default **Run type**, Flowsheet, is appropriate for this example. Click **OK**.

The Aspen Plus main window is now active.

Drawing the Simulation Flowsheet

To place unit operation blocks:

1. On the model library palette, click on the **Reactors** tab.

The models in the reactors category are displayed in the model menu.

2. Click on the **RBatch** icon. Move the cursor to the process flowsheet window and click at the desired location.

The **RBatch** block will appear on the flowsheet window.

To place streams:

1. Click on the **Material STREAMS** icon and move the mouse to the process flowsheet window.

Red and blue arrows will appear. These arrows indicate the location of required (red) and option (blue) stream connection ports to the inlet port of batch reactor.

- 2. Click on the red feed arrow, drag the mouse to a proper location and click again. Repeat the procedure to create one feed stream and one product stream.
- 3. Click on the arrow symbol that appears on the top left of the **Material STREAMS** icon to switch the mouse out of the insert mode.

If the mouse is showing a "+" it means the mouse is still in the insert mode.

To rename streams:

- 1. Click on the name box of the stream to be renamed.
- 2. Click the *right* mouse button and select **Rename Stream** from the pop-up menu. Insert a proper name for each stream by repeating the procedure.

Your flow diagram should look like this:

Process Reveheet V	Factore .		
	FEED		
V	0.000		
		BATCH	
		PRODUCT	-

Specifying Setup and Global Options

In this example you will use the Expert guidance system (Next Button \mathbb{N}) rather than the Data Browser navigation tree to enter process and model specifications in Polymers Plus.

To specify setup and global options:

1. Click on the **Setup** button **I** on the toolbar.

The **Specifications** form is displayed. The cursor will appear in the title space of the **Global** tab sheet.

Type the title of your run as "Free-Radical Kinetics Parameter Fitting."

Make sure that the **Run type** is specified as Flowsheet.

2. Click on the **Description** tab.

Type in the following information: "This example illustrates how to fit kinetic rate constant parameters in Polymers Plus".

To specify simulation options:

- 1. In the Data Browser, click on the **Simulation Options** form.
- 2. Click on the **System** tab and select **Print Fortran tracebacks when a Fortran** error occurs.
- 3. Click on the **Limits** tab and enter 10000 for the **Simulation time limit in CPU** seconds.

To define a unit-set:

- 1. In the Data Browser tree view, double click on the **Units Sets** sub-folder to bring up the Units-Sets Object manager.
- 2. Click **New** to create a new set.

Enter an ID (e.g. SET1) for the new units-set and click **OK**.

- 3. On the Aspen Plus dialog box that appears requesting approval to make SET1 the global unit set, click **Yes**.
- 4. A Setup Units Sets form appears.

Use SI units as the basis for your new set by selecting SI from the **Copy from** drop down list.

- 5. Enter user defined units as:
 - Mass Flow = kg/hr
 - Mole Flow = kmol/hr
 - Pressure = atm
 - Temperature = C
- 6. Click on the **Next** button **P**.

A Components Specifications form appears.

Specifying and To specify and characterize components:

Components

Characterizing 1. On the Selection tab sheet, enter the Component ID, Component name, and Formula for monomers, segments and copolymer.

Your form should look like this:

Components Specifications	- Da	ta Browser			
Specifications	•	E 🗄 SET1		<< All	>> 🛄 🚵 N>
ED Options √ Stream Class ⊕ ────────────────────────────────────	•	Selection Petroleu Define components	m [Nonconv	entional 🛛 🗸 Databa	nks
🖃 🔂 Units Sets		Component ID	Туре	Component name	Formula
		▶ MP0	Conventional	VINYL-ACETATE	C4H602-1
SET1		VAC	Conventional	VINYL-ACETATE	C4H602-1
🔄 🏹 SI		MEOH	Conventional	METHANOL	CH40
Report Options		POLY	Polymer	POLY(VINYL-ACET	PVAC
		VAC-SEG	Segment	VINYL-ACETATE-F	C4H602-R-3
Assay/Blend		<u></u>			
🕀 🛅 Petro Characterization					
Pseudocomponents					
Aur-Comps Aur-Comps Menry Comps OUNIFAC Groups Outroompone Comp-Groups		Find	Elec Wizard	User Defined	l Reorder
Polymers Properties		Component ID. If data a	re to be retrieved	from databanks, ente	er either Component Name
		or Formula. See Help.			
Blocks	•	ļ			
Input Complete					

2. Click on the **Next** button **N**.

A Components Polymers Characterization form appears.

- 3. In the **Segments** tab sheet, select REPEAT from the **Type** drop down list to define VAC-SEG as a repeat segment.
- 4. Click on the **Polymers** tab, select **Free-radical selection** from the **Built-in** attribute group drop down list and click on Edit to modify the attribute group in the Polymer Attributes pop-up form.

Components Polymers Chara	acter	rization -	Data I	Browser				
🥑 Characterization	•	E B	ENG	•	⊨⇒ <<	. All	- >> 📋) 🅍 N>
Setup Components Setup Sepecifications Assay/Blend Petro Characterization Pseudocomponents Attr-Comps HNIEAC Groups	•	Segm Polyr Seler Built-	ents 🗸 ner ID ction by in attribu	Polymers 0	Digomers	Site-Based S	Species	ied)
OUNIFAC Groups Orop-Groups Orop-G		Attrib SFR MW LSF	ute list- AC N LOW	SFLOW MWW LEFLOW	DPN ZMOM	DPW FMOM	PDI SMOM	
Properties Streams Blocks Reactions Convergence Costing					Edit			
Flowsheeting Options Model Analysis Tools Besuits Summary	•	Polymer	compon	entiD				

The modified attribute group is shown below, deselect the attributes which do not appear here:

Specifying Physical Properties

To specify physical properties:

1. Click on the **Next** button **N**.

A Properties Specifications form is displayed.

- 2. Select POLYNRTL from the **Base method** drop down list.
- 3. From the Data Browser, double click on the **Molecular Structure** sub-folder.
- 4. From the **Molecular Structure** sub-folder, click on **VAC-SEG**.
- 5. Click on the **Functional Group** tab and choose the VANKREV (Van Krevelen) from the **Method** drop down list.

Enter the groups and occurrences to match the following:

🔚 Properties Molecular Structure V	VAC-SEG - Data Browser	_ _ X
🗸 VAC-SEG		▼ >> <u> </u>
Comp-Groups Comp-Groups Polymers Properties Specifications Component Methods Compon	General ✓ Functional Group Formula Enter functional groups in the molecule Method: ✓ VANKREV Group number Number of occurrences 100 1 131 1 151 1 126 1 ★	
Input Complete		

6. From the Data Browser, double click on the **Parameters** sub-folder.

Click on the **Pure Component** sub-folder.

7. In the **Object manager**, click **New**.

Enter DATA-1 as the new name of a property, and accept SCALAR as the type.

8. On the **Pure Component** form for **DATA-1**, choose MW from the **Parameters** drop down list.

Component	MW	
MPO	76.050	
VAC	86.090	
MEOH	32.040	
POLY	258270.0	
VAC-SEG	86.090	

- 9. From the Data Browser, click on the **Pure Component** sub-folder.
- 10. In the **Object manager**, click **New**.

Click to select **T-dependent correlation** and choose DHVLWT-1 from the default name list that appears. Click **OK**.

- 11. On the **Pure Component** form for **DHVLWT-1**, choose MPO, VAC, POLY and VAC-SEG from the **Components** drop down list and enter for each component:
 - Temperature units=K
 - Property units=J/kmol
 - Row 1=39556000.0
 - Row 2=180.350
- 12. From the Data Browser, double click on the **Prop-Sets** sub-folder.
- 13. In the **Object Manager**, click **New**.

Enter **DENSITY** as the new name of the property set and select the following physical properties on the **Properties** tab sheet:

Properties Prop-Sets DENS	ITY	- Data Browser				_ 🗆 ×
🥑 DENSITY	•	🛅 🔡 SET1	• • •	<< AII	- >>	<u> </u>
Setup Components Components Properties Specifications Specifications Secifications Secifications Secifications Secifications Secification Secificatication Secificaticatication Secification Secificatio		✓ Properties ✓ Qu Properties F ▶ RHO RHOMX ★ Substream:	AllXED		Units kg/cum kg/cum	Units Search
Input Complete						

- 14. Click on the **Qualifiers** tab and select **Liquid** from the **Phase** drop down list and VAC, POLY, and MEOH, from the **Component** drop down list.
- 15. To display the **DENSITY** set in the stream report, on the Data Browser, click on the **Report Options** form in the **Setup** folder and click on the **Stream** tab.

Click on the **Property Sets** button and select **DENSITY** using the button. Click **Close**.
Specifying Polymerization Kinetics

To specify polymerization kinetics:

- **Polymerization** 1. From the Data Browser, double click on the **Reactions** folder.
 - 2. From the **Reactions** folder, click on the **Reactions** sub-folder.
 - 3. In the **Object manager**, click **New**.

Enter REAC-1 as the new ID name.

Select FREE-RAD from the **Type** drop down list. Click **OK**.

4. On the **Species** tab sheet enter the data as shown below:

Reactions Reactions REAC-1	I (F	REE-RAD) - Data	Browser			_ 🗆 ×
Ø REAC-1	•	🔁 🔡 SET1	• • • •	< All	• >> 🗹	≥ N
Estimation Molecular Structure MEDH MP0 VAC VAC VAC-SEG Analysis Analysis Analysis Analysis Streams Streams Blocks Meactions		Species Polymer: Polymer: goes to → Initiators: Coinitiators: Catalysts: Transfer ag.: Solvents: Lobb	VAC VAC-SEG MP0 MEDH	nts VOp	tions Gel Effect	
Chemistry Chemistry Reactions Reactions Reactions Convergence Costing Costing	•	Polymer produced			C Generate	e reactions
Input Complete						

Reactions Reactions REAC-1 (F	REE-RAD) - Data Brow	wser		
🝼 REAC-1 💽	E SET1	• 🔶 • << Al	▼ >> [2 m→
Specifications Security Methods Security Methods Security Methods Security Molecular Structure	Species Reaction	us]√Rate Constants ∬√ mary. Click New to add rea	Options 🖌 ✔ Gel Eff actions.	ect
	Reaction	Reactants		Products
MPO	1) Init-dec	Мро	→ n.R*	
POLY	2) Chain-ini	Vac + R*	→ P1[Vac-seg]	
VAC	3) Propagation	Pn[Vac] + Vac	→ Pn+1[Vac]	
VAC-SEG	4) Chat-mon	Pn[Vac] + Vac	→ Dn	+ P1[Vac]
🕀 🔂 Parameters	5) Chat-pol	Pn[Vac] + Dm	→ Dn	+ Pm[Vac]
- 🛅 Data	6) Chat-sol	Pn[Vac] + Meoh	→ Dn	+ R*
- Analysis	7) Term-dis	Pn[Vac] + Pm[Vac]	→ Dn	+Dm
🗄 🔂 Prop-Sets				
🕀 🔂 Advanced				•
Blocks		.	I	
		lew Edit	Rate Constants	Auto Off
I+I-dava Lonvergence				
Input Complete	,			/

5. Click on the **Reactions** tab. You will need to fill in the sheet so that it looks like:

To do this for the first reaction:

6. Click New.

On the **Add Reaction** pop-up form, select INIT-DEC for the **Reaction type** and MPO for the **Initiator**. Click **Done**.

Repeat this step for the other 6 reactions shown.

7. Click the **Rate Constants** button on the **Reactions** form. Chose the **Summary** tab and fill in the following rate information:

Туре	Pre-Exponential (1/s)	Activation Energy (J/kmol)
Initiator Decomposition	5.0E-6	0
Chain Initiation	9500	0
Propagation	1000	0
Chain Transfer to Monomer	2.337	0
Chain Transfer to Polymer	1.235	0
Chain Transfer to Solvent	0.323	0
Termination by disproportionation	1.645E8	0

8. Click **Close**.

- 9. Click the **Options** tab and click to select the **Gel Effect** option.
- 10. Click the **Gel Effect** tab and fill in the information as shown:

Ø REACI		
Setap Components Setap Properfies An Steams Density Properfies Density Preactions Ownealty Preactions Prea	✓Species ✓Rate Constants ✓Options ✓Get Effect Apply get effect to No. Heaction Con No. Parameters ✓1 ✓ TERMINATION ✓ 2 3 1.4407 4 5 6 7 1.3435 8 9 9 10 ¥ 10 ¥ 11	
	5-deputine	

Supplying Process Information

To enter feed stream information:

- 1. From the Data Browser, double click on the **Streams** folder.
- 2. From the **Streams** folder, double click on the **FEED** sub-folder.
- 3. On the **Specifications** tab sheet, enter the stream conditions as follows:

Temperature	64.7°C
Pressure	1 atm
MPO	0.0258 kg/hr
VAC	100 kg/hr
МЕОН	80 kg/hr

To enter block information:

- 1. Click on the **Next** button №.
- 2. On the **Specifications** tab sheet, select **Constant temperature** from the **Reactor operating specification** drop down list.

Enter a temperature of 64.7°C and pressure of 1 atm, **Liquid-Only** is appropriate for the **Reactor** drop down list selection.

- 3. Click on the **Reactions** tab and move REAC-1 to the **Selected reaction sets** frame using the button.
- 4. Click on the **Stop Criteria** tab, enter:
 - Criterion No. =1
 - Location = Reactor
 - Variable type = Time
 - Stop value = 5
- 5. Click on the **Operation Times** tab, enter:
 - Total cycle time =1 hr
 - Maximum calculation time = 5 hr.
 - Time interval between profile points = 0.5 hr
 - Maximum number of profile points = 52
- 6. From the Data Browser, click on the **Convergence** form in the **BATCH** sub-folder.
- 7. On the **Flash Options** tab, enter an error tolerance of 0.001.
- 8. Click on the **Integration Loop** tab and enter:
 - Integration convergence tolerance of 1E-6
 - Initial step size of 1E-7
 - Maximum step size of 0.1 hr.
- 9. From the Data Browser, click on the **User Subroutine** form in the **BATCH** subfolder, and fill out the **Kinetics** tab sheet as shown below:

🔚 Block BATCH (RBATCH) Us	serSubroutine - Data Browser	
🚺 UserSubroutine	💽 🛅 SET1 💌 🗢 🔿 << Ali 💌 >> 🗆 🎃 🛉	>
MEOH MPO POLY VAC VAC-SEG Parameters Data Analysis Prop-Sets Model Streams Streams Streams Streams Streams Streams Blocks Convergence Weport VserSubroutine SlockOptions BlockOptions Results	 ✓ Kinetics Heat Transfer ✓ User Variables Kinetics subroutine Number of parameters Integer: 1 Real: 1 Length of work arrays Integer: 1 Real: 1 Integer: 1 Component attributes 	
Profiles		
Results Available		

10. Click on the **User Variables** tab and enter 1 for the **Number of user variables**.

Specifying Data Regression

To specify data regression:

1. From the Data Browser, double click on the **Model Analysis Tools** folder.

Double click on the Data Fit folder and the Data Set sub-folder.

You will need to create two data sets: one named D-INITIA and one named D-PROPAG.

To create the first data set:

1. In the **Object manager**, click **New**.

Enter the new name as D-INITIA, and select PROFILE-DATA as the type. Click OK.

2. On the **Define** tab sheet, enter the data as shown (where MFINIT is the mass fraction of the initiator):

🔚 Data Fit Data Set D-INITIA - Da	ata Browser
🗸 D-INITIA 📃	È 🔟 SET1 ▼ ← → << AI ▼ >> 🗆 🖄 🕨
Setup Components Properties Streams Blocks Convergence Flowsheeting Options Sensitivity Optimization Constraint Optimization Op	Image: Second system Image: Second system Image: Second
Input Complete	

3. Click on the **Data** tab, enter a **Std-Dev** of 1.0%.

Enter the time and mass fraction data shown in Table 4.1.

4. Click on the **Initial Conditions** tab, enter the temperature as 65°C, and the pressure as 1 atm. The reactor type and block name are already displayed as RBATCH and BATCH respectively.

To create the second data set:

- 1. From the Data Browser, double click on the **Data Set** sub-folder.
- 2. In the **Object manager**, click **New**.

Enter the new name as D-PROPAG, and select PROFILE-DATA as the type. Click **OK**.

- 3. On the **Define** tab sheet, enter DUTY as the **Variable name** and **Variable**, the block name as already displayed as RBATCH. Make sure that BATCH is selected from the drop down list.
- 4. Click on the **Data** tab, enter a **Std-Dev** of 5.0%.

Enter the time and heat release data shown in Table 4.1.

5. Click on the **Initial Conditions** tab, and enter the temperature as 64.5°C, and the pressure as 1 atm. The reactor type and block name are already displayed as RBATCH and BATCH respectively.

Data Point	Time (hr)	Mass Fraction of Initiator	Instantaneous Heat Release (Watt)
1	0.0	1.554E-4	-3750.0
2	0.5	1.551E-4	-3700.0
3	1.0	1.546E-4	-3300.0
4	1.5	1.542E-4	-3250.0
5	2.0	1.538E-4	-3100.0
6	2.5	1.532E-4	-3000.0
7	3.0	1.526E-4	-2800.0
8	3.5	1.522E-4	-2650.0
9	4.0	1.518E-4	-2350.0
10	4.5	1.513E-4	-2150.0
11	5.0	1.509E-4	-3750.0

Table 4.1 PVAC Regression Data

To define the regression cases:

- 1. Click on the Next button No., on the Data-Fit Regression Cases Incomplete pop-up form, click to select Specify Data-Fit Regression Cases. Click OK.
- 2. In the **Object manager**, click **New**, enter INITIA as the name and click **OK**.
- 3. On the **Specifications** tab sheet, select D-INITIA from the **Data set** drop down list and accept 1 as the weight.
- 4. Click on the **Vary** tab and enter the data as shown below:

🔚 Data Fit Regression INITIA	- Dat	ta Browser 📃 🗖	×
🔯 INITIA	•	💼 🗊 SET1 💌 🦛 🔶 << 🗛 🔍 🔊	
BlockOptions Results Profiles StreamResults Generations Chemistry Reactions Convergence Flowsheeting Options Flowsheeting Options Flowsheeting Options Sensitivity Optimization Constraint Other Stream Data Fit Other Stream Data Set Other Stream Regression Flowsheeting PROPAGA PROPAGA		✓ Specifications ✓ Vary ✓ Convergence Advanced ✓ Variable number: ✓ ✓ Manipulated variable ✓ ✓ Type: React-Var ✓ Block: REAC-1 ✓ Variable: IDPRE-EXP ✓ Sentence: INIT-DEC Line 1: ID1: MPO ✓ Vary number. ✓	
Results Available] //

Note that to enter 1 as the **Variable number** you need to right mouse click in the cell and select **Create** from the pop-up menu, or by selecting **<New>** from the drop down list.

- 5. From the Data Browser, double click on the **Regression** sub-folder.
- 6. In the **Object manager**, click **New**, enter PROPAGA as the name and click **OK**.
- 7. On the **Specifications** tab sheet, select D-PROPAG from the **Data set** drop down list and accept 1 as the weight.
- 8. Click on the **Vary** tab and enter the data as shown below:

🔚 Data Fit Regression PROPA	ιGA	- Data Browser	
🔁 PROPAGA	•	🗈 🛅 SET1 💽 🗢 🔿 🛹 🗛	J 🔹 >> 🗌 🔃 N>
Profiles StreamResults Reactions Chemistry Reactions Chemistry REAC-1 Convergence Flowsheeting Options Nodel Analysis Tools Model Analysis Tools Model Analysis Tools Sensitivity Optimization Constraint Optimization Constraint Data Fit Data Set Constraint Data Set Constraint Data Set Constraint Co	*	✓ Specifications ✓ Vary ✓ Convergence ✓	Advanced Manipulated variable limits Lower: 1000 Upper: 50000 Report labels Line 1: Line 2: Line 3: Line 4:
Results Available			

9. Click on the **Convergence** tab, and enter an **Absolute function tolerance** of 1.0.

Block Convergence

- 1. From the Data Browser, double click on the **Convergence** folder.
- 2. From the Convergence folder, click on the **Sequence** sub-folder.
- 3. Click **New** in the **Object manager**, accept S-1 as the sequence name. Click **OK**.
- 4. Fill in **Specifications** tab sheet as shown:

🗖 Convergence Sequence S-1 - Data Browser						
🍼 S-1	-	E B	SET1		< Ali 🔹 >:	> 🛄 🏙 N>
		Speci	fications	nce		
			Loop-return	Block type	Block	
The All Parameters				Unit operation	BATCH	
Data		E	3egin	Regression	INITIA	
- Analysis				Unit operation	BATCH	
E M Prop-Sets		F	Return to	Regression	INITIA	
Havanced			Begin	Regression	PROPAGA	
				Unit operation	BATCH	
🗄 🔂 Reactions		F F	Return to	Regression	PROPAGA	
Convergence						
Conv Order						
E Sequence		Specifies	the beginnin	g or end of a loop. Se	ee Help.	
S-I	Ľ	ļ				
Input Complete						11.

RUNNING THE SIMULATION AND EXAMINING THE RESULTS

To run the simulation:

- 1. In the Aspen Plus main window toolbar, click on the **Run Control Panel** button **III** to open the **Control Panel**.
- 2. Click on the Start button **b** to run the simulation.

To examine the results:

The results can be checked by selecting the **Results** option from the drop down list between the \leq and \geq buttons and using the browser forward button \geq to navigate to the next form with results. The results for initiation are:

🔚 Data Fit Regression INITIA I	Res	sults - Data Browser 📃 🗖	X
🗸 Results	•		
Setup Components Properties Streams Blocks Setup Streams Source Convergence Source Flowsheeting Options Model Analysis Tools Model Analysis Tools Sensitivity Optimization Constraint Optimization Constraint Data Fit Segression INITIA Segression INITIA Segression Sensults PBOPAGA		Summary Manipulated Variables Fitted Data Iteration History Manipulated variables Vary Initial value Estimated Standard 95% Confidence interva No. Vary Initial value Estimated Standard 95% Confidence interva No. 1 5E-06 1.6904E-06 2.8314E-07 1.1354E-06 2.2453E-0E Image: Standard	
 ⊕ ──── Case Study ⊕ ──── Results Summary 			
Results Available		·	

The results for propagation are:

The input summary is given in Figure 4.1.

```
Figure 4.1 Input Summary
TITLE 'Free-Radical Kinetics Parameter Fitting'
IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' PRESSURE=atm &
        TEMPERATURE=C TIME=hr PDROP='N/sqm'
DEF-STREAMS CONVEN ALL
SYS-OPTIONS TRACE=YES
RUN-CONTROL MAX-TIME=10000.0
DESCRIPTION "
        This example illustrates how to fit kinetic rate constant parameters
        in Polymers Plus. "
DATABANKS PURE93 / POLYMER / SEGMENT / NOASPENPCD
PROP-SOURCES PURE93 / POLYMER / SEGMENT
COMPONENTS
    MPO C4H6O2-1 MPO /
    VAC C4H6O2-1 MONOMER /
    MEOH CH40 METHANOL /
    POLY PVAC POLY /
    VAC-SEG C4H6O2-R-3 SEGMENT
FLOWSHEET
    BLOCK BATCH IN=FEED OUT=PRODUCT
PROPERTIES POLYNRTL
STRUCTURES
    VANKREV VAC-SEG 100 1 / 131 1 / 151 1 / 126 1
PROP-DATA DATA1
    IN-UNITS SI
    PROP-LIST MW
    PVAL MPO 76.050
    PVAL VAC 86.090
    PVAL MEOH 32.040
PVAL POLY 258270.0
    PVAL VAC-SEG 86.090
PROP-DATA DHVLWT-1
    IN-UNITS SI
    PROP-LIST DHVLWT
    PVAL MPO 39556000.0 180.350
    PVAL VAC 39556000.0 180.350
    PVAL POLY 39556000.0 180.350
    PVAL VAC-SEG 39556000.0 180.350
POLYMERS
    SEGMENTS VAC-SEG REPEAT
    POLYMERS POLY
    ATTRIBUTES POLY SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM &
        FMOM SMOM LSFLOW LEFLOW
```

Figure 4.1 Input Summary (cont.)

```
PROP-SET DENSITY RHO RHOMX UNITS='kg/cum' SUBSTREAM=MIXED &
        COMPS=VAC POLY MEOH PHASE=L
STREAM FEED
    SUBSTREAM MIXED TEMP=64.70 PRES=1.0
    MASS-FLOW MPO .028 / VAC 100 / MEOH 80
BLOCK BATCH RBATCH
    INT VALUE-LIST=100
    REAL VALUE-LIST=21000.0
    PARAM TYPE=T-SPEC PRINT-TIME=.5 CYCLE-TIME=1.0 MAX-TIME=5.0 &
       MAX-NPOINT=52 PRES=1.0 TEMP=64.70 NPHASE=1 PHASE=L &
        INT-TOL=1.000E-06 HINIT=1.000E-07 FLASH-TOL=1E-3
    INTEG-PARAMS MAXSTEP=.1
    STOP 1 REACTOR TIME 5.0
    REACTIONS RXN-IDS=REAC-1
    REGR-POINTS 1 D-INITIA VALUE-LIST= 0.0 1800.000 3600.000 &
        5400.000 7200.000 9000.000 10800.00 12600.00 14400.00 &
        16200.00 18000.00 / 2 D-PROPAG VALUE-LIST= 1800.000 &
        3600.000 5400.000 7200.000 9000.000 10800.00 12600.00 &
        14400.00 16200.00 18000.00
    REGR-PARAM MAXPOINT= 11
SEQUENCE S-1 BATCH INITIA BATCH (RETURN INITIA) PROPAGA BATCH &
        (RETURN PROPAGA)
STREAM-REPOR NOZEROFLOW NOMOLEFLOW MASSFLOW PROPERTIES=DENSITY
REACTIONS REAC-1 FREE-RAD
   DESCRIPTION "EXAMPLE FREE-RADICAL INPUT"
    PARAM
    SPECIES INITIATOR=MPO MONOMER=VAC SOLVENT=MEOH POLYMER=POLY
    MON-RSEG VAC VAC-SEG
    INIT-DEC MPO 5E-6 .0 .0
    CHAIN-INI VAC 9500.0 .0 .0
    PROPAGATION VAC VAC 1000.0 .0 .0
    CHAT-MON VAC VAC 2.3370 .0 .0
    CHAT-POL VAC VAC 1.2350 .0 .0
    CHAT-SOL VAC MEOH .3230 .0 .0
    TERM-DIS VAC VAC 1.645E+08 .0 .0
    GEL-EFFECT TERMINATION 2 MAX-PARAMS=10 GE-PARAMS=1.0 .0 &
        .44070 .0 6.7530 .0 .34950 .0 .0 1.0
REGRESSION INITIA
    DATA D-INITIA
    VARY REACT-VAR REACTION=REAC-1 VARIABLE=IDPRE-EXP &
       SENTENCE=INIT-DEC ID1=MPO
    LIMITS 1E-7 1E-5
REGRESSION PROPAGA
    DATA D-PROPAG
    VARY REACT-VAR REACTION=REAC-1 VARIABLE=PRPRE-EXP &
       SENTENCE=PROPAGATION ID1=VAC ID2=VAC
    LIMITS 1E3 5E4
PROFILE-DATA D-INITIA
    PARAM BLOCK=BATCH TEMP=65.0 PRES=1 UNITS=hr
    DEFINE ZZTEMP BLOCK-VAR BLOCK=BATCH SENTENCE=PARAM &
       VARIABLE=TEMP
    DEFINE ZZPRES BLOCK-VAR BLOCK=BATCH SENTENCE=PARAM &
        VARIABLE=PRES
    VECTOR-DEF MFINIT BLOCK-VEC BLOCK=BATCH SENTENCE= &
        REGR-C-PROF VARIABLE=MASSFRAC-L ID2=MPO
```

Figure 4.1 Input Summary (cont.)

```
USE STD-DEV * -1.0 / DATA 0.0 1.554E-4 / DATA 0.5 &
         1.551E-4 / DATA 1.0 1.546E-4 / DATA 1.5 1.542E-4 /
DATA 2.0 1.538E-4 / DATA 2.5 1.532E-4 / DATA 3.0 &
                                                                          δc
         1.526E-4 / DATA 3.5 1.522E-4 / DATA 4.0 1.518E-4 / &
         DATA 4.5 1.513E-4 / DATA 5.0 1.509E-4
PROFILE-DATA D-PROPAG
    PARAM BLOCK=BATCH TEMP=64.5 PRES=1 UNITS=hr
    DEFINE ZZTEMP BLOCK-VAR BLOCK=BATCH SENTENCE=PARAM &
         VARIABLE=TEMP
    DEFINE ZZPRES BLOCK-VAR BLOCK=BATCH SENTENCE=PARAM &
         VARIABLE=PRES
     VECTOR-DEF DUTY BLOCK-VEC BLOCK=BATCH SENTENCE= REGR-PROF &
         VARIABLE=DUTY
     USE STD-DEV * 5.0 / DATA 0.5 -3750.0 / DATA 1.0 &
         -3700.0 / DATA 1.5 -3300.0 / DATA 2.0 -3250.0 / &
DATA 2.5 -3100.0 / DATA 3.0 -3000.0 / DATA 3.5 &
-2800.0 / DATA 4.0 -2650.0 / DATA 4.5 -2350.0 / &
         DATA 5.0 -2150.0
```

5

FRACTIONATING OLIGOMERS

SUMMARY

This example illustrates the use of Polymers Plus for modeling a polymer/oligomer fractionation process.

The steps covered include:

- Drawing the Simulation Flowsheet
- Specifying Setup and Global Options
- Specifying and Characterizing Components
- Specifying Physical Properties
- Supplying Process Information
- Running the Simulation and Examining the Results

One typical fractionation method is to dissolve the polymer in a good solvent and then add small amounts of antisolvent to it. At the phase equilibria, the high-molecular weight polymer precipitates in the solvent phase, while the lower-molecular weight polymer dissolves in the antisolvent phase. By continuing addition of antisolvent, progressively lower molecular-weight polymer precipitates.

The system in this example contains benzene (1, solvent), ethanol (2, antisolvent) and polystyrene (3, polymer). A pseudo-component approach is used to represent the polydispersity of polystyrene. In the pseudo-component approach, a series of oligomers with different degree of polymerization (DP) is defined. The mass distribution of the oligomers in the feed is approximately a Gamma distribution. The Flory-Huggins model of polymer solution is used to calculate the liquid-liquid phase equilibria in this quasi-ternary mixture. The Flory-Huggins binary interaction parameters χ are obtained from Wu and Prausnitz (Wu and Prausnitz, 1990).

SETUP INSTRUCTIONS

In this example you will create a Polymers Plus process model to fractionate polystyrene using benzene and ethanol, run the simulation and examine the results.

The step-by-step instructions to construct a simulation model are given below.

Start Aspen Plus from the Start Menu or by double clicking the Aspen Plus icon on your desktop.

The Aspen Plus main window appears.

To create a new simulation:

1. On the Aspen Plus startup dialog box, click on the **Template** option. Click **OK**.

The **New** template window appears. You can use this window to specify the **Simulation** template and **Run Type** for the new run. Aspen Plus uses the Simulation Template you choose to automatically set various defaults appropriate to your application.

2. Select **Polymers with English Units** as your template. The default **Run type**, Flowsheet, is appropriate for this example. Click **OK**.

The Aspen Plus main window is now active.

Drawing the Simulation Flowsheet

To place unit operation blocks:

1. On the model library palette, click on the **Separators** tab.

The models in the separator category are now displayed in the model menu.

2. Click on the **Flash3** icon. Move the cursor to the process flowsheet window and click at a desired location.

The Flash3 block will appear on the flowsheet window.

To place streams:

1. Click on the **Material STREAMS** icon and move the mouse to the process flowsheet window.

Red and blue arrows will appear. These arrows indicate the location of the required (red) and optional (blue) stream connection ports to unit operations.

- 2. Click on the red arrow, and move the mouse cursor to connect to the inlet port of Flash3. Repeat the procedure to create a second feed stream, one vapor product and two liquid products.
- 3. Click on the arrow symbol that appears to the top left of the **Material STREAMS** icon to switch the mouse out of the insert mode

If the mouse is showing cross-hair, +, it means the mouse is in the insert mode.

To rename streams:

- 1. Click on the name box of the stream to be renamed.
- Click the *right* mouse button and select **Rename Stream** from the pop-up menu. Name the oligomer stream 1P and the antisolvent stream 1.

The flowsheet you created should look like this:

Specifying Setup and Global Options

In this example you will use the Aspen Plus Data Browser navigation tree rather than the Expert guidance system (Next button \mathbb{N}) to enter process and model specifications in Polymers Plus.

To specify global options:

- 1. Open the Data Browser by clicking on the Data Browser button in the Aspen Plus main window
- 2. Double click on the **Setup** folder, and click on **Specifications**.

On the **Global** tab sheet, type the title of your simulation as "Polystyrene Oligomer Fractionation".

3. Click on the **Description** tab.

Type the following information: "This example illustrates the use of Polymers Plus for modeling polymer/oligomer fractionation process".

- 4. From the Data Browser, click on **Report Options**.
- 5. Click on the **Stream** tab, click to select **Mole** for the **Flow basis** and **Mass** and **Mole** for the **Fraction basis**.
- 6. From the Data Browser, double click on the **Units Sets** folder.
- 7. In the **Object manager**, click **New**.

Enter SET1 as the ID. Click **OK**.

An Aspen Plus dialog box requesting approval to make SET1 the global unit set appears. Click **No**.

- 8. On the **Standard** tab sheet, select **Eng** from the **Copy from** drop down list.
- 9. On the **Standard** tab sheet, select K for **Temperature** and atm for **Pressure**.

Specifying
and
Characterizing
Components

....

To specify components:

- 1. From the Data Browser, double click on the **Components** folder.
- **Q** 2. From the **Components** folder, select **Specifications**.
 - 3. On the **Selection** tab sheet, define benzene, ethanol and ten oligomer components (from OL2 to OL11) as shown below.

Styrene segment is needed to define the structure of oligomers.

Components Specifications	ata Browser		
Specifications	E ENG 🔽 🖌	> << Ali -	>> 🛄 🕍 N>
Setup Components Secup Secup Securications Specifications Securication Secu	✓ Selection Petroleum Define components Component ID > SOLVENT1 Conv STY-SEG Segm OL2 OL3 OL4 OL5 Ol5 Find	Nonconventional Component name entional BENZENE entional ETHANOL ient STYRENE-R mer mer mer Wizard User Defined	Formula C6H6 C2H6O-2 C8H8-R
Input Complete	·		

To characterize components:

- 1. From the **Data Browser**, double click on the **Polymers** sub-folder.
- 2. In the **Polymers** sub-folder, click on **Characterization**.
- 3. On the **Segments** tab sheet, select REPEAT from the **Type** drop down list for segment **STY-SEG**.
- 4. Click on the **Oligomers** tab.

You need to provide the number of segments for each oligomer. Enter these as shown below using even numbers from 2-20.

🔚 Components Polymers Characte	ation - Data Browser	_ 🗆 ×
🗹 Characterization 📃	ENG 🔽 🗲 🔿 < All	▼ >> C S N>
Setup Components Secifications Assay/Blend	Segments Polymers Oligomers Site-Based Oligomer structure	Species
Petro Characterization Pseudo Components Attr-Compo	Oligomer -	
Henry Comps	▶ 0L2	
Comp-Groups	OL4 6	_
Characterization		
⊕ M Properties ⊕ M Streams	OL7 12 OL8 14	
Blocks Bocks Reactions Convergence Convergence		
⊕-	lumber of this segment in oligomer	
Input Complete		

Specifying Physical Properties

A physical property option set is needed for this simulation.

To specify the global physical property method:

- 1. From the Data Browser, double click on the **Properties** folder.
- 2. From the **Properties** folder, click on **Specifications**.
- 3. On the **Global** tab sheet, select POLYFH from the **Base method** drop down list.

To enter pure component constants:

- 1. From the Data Browser, double click on the **Parameters** sub-folder.
- 2. From the **Parameters** sub-folder, click on the **Pure Component** sub-folder.
- 3. In the **Object manager**, click **New**.

Click to select **T-dependent Correlation** and PLXANT-1 as the default name. Click **OK**.

4. Enter **Temperature-dependent correlation parameters** as listed in Figure 5.2 in the PROP-DATA PLXANT-1 paragraph.

🗖 Properties Parameters Pure Component PLXANT-1 - Data Browser 📃 🗆 🗙							
V PLXANT-1	•	<u>~</u>	ENG 💌			C S	N>
Setup Setup Components Components Specifications Specifications Secifications Secification Secificati Secification Secification Secification		Paramo Paramo F Tem F 1 2 2	eter: PLXANT perature-depende Components emperature units iroperty units 2 3 4	nt correlation para 0L2 ▼ F psi -10.0 0.0 0.0 0.0 1	Data set: 1 meters F psi -10.0 0.0 0.0 0.0	OL4 F psi -10.0 0.0 0.0 0.0	
Input Complete	. ,	r					

- 5. In the Data Browser, click on the **Pure Component** folder.
- 6. On the **Object manager**, click **New**.

Accept the Scalar option and enter the new name as U-3. Click OK.

- 7. On the **Input** tab sheet, enter the critical constants for oligomers. Refer to the PROP-DATA U-3 paragraph in Figure 5.2 for the values of these constants.
- 8. Select the User-defined unit-set SET1 from the unit field drop down list on the data browser menu bar.

🔚 Properties Parameters Pure Component U-3 - Data Browser							
🍼 U-3	•	£٦	SET1	•	→ <<		>> 🛄 🏙 N>
Petro Characterization Pseudocomponents Attr-Comps		√In p	ut	scalar parame	ters		
Henry Comps UNIFAC Groups			Parameters	Units	Data set	Component	Component OL3
		∣∣₽	TC	К	1	500.0	500.0
Properties		-	ZC	atm	1	20.0	20.0
						•	F
Pure Component	_						
U-1							
⊕ 🔂 Binary Interaction							
Electrolyte Pair	J.	Critica	I temperature.				
Input Comple							//

9. In the Data Browser, click on the **Pure Component** folder.

10. On the **Object manager**, click **New**.

Accept the **Scalar** option and enter the new name as U-1. Click **OK**.

11. On the **Input** tab sheet, select MW from the **Parameter** drop down list.

Refer to the PROP-DATA U-1 paragraph in Figure 5.2 to enter the molecular weight values for each component.

To enter binary interaction parameters:

- 1. From the Data Browser, double click on **Binary Interaction** sub-folder.
- 2. In the **Binary Interaction** sub-folder, click on **FHCHI-1**.

Enter values as shown below. Refer to the PROP-DATA FHCHI-1 paragraph in Figure 5.2 for the complete list of parameter values.

🔚 Properties Parameters Binary I	Interacti	on FHCHI-1 (T-DE	PENDENT) - Da	ata Browser	_	
🝼 FHCHI-1	- 🖻	🗧 ENG 💌	←→ <<	AI 🔹 >>		♦
Setup Components Components Properties Specifications Property Methods Estimation Molecular Structure Parameters Property Methods ANDKU-1 ANDMU-1 ANDMU-1 FHCHI-1 FHCHI-1	▲ Vinp Pa Te	ut Databanks arameter: FHCHI emperature-depender Component i Component i Temperature units Source AIJ BIJ or the temperature-re	t binary parameters SOLVENT1 F USER 1.7390 0.0 Illated elements of the	Data set: 1 SOLVENT1 GL2 F USER .2210 0.0 he parameter.	SOLVENT1 OL3 F USER .2210 0.0	
	<u> </u>					
Input Complete						//i

To select the properties to be calculated:

- 1. From the Data Browser, double click on the **Prop-Sets** sub-folder.
- 2. On the **Object manager**, click **New**. Click **OK** to accept PS-1 as the new name.
- 3. On the **Properties** tab sheet, select GAMMA for the **Physical property**.
- 4. Click on the **Qualifiers** tab, select Liquid for the **Phase**.
- 5. In the Data Browser, click on the **Report Options** form in the **Setup** folder.
- 6. Click on the Stream tab and click Property Sets.

Select PS-1 using the button and click **Close**.

Supplying Process Information

To specify the stream condition for the oligomer and non-solvent streams:

- 1. From the Data Browser, double click on the **Streams** folder.
- 2. From the **Streams** folder, double click on the **1** folder.
- 3. On the **Specifications** tab sheet, enter the mass flow and feed condition as follows: Temperature = 101.480003 F

Pressure = 14.6959488 psi

Total flow (Mass) = 2.1 lb/hr

Solvent 2 = 2.1 lb/hr

- 4. From the Data Browser, double click on the **1P** sub-folder.
- 5. On the **Specifications** tab sheet enter the data as shown:

🔚 Stream 1P (MATERIAL) - Data E	rowser	_ 🗆 ×
🔁 1P 💽		
	✓ Specifications Flash Options PSD Component Attr. Substream name: ✓ MIXED ✓ State variables ✓ ✓ Temperature ✓ ✓ 101.48 F ✓ ✓ Pressure ✓ ✓ ✓ 14.6959488 psi ✓ ✓ Total flow: Mass ✓ ✓ 1 b/hr ✓ ✓ Solvent: ✓ ✓ ✓ OL2 0.02 ✓ ✓ OL4 0.08 ✓ ✓ OL5 0.06 ✓ ✓ OL7 0.02 ✓ ✓ OL8 0.01 ✓ ✓ OL10 0.0001 ✓ ✓ Lets you select the substream name. ✓ ✓	
Results Available, Unreconciled,		

To specify the Flash3 block:

- 1. From the Data Browser, double click on the **Blocks** folder.
- 2. From the **Blocks** folder, double click on **B1** sub-folder.
- 3. From the **B1** sub-folder, click on **Input**.
- 4. On the **Specifications** tab sheet, enter 101.480003 F for **Temperature** and 14.6959488 psi for **Pressure**.
- 5. Click on the **Key Components** tab, select Solvent 2 from the **Key component in the 2nd liquid phase** drop down list.

RUNNING THE SIMULATION AND EXAMINING THE RESULTS

To run the simulation:

- 1. In the Aspen Plus main window toolbar, click on the **Run Control Panel** button **III** to open the **Control Panel**.
- 2. Click on the Start button it to run the simulation.

To examine the results:

The results can be checked by selecting the **Results** option from the drop down list between the \leq and \geq buttons and using the browser forward button \geq to navigate to the next form with results.

🛅 Results Summary Streams -	Data Browcer					- 1	
Shearer	- 🗈 🗄 ENG 💌 🤮	= -> << Re	1.1: ¥ >>				
H Steam Blocks B SteamPesults SteamPesults H M Pierult Summery Fun Status	Material Perr Material	Fanat POLY	M T	Steam Table	o l BioRes	212	
		1	119		3 .	4	
Conversence	Substream: MD/ED	1 2	-		12		-
Contragence	Mans Flow By he	1			Second	Same a	J,
	SOLVENT1		7069191		.2276982	4812313	
	SOLVENT2	2.100000			.0358782	2.064120	
	STYSED				Terrar	and the second	
	0.2		.0199900		.0116660	0.33110E-3	
	0.3		0588940		.0563499	3.644Z2E-3	
	OLA		.0798820		0795263	4.65780E-4	
	0.5		0520940		.059623	3180586-5	-1
	1000000		25,122256		10000000000		100

After flashing, the quasi-ternary mixture separates into two liquid phases: a solvent rich phase and an antisolvent rich phase. Using the Flory-Huggins model, the equilibria compositions in solvent and antisolvent phases are computed. The Flory-Huggins predictions for liquid-liquid equilibria of polystyrene/Benzene/Ethanol system are shown in Figure 5.1. The solid line is the mass distribution of polystyrene oligomer for the feed stream 1P, dashed lines are for the product streams.

Figure 5.2 shows that when ethanol is added to the polystyrene/benzene mixture, the majority of high molecular weight PS remain in the solvent rich stream while most of the low molecular weight ones dissolve into the antisolvent stream.

Figure 5.1 Mass Distribution of Polystyrene

```
Figure 5.2 Input Summary for Polystyrene Fractionation
TITLE 'Polystyrene Oligomer Fractionation'
IN-UNITS ENG
DEF-STREAMS CONVEN ALL
DESCRIPTION "
        This example illustrates the use of Polymers Plus for modeling
        polymer/oligomer fractionation process. "
DATABANKS PURE93 / SEGMENT / POLYMER / NOASPENPCD
PROP-SOURCES PURE93 / SEGMENT / POLYMER
COMPONENTS
    SOLVENT1 C6H6 SOLVENT1 /
    SOLVENT2 C2H6O-2 SOLVENT2 /
    STY-SEG C8H8-R STY-SEG /
    OL2 * OL2 /
    OL3 * OL3 /
    OL4 * OL4
    OL5 * OL5
    OL6 * OL6
OL7 * OL7
    OL8 * OL8 /
    OL9 * OL9 /
    OL10 * OL10 /
    OL11 * OL11
FLOWSHEET
    BLOCK B1 IN=1 1P OUT=2 3 4
PROPERTIES POLYFH
PROP-DATA U-1
    IN-UNITS ENG
    PROP-LIST MW
    PVAL STY-SEG 100.0
    PVAL OL2 200.0
    PVAL OL3 400.0
    PVAL OL4 600.0
    PVAL OL5 800.0
    PVAL OL6 1000.0
    PVAL OL7 1200.0
    PVAL OL8 1400.0
    PVAL OL9 1600.0
    PVAL OL10 1800.0
    PVAL OL11 2000.0
PROP-DATA U-3
    IN-UNITS ENG PRESSURE=atm TEMPERATURE=K PDROP=psi
    PROP-LIST TC / PC / ZC
    PVAL OL2 500.0 / 20.0 / .20
    PVAL OL3 500.0 / 20.0 / .20
    PVAL OL4 500.0 / 20.0 / .20
    PVAL OL5 600.0 / 20.0 / .20
PVAL OL6 700.0 / 20.0 / .20
    PVAL OL7 800.0 / 20.0 / .20
    PVAL OL8 850.0 / 20.0 / .20
PVAL OL9 900.0 / 20.0 / .20
    PVAL OL10 1000.0 / 20.0 / .20
    PVAL OL11 1100.0 / 20.0 / .20
PROP-DATA PLXANT-1
    IN-UNITS ENG
    PROP-LIST PLXANT
```

Figure 5.2 Input Summary for Polystyrene Fractionation (cont.)

PVAL OL2 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0 PVAL OL3 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
PVAL 0L4 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
PVAL OL5 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0 PVAL OL6 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0 PVAL OL7 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0 PVAL OL8 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0 PVAL OL9 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0 PVAL OL9 -10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PROP-DATA FHCHI-1
PROP-LIST FHCHI BPVAL SOLVENT1 SOLVENT2 1.7390 0.0 BPVAL SOLVENT1 OL2 .2210 0.0 BPVAL SOLVENT1 OL3 .2210 0.0 BPVAL SOLVENT1 OL4 .2210 0.0
BPVAL SOLVENT1 OL5 .2210 0.0 BPVAL SOLVENT1 OL6 .2210 0.0
BPVAL SOLVENTI OL7 .2210 0.0 BPVAL SOLVENTI OL8 .2210 0.0
BPVAL SOLVENTI OL9 .2210 0.0 BPVAL SOLVENTI OL10 .2210 0.0 DPUAL SOLVENTI OL11 .2210 0.0
BPVAL SOLVENT2 OL2 1.4510 0.0
BPVAL SOLVENT2 OLA 1.4510 0.0 BPVAL SOLVENT2 OLA 1.4510 0.0
BPVAL SOLVENT2 OL6 1.4510 0.0
BPVAL SOLVENT2 OLS 1.4510 0.0
BPVAL SOLVENIZ OLD 1.4510 0.0 BPVAL SOLVENIZ OL10 1.4510 0.0 BPVAL SOLVENIZ OL11 1.4510 0.0
POLYMERS SEGMENTS STY-SEG REPEAT OLIGOMERS OL2 STY-SEG 2 / OL3 STY-SEG 4 / OL4 STY-SEG & 6 / OL5 STY-SEG 8 / OL6 STY-SEG 10 / OL7 STY-SEG & 12 / OL8 STY-SEG 14 / OL9 STY-SEG 16 / OL10 & STY-SEG 18 / OL11 STY-SEG 20
PROP-SET PS-1 GAMMA SUBSTREAM=MIXED PHASE=L
STREAM 1 SUBSTREAM MIXED TEMP=101.480003 PRES=14.6959488 & MASS-FLOW=2.10 MASS-FLOW SOLVENT2 2.10
STREAM 1P SUBSTREAM MIXED TEMP=101.480 PRES=14.6959488 MASS-FLOW=1.0 MASS-FRAC SOLVENT1 .708990 / OL2 .020 / OL3 .060 / OL4 & .080 / OL5 .060 / OL6 .040 / OL7 .020 / OL8 .010 & / OL9 .0010 / OL10 .00010 / OL11 .000010
BLOCK B1 FLASH3 PARAM TEMP=101.480003 PRES=14.6959488 L2-COMP=SOLVENT2
CONV-OPTIONS PARAM CHECKSEQ=NO
STREAM-REPOR MOLEFLOW MASSFLOW MOLEFRAC MASSFRAC PROPERTIES=PS-1

REFERENCES

Wu, A. H., and J. M. Prausnitz, J. Appl. Pol. Sci., 39, 629-637 (1990).

6 CALCULATING END-USE PROPERTIES

SUMMARY

This example demonstrates how to use Polymers Plus to predict important end-use properties including melt-index, intrinsic viscosity and zero-shear viscosity for high-density polyethylene and other polyolefins using user-defined Prop-Set.

The steps covered include:

- Drawing the Simulation Flowsheet
- Specifying Setup and Global Options
- Specifying and Characterizing Components
- Specifying Physical Properties
- Supplying Process Information
- Creating a Sensitivity Table
- Running the Simulation and Examining the Results

There are a number of empirical correlative models used in the industry to predict melt index of polyethylene product. End-use properties such as melt index are best implemented as a property set (Prop-Set). A number of built-in Prop-Sets are available in Aspen Plus. In addition, Prop-Sets allow the specification of a property set with add-on user correlations. When doing so, a user-supplied Fortran subroutine is required to perform the calculations.

Polymers Plus supplies a user Prop-Set and the corresponding Fortran subroutine for melt index based on the correlations of Karol et al and Sinclair et al (See Section 2.4 of the *Polymers Plus User Guide*) as well as the intrinsic and zero-shear viscosities (Karol et al., 1973; Sinclair et al., 1983).

SETUP INSTRUCTIONS

The step-by-step instructions to construct a simulation model are given below.

➤ Start Aspen Plus from the Start Menu or by double clicking the Aspen Plus icon on your desktop.

The Aspen Plus main window appears.

To create a new simulation:

1. On the Aspen Plus startup dialog box, click on the **Template** option. Click **OK**.

The **New** template window appears. You can use this window to specify the **Simulation** template and **Run Type** for the new run. Aspen Plus uses the Simulation Template you choose to automatically set various defaults appropriate to your application.

2. Select **Polymers with Metric Units** as your template. The default **Run type**, Flowsheet, is appropriate for this example. Click **OK**.

The Aspen Plus main window is now active.

 Drawing the
Simulation
Flowsheet
 To place unit operation blocks:

 1. On the model library palette, click on the Heat Exchangers tab.
The models in the heat exchanger category are displayed in the model menu.

2. Select **Heater** by clicking on the icon. Move the cursor to the process flowsheet window and click at the desired location.

The **Heater** block will appear on the flowsheet window.

To place streams:

1. Click on the **Material STREAMS** icon. Move the mouse to the process flowsheet window.

Red and blue arrows will appear. These arrows indicate the location of required (red) and option (blue) stream connection ports to the inlet port of **Heater**.

- 2. Click on the red feed arrow and drag the mouse to a proper location and click again. Repeat the procedure to create one feed stream and one product stream.
- 3. Click on the arrow symbol that appears to the top left of the **Material STREAMS** icon to switch the mouse out of the insert mode.

If the mouse is showing "+" it means the mouse is still in the insert mode.

To rename streams:

- 4. Click on the name box of the stream to be renamed.
- Click the right mouse button and select **Rename Stream** from the pop-up menu. Insert a proper name for each stream by repeating the procedure.

Your flow diagram should look like this:

Specifying Setup and Global Options

In this example you will use the Expert guidance system (Next Button \mathbb{N}) rather than the Data Browser navigation tree to enter process and model specifications in Polymers Plus.

To specify setup and global options:

1. Click on the **Setup** button **a** on the toolbar.

The **Specifications** form is displayed. The cursor will appear in the title space of the **Global** tab sheet.

Type the title of your run as "An example illustrating end-use property calculations".

Make sure that the **Run type** is specified as Flowsheet.

2. Click on the **Description** tab.

Type the following information: "The objective of this example is to demonstrate how to use Polymers Plus to predict important end-use properties including melt-index, intrinsic viscosity, and zero-shear viscosity for high-density polyethylene and other polyolefins using user-defined Prop-Sets. This example requires a user Fortran subroutine USRPRP.F. Please copy USRPRP.F from the example directory and compile it in your local directory".

- 3. Click on the **Next** button **N**.
 - A Components Specifications form appears.

Specifying and To specify and characterize components:

Components

Characterizing 1. In the Selection tab sheet enter the Component ID, Component name, and **Formula** for the segment and polymer.

Your form should look like this:

🔚 Components Specifications - Da	ata Browser			
Specifications	ENG		<< AI 💽	>> 🛄 S N>
⊞	Selection Petroleu	ım [Nonconve	entional 🛛 🗸 🗸 Databa	nks
Components	D-6			
Assav/Blend	Components	1 Tura	[Company the set	E
🗄 🛅 Petro Characterization		Polymor		Formula
Pseudo Components		Polymer		
Attr-Comps	L2H4-R	Segment	EIHTLENER	
	<u> </u>			
Comp-Groups				
Properties				
🕀 🧰 Reactions				
Elevence	Find	Elec Wizard	User Defined	I Reorder
Model Analysis Tools				
🗄 👚 🌇 Results Summary	Component ID. If data a	re to be retrieved	from databanks, ente	er either Component Name
	or Formula. See Help.	10 10 20 100000	nom aatabahito, onte	a oknor component ridine
Input Complete	-			

2. Click on the **Next** button **N**.

A Components Polymers Characterization form appears.

3. In the **Segments** tab sheet, select REPEAT using the **Type** drop down menu.

- 4. Click on the **Polymers** tab, select **Properties selection** from the **Built-in attribute group** drop down menu.
- 5. Click **Edit** and click to add MWN, MWW, DPW, PDI and SMOM to your attributegroup check list. Click **Close**.

To specify physical properties:

- 1. Click on the **Next** button **№**.
 - A Properties Specifications form is displayed.
- 2. In the **Global** tab sheet select POLYFH from the **Base method** drop down menu.
- 3. In the Data Browser, open the **Advanced** sub-folder under the **Properties** folder.
- 4. Click on the User Properties folder
- 5. In the **Object manager**, click **New** and enter IV as the ID. Click **OK**.

Enter USRPRP in the **User subroutine name** box.

6. Repeat the steps 4 and 5 to enter the properties as shown below:

Properties Advanced User Prop	erties - Data Browser	
🛃 User Properties 📃		→ << AI → >> <u>■</u> S N>
	Objectmenter	
Data		1 Curu 1
	IName	Status
		Input Complete
Boutes	МІ-К	Input Complete
User Props	MI-S	Input Complete
NC-Props		Input Complete
Tabpoly		
🗌 🖻 🔯 User Properties		
MI-S		
	New	Edit Delete
🕀 👚 👔 Streams		Edit
🗄 🕀 🕅 Blocks	Ronomo	Hida Reveal
🗄 🚊 Reactions	nename	nide
Flowsheeting Uptions		
Besults Summaru		
	J	
Input Complete		

Specifying Physical Properties

To be able to list desired polymer properties, you need to create property sets and property tables, to do this:

- 1. In the Data Browser, click on the **Prop-Sets** sub-folder.
- 2. In the **Object manager**, click **New** and enter IV as the ID. Click **OK**.
- 3. In the **Properties** tab sheet, select the user property created in the User Properties subfolder from the **Physical properties** drop down list.

Your form should look like this:

Properties Prop-Sets IV - D	ita Browser	
V V		🛄 🏙 N>
Setup Components Properties Specifications Property Methods Estimation Setup Molecular Structure Parameters Data Analysis Y MI-K MI-S Y Advanced	Properties Qualifiers Properties Physical properties Units * *	
⊡ 🔂 Streams ⊕ 🔂 Blocks	Substream: MIXED	Search
Reactions Convergence Costing Costing Costing Costing	User Defined	

4. Repeat the steps to create Prop-Sets for MI-K, MI-S and ZVIS.

Supplying Process Information

To supply process information:

- 1. Click on the **Next** button **N**.
- 2. On the Required Properties Input Complete pop-up form, click OK to Go to Next required input step.

The **Stream 1 Input** form is displayed.

3. Enter temperature (420 K), pressure (1 atm) and mass flow rate for HPDE (1000 kg/h).

Your form should look like this:

🔚 Stream 1 (MATERIAL) Input - D	Data Browser	. 🗆 ×
🍼 Input 💌	🗈 🖹 MET 💌 🦘 🔿 🗛 🔛 💌	N≯
Setup Components Properties Streams Streams	Specifications Flash Options PSD Component Attr. Substream name: MIXED State variables Composition Temperature 420 K Pressure 1 atm Total flow: Mass kg/hr Solvent: Total: 1000	
Results Available		

- 4. Click on the **Next** button to move to the **Component Attr.** tab sheet.
- 5. From the Attribute ID drop down menu, select DPN and enter 1000 in the Value cell.
- 6. From the **Attribute ID** drop down menu, select SFRAC and enter 1 in the **Value** cell for C2H4-R.
- 7. From the Attribute ID drop down menu, select PDI and enter 3.61 in the Value cell.
- 8. Click on the **Next** button **N**.

The **BLOCK B1 Input** form appears.

9. On the **Specifications** tab sheet, enter 420K for **Temperature** of 1 atm for **Pressure**.

Creating a Sensitivity Table

To create a sensitivity table:

- 1. In the Data Browser, double click on the **Model Analysis Tools** folder.
- 2. Double click on the **Sensitivity** sub-folder.
- 3. In the **Object manager**, click **New**.

Enter END-USE. Click **OK**.

- 4. On the **Define** tab sheet, click **New**, enter **IV** as the **Variable name** in the **Create a new variable** pop-up form. Click **OK**.
- 5. In the **Variable Definition** pop-up form, select Streams for the **Category**, Stream-Prop for the Reference **Type**, 2 for the **Stream**, and IV as the **Prop-Set**. Click **Close**.
- 6. Repeat steps 4 and 5 to define MIK, MIS and ZVIS.
- 7. From the **Manipulated variable** drop down lists, select the variable as shown. Also be sure to click to select Overall range and enter the temperature to range from 400 to 500 K with increments of 10.
- 8. Click on the **Tabulate** tab and enter IV, MI-K, MI-S, and ZVIS, in Column numbers 1-4 respectively.
- 9. Click **Table Format** and label each column with the corresponding parameter name as shown below:

🔚 Table Format				>
Specify optional lab	els	-	-	
Column number	1	2	3	4
Column labels	IV	МІ-К	MI-S	ZVIS
Unit labels				
				Close
Lets you type the column heading used to identify tabulated results. See Help.				

RUNNING THE SIMULATION AND EXAMINING THE RESULTS

To run the simulation:

- 1. In the Aspen Plus main window toolbar, click on the **Run Control Panel** button it to open the **Control Panel**.
- 2. Click on the Start button \square to run the simulation.

To examine the results:

The results can be checked by selecting the **Results** option from the drop down list between the \leq and \geq buttons and using the browser forward button \geq to navigate to the next form with results.

The input summary is given in Figure 6.1.

Figure 6.1 Input Summary TITLE 'An example illustrating end-use property calculations' IN-UNITS MET DEF-STREAMS CONVEN ALL DESCRIPTION "The objective of this example is to demonstrate how to use Polymers Plus to predict important end-use properties including melt-index, intrinsic viscosity, and zero-shear viscosity for high-density polyethylene and other polyolefins using user-defined PROP-SETS. This example requires a user Fortran subroutine USRPRP.F. Please copy USRPRP.F from the example directory and compile it in your local directory." DATABANKS POLYMER / SEGMENT / PURE93 / NOASPENPCD PROP-SOURCES POLYMER / SEGMENT / PURE93 COMPONENTS HDPE PE HDPE / C2H4-R C2H4-R C2H4-R FLOWSHEET BLOCK B1 IN=1 OUT=2 PROPERTIES POLYFH POLYMERS SEGMENTS C2H4-R REPEAT POLYMERS HDPE ATTRIBUTES HDPE SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM & FMOM SMOM USER-PROPERT IV SUBROUTINE=USRPRP USER-PROPERT MI-K SUBROUTINE=USRPRP USER-PROPERT MI-S SUBROUTINE=USRPRP USER-PROPERT ZVIS SUBROUTINE=USRPRP

```
Figure 6.1 Input Summary (cont.)
PROP-SET IV IV SUBSTREAM=MIXED
PROP-SET MI-K MI-K SUBSTREAM=MIXED
PROP-SET MI-S MI-S SUBSTREAM=MIXED
PROP-SET ZVIS ZVIS SUBSTREAM=MIXED
STREAM 1
    SUBSTREAM MIXED TEMP=420. <K> PRES=1.
    MASS-FLOW HDPE 1000.
    COMP-ATTR HDPE SFRAC ( 1. )
    COMP-ATTR HDPE DPN ( 1000. )
    COMP-ATTR HDPE PDI ( 3.61 )
BLOCK B1 HEATER
    PARAM TEMP=420. <K> PRES=1.
SENSITIVITY END-USE
    DEFINE IV STREAM-PROP STREAM=2 PROPERTY=IV
    DEFINE MIK STREAM-PROP STREAM=2 PROPERTY=MI-K
    DEFINE MIS STREAM-PROP STREAM=2 PROPERTY=MI-S
    DEFINE ZVIS STREAM-PROP STREAM=2 PROPERTY=ZVIS
    TABULATE 1 "IV" COL-LABEL="IV"
    TABULATE 2 "MI-K" COL-LABEL="MI-K"
    TABULATE 3 "MI-S" COL-LABEL="MI-S"
    TABULATE 4 "ZVIS" COL-LABEL="ZVIS"
    VARY BLOCK-VAR BLOCK=B1 VARIABLE=TEMP SENTENCE=PARAM
    RANGE LOWER="400" UPPER="500" INCR="10"
STREAM-REPOR NOMOLEFLOW MASSFLOW
```

REFERENCES

Karol, F. J., G. L. Brown and J. M. Davison, "Chromocene-Based Catalysts for Ethylene Polymerization: Kinetic Parameters," J. *of Polymer Science: Polymer Chemistry Edition*, **11**, 413-424 (1973).

Sinclair, K. B., "Characteristics of Linear LPPE and Description of UCC Gas Phase Process," Process Economics Report, SRI International, Menlo Park, CA (1983).

1 POLYSTYRENE

BULK POLYMERIZATION BY THERMAL INITIATION

SUMMARY

The polystyrene bulk polymerization by thermal initiation model illustrates the use of Polymers Plus for modeling free-radical bulk polymerization of styrene with thermal and induced initiation. The part of the process modeled is the polymerization stage and subsequent devolatilization. This model is used to study the effect of feed flow rate on styrene conversion, polymer properties, and recycle flowrate.

ABOUT THIS PROCESS

Typically in free-radical polymerization, an initiator decomposes to form free radicals that initiate chain growth. Propagation reactions add successive monomer molecules to a growing polymer chain to increase its chain length. A growing polymer chain terminates by either chain transfer or termination reactions to form dead polymer chains.

Styrene monomer, when heated to polymerization temperatures above 120°C, can generate enough free-radicals to produce high conversion and high molecular weight polymer. Styrene reacts via a Diels-Alder-type mechanism to form dimers which react with an additional styrene molecule to produce free-radicals. The thermal initiation rate has been reported to be third-order in styrene concentration (Hui and Hamielec, 1972).

PROCESS DEFINITION

Styrene is polymerized in a reactor train consisting of two CSTRs followed by a plug flow reactor as shown in Figure 1.1. All of the reactors are considered liquid filled, and are therefore modeled without taking into account vapor-liquid equilibrium. Unreacted monomer is flashed in a devolatilizer to be modeled as an ideal flash unit.

As shown in Figure 1.1, the flowsheet consists of two RCSTR in series, one RPlug, a Heater, and two Flash2 blocks.

Figure 1.1 Bulk Polymerization of Styrene Flowsheet

ProcessThe first CSTR operates at 120°C, 1 atm, and the second operates at 160°C, 1 atm. Both
have a volume of 20 m³. The plug flow reactor operates at 1 atm, with a temperature
range of 160-200°C from the inlet to the outlet.

The process conditions are listed in Table 1.1.

Table 1.1	Process	Conditions
-----------	---------	------------

Name	Databank	Description
STY	PURECOMP	Monomer
PS	POLYMER	Polymer component
STY-SEG	SEGMENT	Styrene segment
TBP		Initiator (Mw=216.32)
CINI		Coinitiator
EB	PURECOMP	Chain transfer agent
DDM	PURECOMP	Chain transfer agent (Mw=330.0)
H2O	PURECOMP	Stripping agent
POLYNRTL prop	erty method with suppli	ied parameters
25		
1		
1.944		
.98		
0.0		
0.0		
0.01937		
0.0006		
0.00025		
FREE-RAD mod	el	
Temp (°C)	Pres (atm)	Size
120	1	20 m ³
160	1	20 m ³
160-200	1	80 m length by 0.40 m diam
220	1	
220	1	
220	1	
	Name STY PS STY-SEG TBP CINI EB DDM H2O POLYNRTL prop 25 1 .98 0.0 0.0 0.01937 0.0006 0.00025 FREE-RAD mod Temp (°C) 120 160 220 220 220	Name Databank STY PURECOMP PS POLYMER STY-SEG SEGMENT TBP CINI EB PURECOMP DDM PURECOMP H20 PURECOMP H20 PURECOMP POLYNRTL property

Physical Property Models and Data

The Polymer Non-Random Two Liquid activity coefficient model physical property method (POLYNRTL) is used. The thermophysical properties (density, heat capacity, etc.) of styrene, ethylbenzene, dodecyl mercaptan, and water are obtained from the Pure Component Databank. Note that di-tert-butyl peroxide and coinitiator are given the properties of styrene with the exception of molecular weight, boiling point, and Antoine parameters. The polymer thermophysical properties are calculated using the van Krevelen group contribution method.

Reactors / Kinetics

The kinetics of bulk and solution polymerization of styrene have been studied extensively. It has been reported (Albright, 1985) that the molecular weight of polystyrene is primarily controlled by chain transfer to the Diels-Alder dimers and monomer. Furthermore, based on chemical evidence and kinetic modeling, it has been reported that termination of the growing chains occurs principally by combination over disproportionation. The reactions included from the free-radical built-in kinetics are shown below.

Description	Reaction
Thermal initiation	$M \to R^{\bullet}$
Induced initiation	$M + C \rightarrow P_1$
Chain initiation	$R^{\bullet} + M \rightarrow P_1$
Propagation	$P_n + M \rightarrow P_{n+1}$
Chain transfer to monomer	$P_n + M \to D_n + P_1$
Chain transfer to EB	$P_n + EB \rightarrow D_n + P_1$
Chain transfer to DDM	$P_n + DDM \rightarrow D_n + P_1$
Termination by combination	$P_n + P_m \rightarrow D_{n+m}$

The units for the rate constants for the thermal initiation reaction are $m^6 / \text{kmol}^2 / s$. The units for the rate constants for the other reactions are $m^3 / \text{kmol}^2 / s$.

The induced initiation reaction is configured for thermal initiation by setting third-order thermal initiation with respect to monomer. A coinitiator, which is required for the induced initiation reaction, is included in the list of components, but its feed rate is set to zero so that it will not influence the rate for the thermal initiation reaction.

Process Studies

The model is used to study the effect of feed flow rate on styrene conversion, polymer properties, and recycle flowrate. In order to determine the effect of feed flowrate on styrene conversion, polymer properties, and recycle flowrate, a sensitivity study is carried out with feed mass flow as the varied parameter.

An input summary is given in Figure 1.2

```
Figure 1.2 Input Summary for Styrene Bulk Polymerization
    Free radical bulk polymerization of styrene by thermal and chemical
;
    initiation
;
;
    QSSA case
;
TITLE &
        'Bulk Polymerization of Styrene by Thermal & Chemical Initiation'
IN-UNITS SI
OUT-UNITS SI PRESSURE=atm TEMPERATURE=C PDROP='N/sqm'
DEF-STREAMS CONVEN ALL
SYS-OPTIONS TRACE=YES
RUN-CONTROL MAX-TIME=2000.0
DESCRIPTION "
        Styrene polymerization in two CSTR's followed by a plug flow reactor
DATABANKS PURE93 / POLYMER / SEGMENT / NOASPENPCD
PROP-SOURCES PURE93 / POLYMER / SEGMENT
COMPONENTS
    TBP C8H8 TBP /
    CINI C8H8 CINI /
    STY C8H8 STY /
    PS PS-1 PS /
    STY-SEG C8H8-R STY-SEG /
    EB C8H10-4 EB /
    DDM C12H26S DDM /
    H2O H2O H2O
FLOWSHEET
    BLOCK CSTR-1 IN=FEED OUT=R1-P
    BLOCK CSTR-2 IN=R1-P OUT=R2-P
    BLOCK PLUG IN=R2-P OUT=R3-P
    BLOCK FLASH-1 IN=R3-PH2 OUT=REC-STY R3-OLI
    BLOCK FLASH-2 IN=R3-OLI STRIP-AG OUT=VAPOR PRODUCT
    BLOCK DV-H1 IN=R3-P OUT=R3-PH2
```

Figure 1.2 Input Summary for Styrene Bulk Polymerization (cont.)

```
PROPERTIES POLYNRTL
PROP-DATA DATA1
    IN-UNITS SI
   PROP-LIST MW / TB
   PVAL TBP 216.320 / 2000.0
   PVAL DDM 330.0 / 2000.0
PROP-DATA PLXANT-1
   IN-UNITS SI
   PROP-LIST PLXANT
   PVAL TBP -30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
   PVAL DDM -30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
POLYMERS
   SEGMENTS STY-SEG REPEAT
   POLYMERS PS
   ATTRIBUTES PS SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM FMOM &
        SMOM LDPN LZMOM LFMOM LSFLOW LSFRAC LEFLOW LEFRAC &
        LPFRAC
STREAM FEED
   SUBSTREAM MIXED TEMP=298.150 PRES=101325.0 MASS-FLOW=1.94440 &
       NPHASE=1 PHASE=L
   MASS-FRAC TBP .000250 / STY .980 / EB .019370 / DDM &
        .00060
STREAM STRIP-AG
   SUBSTREAM MIXED TEMP=298.150 PRES=202650.0 MASS-FLOW=.040 &
       NPHASE=1 PHASE=L
   MASS-FLOW H20 .040
BLOCK DV-H1 HEATER
   PARAM TEMP=493.150 PRES=101325.0
BLOCK FLASH-1 FLASH2
   PARAM TEMP=493.150 PRES=101325.0 MAXIT=200
BLOCK FLASH-2 FLASH2
   PARAM TEMP=493.150 PRES=101325.0 MAXIT=200
BLOCK CSTR-1 RCSTR
   PARAM VOL=20.0 TEMP=393.150 PRES=101325.0 NPHASE=1 PHASE=L &
       MB-MAXIT=200 MB-TOL=.000010
   REACTIONS RXN-IDS=R1
BLOCK CSTR-2 RCSTR
   PARAM VOL=20.0 TEMP=433.150 PRES=101325.0 NPHASE=1 PHASE=L &
       MB-MAXIT=400 MB-TOL=.000010
   REACTIONS RXN-IDS=R1
BLOCK PLUG RPLUG
   PARAM TYPE=T-SPEC LENGTH=80.0 DIAM=.40 PHASE=L &
       PRES=101325.0 HINIT=1.0000E-07 INT-TOL=.0010 &
        CORR-METHOD=DIRECT
   T-SPEC 0.0 433.150 / 1.0 473.150
   REACTIONS RXN-IDS=R1
```

Figure 1.2 Input Summary for Styrene Bulk Polymerization (cont.)

SENSITIVITY S1 DEFINE R3MWN COMP-ATTR-VAR STREAM=R3-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=MWN ELEMENT=1 DEFINE R3MWW COMP-ATTR-VAR STREAM=R3-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=MWW ELEMENT=1 DEFINE R3PDI COMP-ATTR-VAR STREAM=R3-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=PDI ELEMENT=1 DEFINE R2MWN COMP-ATTR-VAR STREAM=R2-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=MWN ELEMENT=1 DEFINE R2MWW COMP-ATTR-VAR STREAM=R2-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=MWW ELEMENT=1 DEFINE R2PDI COMP-ATTR-VAR STREAM=R2-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=PDI ELEMENT=1 DEFINE R1MWN COMP-ATTR-VAR STREAM=R1-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=MWN ELEMENT=1 DEFINE RIMWW COMP-ATTR-VAR STREAM=RI-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=MWW ELEMENT=1 DEFINE R1PDI COMP-ATTR-VAR STREAM=R1-P SUBSTREAM=MIXED & COMPONENT=PS ATTRIBUTE=PDI ELEMENT=1 DEFINE R3STY MASS-FRAC STREAM=R3-P SUBSTREAM=MIXED & COMPONENT=STY DEFINE R3PS MASS-FRAC STREAM=R3-P SUBSTREAM=MIXED æ COMPONENT=PS DEFINE R2STY MASS-FRAC STREAM=R2-P SUBSTREAM=MIXED & COMPONENT=STY DEFINE R2PS MASS-FRAC STREAM=R2-P SUBSTREAM=MIXED & COMPONENT=PS DEFINE R1STY MASS-FRAC STREAM=R1-P SUBSTREAM=MIXED & COMPONENT=STY DEFINE R1PS MASS-FRAC STREAM=R1-P SUBSTREAM=MIXED & COMPONENT=PS DEFINE RECY STREAM-VAR STREAM=REC-STY SUBSTREAM=MIXED & VARIABLE=MASS-FLOW R3CONV = R3PS/(R3STY + R3PS)R2CONV = R2PS/(R2STY + R2PS)R1CONV = R1PS/(R1STY + R1PS)TABULATE 1 "R1CONV" COL-LABEL="R1CONV" TABULATE 2 "R2CONV" COL-LABEL="R2CONV" TABULATE 3 "R3CONV" COL-LABEL="R3CONV" TABULATE 4 "R1MWN" COL-LABEL="R1MWN" TABULATE 5 "R1MWW" COL-LABEL="R1MWW" TABULATE 6 "R2MWN" COL-LABEL="R2MWN" TABULATE 7 "R2MWW" COL-LABEL="R2MWW" TABULATE 8 "R3MWN" COL-LABEL="R3MWN" TABULATE 9 "R3MWW" COL-LABEL="R3MWW" TABULATE 10 "R1PDI" COL-LABEL="R1PDI" TABULATE 11 "R2PDI" COL-LABEL="R2PDI" TABULATE 12 "R3PDI" COL-LABEL="R3PDI" TABULATE 13 "RECY" COL-LABEL="RECYCLE" VARY STREAM-VAR STREAM=FEED SUBSTREAM=MIXED & VARIABLE=MASS-FLOW RANGE LOWER="1.0" UPPER="2.5" INCR="0.2" REINIT BLOCKS=ALL STREAMS=ALL CONV-OPTIONS PARAM CHECKSEQ=NO

F

F

F

Figure 1.2 Input Summary for Styrene Bulk Polymerization (cont.)

SEQUENCE S-1 CSTR-1 CSTR-2 PLUG S1 CSTR-1 CSTR-2 PLUG DV-H1 & FLASH-1 FLASH-2 (RETURN S1) STREAM-REPOR MOLEFLOW MASSFLOW MASSFRAC REACTIONS R1 FREE-RAD DESCRIPTION "EXAMPLE: FREE-RADICAL KINETIC SCHEME" PARAM QSSA=YES SPECIES INITIATOR=TBP COINITIATOR=CINI MONOMER=STY & CHAINTAG=EB DDM POLYMER=PS MON-RSEG STY STY-SEG INIT-DEC TBP 1.6220E+11 1.1530E+08 0.0 EFFIC=.80 NRADS=2 INIT-SP STY CINI 438000.0 1.1480E+08 0.0 CHAIN-INI STY 1.0510E+07 2.9570E+07 0.0 PROPAGATION STY STY 1.0510E+07 2.9570E+07 0.0 CHAT-MON STY STY 3310000.0 5.3020E+07 0.0 CHAT-AGENT STY EB 1051.0 2.9590E+07 0.0 CHAT-AGENT STY DDM 1051.0 2.9590E+07 0.0 TERM-COMB STY STY 1.2550E+09 7017000.0 0.0 INIT-SP-EFF STY COEFFA=0.0 COEFFB=3.0 COEFFC=0.0 ;

SELECTED SIMULATION RESULTS

A partial stream table for the intermediate process flowstreams is shown in Figure 1.3. Results of the sensitivity studies carried out are shown in Figure 1.4 to Figure 1.8. As shown, since the overall residence time decreases when feed flow increases, conversion and polymer molecular weight decrease as well.

Typically, for free-radical polymerization systems with chain transfer to monomer controlling the MWD, the polydispersity index should be close to 2. However, with termination by combination controlling the molecular weight, the polydispersity index should be close to 1.5.

For this simulation the polydispersity increases to about 1.924, indicating that for the specified kinetics, the molecular weight becomes increasingly controlled by chain transfer to monomer at high conversion. Finally, since the monomer conversion decreases in the plug flow reactor, unreacted monomer recycle increases. Note, however, that the increase in styrene recycle flow is less than the increase in the overall feed flow rate.

Figure 1.3 Simulation Stream Summary

FEED PROI	DUCT R1-P R2	-P R3-OLI				
STREAM II FROM : TO :	D	FEED CSTR-1	PRODUCT FLASH-2 	R1-P CSTR-1 CSTR-2	R2-P CSTR-2 PLUG	R3-OLI FLASH-1 FLASH-2
SUBSTREAD	M: MIXED					
COMPONEN	IS: KG/SEC					
TBP CINI STY PS STY-SE(G	4.8599-04 0.0 1.9050 0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 4.0683-02 \\ 1.5639 \\ 0.0 \end{array}$	2.8997-04 0.0 1.4477 0.4575 0.0	1.5135-05 0.0 0.7148 1.1907 0.0	0.0 0.0 0.1343 1.5639 0.0
EB DDM H2O		3.7655-02 1.1664-03 0.0	3.5346-03 1.1661-03 3.4675-03	3.7654-02 1.1663-03 0.0	3.7650-02 1.1662-03 0.0	1.3249-02 1.1661-03 0.0
COMPONEN TBP CINI	IS: MASS FRA	2.4995-04 0.0	0.0	1.4913-04 0.0	7.7841-06 0.0	0.0 0.0
STY PS STY-SE(5	0.9797 0.0 0.0	2.5226-02 0.9697 0.0	0.7445 0.2353 0.0	0.3676 0.6123 0.0	7.8454-02 0.9131 0.0
EB DDM H2O		1.9366-02 5.9987-04 0.0	2.1917-03 7.2308-04 2.1500-03	1.9365-02 5.9985-04 0.0	1.9363-02 5.9979-04 0.0	7.7360-03 6.8089-04 0.0
TOTAL FLO KG/SEC	W :	1.9444	1.6127	1.9444	1.9444	1.7126
STATE VAI TEMP PRES VFRAC LFRAC SFRAC	RIABLES: C ATM	25.0000 1.0000 0.0 1.0000 0.0	220.0000 1.0000 0.0 1.0000 0.0	120.0000 1.0000 0.0 1.0000 0.0	160.0000 1.0000 0.0 1.0000 0.0	220.0000 1.0000 0.0 1.0000 0.0
ENTHALPY: J/KG WATT		9.6714+0 1.8805+06	05 8.7185+0 1.4061+06	05 1.0370+0 2.0163+06	06 9.4046+0 1.8286+06	9.3009+05 1.5930+06
ENTROPY: J/KG-K		-3194.0243	-2921.3056	-2839.9228	-2905.7113	-2864.6583
AVG MW		104.2461	103.1465	104.2407	104.2330	104.2153
COMPONENT PS	ATTRIBUTES: SFRAC STY-SEG		1.0000	1.0000	1.0000	1.0000
	SFLOW STY-SEG		1.5011-02	4.3912-03	1.1428-02	1.5011-02
	DPN		1222.6621	1881.7423	1342.5898	1222.6621

Figure 1.3 Simulation Stream Summary (cont.)

DPW DPW	2348.8151	3298.1909	2529.4260	2348,8151	
PDI	101010101	020002000	2022 1200	201010101	
PDI	1.921	0 1.752	1.883	9 1.921	0
MWN	1 0724		0.5 1 2002		
MMIN MININI	1.2/34+	US 1.9599+	-05 1.3983+	05 1.2/34+	15
MWW	2.4463	+05 3.4351	+05 2.6344	+05 2.4463	+05
ZMOM					
ZMOM	1.2277	-05 2.3336	-06 8.5119	-06 1.2277	-05
FMOM	1 5011 0			0 1 5011 0	2
F'MOM SMOM	1.5011-0	2 4.3912-0	1.1428-0	2 1.5011-0	2
SMOM	35.2	577 14.4	829 28.9	062 35.2	577
LDPN	55.2		20.9	55.2	577
LDPN	566.73	91 1220.80	31 779.24	27 566.73	91
LZMOM					
LZMOM	8.4057-	11 6.7597-	11 8.8956-	11 8.4057-3	11
LFMOM	1 7620 0	0 0 2522 0	0 6 0210 0	0 1 7620 0	o
LSFLOW	4.7038-0	0.2522-0	0.9318-0	6 4.7036-0	5
STY-SEG	4.7638	-08 8.2522	-08 6.9318	-08 4.7638	-08
LSFRAC					
STY-SEG	1.00	00 1.00	1.00	00 1.00	00
LEFLOW	0 4057	11 6 7507	11 0 0056	11 0 4057	11
SII-SEG LEFRAC	0.4057	-11 0.7597	-11 0.0950	-11 0.4057	-11
STY-SEG	1.0	000 1.0	000 1.0	000 1.0	000
LPFRAC					
LPFRAC	6.8466	-06 2.8967	-05 1.0451	-05 6.8466	-06
R3-P R3-PH2 REC-STY S	STRIP-AG VAP	OR			
STREAM ID	R3-P	R3-PH2	REC-STY	STRIP-AG	VAPOR
FROM :	PLUG	DV-H1	FLASH-1		FLASH-2
TO :	DV-H1	FLASH-1		FLASH-2	
CIIDCTDEAM. MIVED					
PHASE:	LTOUTD	MIXED	VAPOR	LTOUTD	VAPOR
	210012		1112 011	210012	112 011
COMPONENTS: KG/SEC					
TBP	0.0	0.0	0.0	0.0	0.0
CINI	0.0	0.0	0.0	0.0	0.0
PS	1 5639	1 5639	0.2073	0.0	9.3003-02
STY-SEG	0.0	0.0	0.0	0.0	0.0
EB	3.7647-02	3.7647-02	2.4398-02	0.0	9.7148-03
DDM	1.1661-03	1.1661-03	0.0	0.0	0.0
Н2О	0.0	0.0	0.0	4.0000-02	3.6533-02
COMPONENTS: MASS FRAG	7				
TBP	0.0	0.0	0.0	0.0	0.0
CINI	0.0	0.0	0.0	0.0	0.0
STY	0.1757	0.1757	0.8947	0.0	0.6695
PS CTV CEC	0.8043	0.8043	0.0	0.0	0.0
SII-SEG EB	0.0 1 9362-02	U.U 1 9362-02	0.0 0 1052	0.0	0.0 6 9426-02
U	T.))02-02		0.1032	0.0	0.7420-02

Figure	1.3 Simula	ation Stre	am Sumn	nary (con	t.)		
DDM H2O		5.9974-04 0.0	5.9974-04 0.0	0.0 0.0	0.0 1.0000	0.0 0.2610	
TOTAL FL KG/SEC	OM:	1.9444	1.9444	0.2317	4.0000-02	0.1399	
STATE VA TEMP PRES VFRAC LFRAC SFRAC	RIABLES: C ATM	200.0000 1.0000 0.0 1.0000 0.0	220.0000 1.0000 0.1190 0.8809 0.0	220.0000 1.0000 0.0 0.0	25.0000 2.0000 0.0 1.0000 0.0	220.0000 1.0000 0.0 0.0	
ENTHALPY: J/KG		9.3042+05	1.0088+06	1.5903+06	-1.5858+07	-2.2232+06	
ENTROPY: J/KG-K		-2864.3494	-2699.2445	-1476.6373	-9030.5276	-1364.2486	
AVG MW		104.2326	104.2326	104.3601	18.0152	46.3521	
COMPONEN	T ATTRIBUTES	:					
PS	SFRAC STY-SEG	1.0000	1.0000				
	SFLOW STY-SEG	1.5011-02	1.5011-02				
	DPN DPN	1222.6621	1222.6621				
	DPW DPW	2348.8151	2348.8151				
	PDI PDI	1.9210	1.9210				
	MWN MWN	1.2734+05	1.2734+05				
	MWW MWW	2.4463+05	2.4463+05				
	ZMOM ZMOM	1.2277-05	1.2277-05				
	FMOM FMOM	1.5011-02	1.5011-02				
	SMOM SMOM	35.2577	35.2577				
	LDPN LDPN LZMOM	566.7391	566.7391				
	LZMOM LZMOM	8.4057-11	8.4057-11				
	LFMOM LFMOM	4.7638-08	4.7638-08				
	STY-SEG	4.7638-08	4.7638-08				
	STY-SEG	1.0000	1.0000				
	STY-SEG	8.4057-11	8.4057-11				
	LEFRAC STY-SEG	1.0000	1.0000				
	LPFRAC	6.8466-06	6.8466-06				

Figure 1.4 Effect of Feed Flow Rate on Styrene Conversion

Figure 1.5 Effect of Feed Flow Rate on the Number Average Molecular Weight

Figure 1.6 Effect of Flow Rate on the Weight Average Molecular Weight

Figure 1.7 Effect of Feed Flow Rate on the Polydispersity Index

Figure 1.8 Effect of Feed Flow Rate on the Recycle Flow Rate

REFERENCES

Albright, L.F., <u>Processes for Major Addition-Type Plastics and Their Monomers</u>, Krieger Publishing Co. (1985).

Brandrup, J., and E. H. Immergut, <u>Polymer Handbook</u>, 3rd Ed., Wiley Intersciences, 57-82 (1989).

Friis, N. and A. E. Hamielec, "Gel-Effect in Emulsion Polymerization of Vinyl Monomers," *ACS Symp. Ser.*, 24 (1976).

Gaur, U., and B. Wunderlich, J. Phys. Chem. Ref. Data, 11, (2), 313 (1982).

Hui, A. W., A. E. Hamielec, "Thermal Polymerization of Styrene at High Conversions and Temperatures. An Experimental Study," *J. of Applied Polymer Science*, **16**, 749-769 (1972).

Van Krevelen, D. W., <u>Properties of Polymers, Their Correlation With Chemical Structure;</u> <u>Their Numerical Estimation and Prediction from Additive Group Contributions</u>, Elsevier, New York (1990).

Van Krevelen, D. W., Properties of Polymers, 3rd Ed., Elsevier, Amsterdam (1990).

2 HIGH-DENSITY POLYETHYLENE

HIGH TEMPERATURE SOLUTION PROCESS

SUMMARY

The HDPE high temperature solution process model illustrates the use of Polymers Plus to model a Ziegler-Natta catalyst solution polymerization of ethylene. The model is used to study the effect of feed flow rate on conversion and polymer properties, and to study the effect of hydrogen concentration on melt index and polydispersity index.

ABOUT THIS PROCESS

Polyethylene is the largest synthetic commodity polymer. It is widely used throughout the world due to its versatile physical and chemical properties. The current worldwide capacity for polyethylene is over 30 million tons and the average annual rate of capacity increase is 5-8%. The commercial production of polyethylene is done in continuous processes, gas-phase processes, slurry processes, or solution processes using highly active Ziegler-Natta catalysts such as titanium supported catalysts.

Polymers Plus has been used to model the high temperature solution process for polyethylene using a Ziegler-Natta catalyst. Ziegler-Natta catalysts are multi-site catalysts containing different site types, with each type having different reactivities. For this reason, each site type produces a polymer with distinct molecular weight. As a result, the composite polymer has a broad molecular weight distribution.

The Ziegler-Natta model in Polymers Plus takes into account the important reactions found in this chemistry, including site activation, chain initiation, chain propagation, chain transfer, site deactivation, site inhibition, branching reactions, etc. The model is quite flexible and can be configured for homopolymerization or copolymerization with any number of monomers. Users can also specify any number of site types for the catalyst. The model predicts the various polymer properties, such as molecular weight, polydispersity index, melt index, and copolymer composition, and returns this information for the polymer produced at each catalyst site.

PROCESS DEFINITION

In this example, the solution polymerization of ethylene is carried out at 160°C using cyclohexane as solvent. Hydrogen is used as a chain transfer agent to control molecular weight. The flowsheet consists of two reactors and a flash unit as shown in Figure 2.1. The first reactor produces a high molecular weight polymer while the second produces a low molecular weight polymer. Solvent, unreacted monomer, and hydrogen are removed from the product in a flash tank.

An intermediate feed stream going to the second reactor is used to set the concentration of hydrogen in that reactor to be several times higher than in the first reactor. A total of four site types are used for the catalyst. Two sites are considered to be active in the first reactor and all four sites are active in the second reactor.

Figure 2.1 High Temperature Solution Process of Polyethylene Flowsheet

Process Conditions

The process conditions are as listed in Table 2.1.

Table 2.1 Process Conditions

Components			
	Name	Databank	Description
Ethylene	E2	PURECOMP	Monomer
Hydrogen	H2	PURECOMP	Chain transfer agent
Hexane	HEXANE	PURECOMP	Solvent
Catalyst	TICI4	PURECOMP	Catalyst (Mw=176.0)
Cocatalyst	TEA	PURECOMP	Cocatalyst (Mw=100.0)
HDPE	HDPE	POLYMER	Polymer
	E-SEG	SEGMENT	Ethylene segment
Physical Properties	POLYNRTL property meth	od with supplied parameters	
Feeds			
	Feed	R1FEED	FEED2
Composition (% by weight)	Ethylene (E2)	10.0	20.0
	Hydrogen (H2)	5.0E-4	0.02
	Hexane	89.975	79.95
	Catalyst (TICI4)*	0.01	0.01
	Cocatalyst (TEA)	0.015	0.015
Condition	Temperature	70°C	70°C
	Pressure	200atm	200atm
	Phase	Liquid	Liquid
Mass Flow		60,000kg/hr	10,000kg/hr
Kinetics	ZIEGLER-NAT model		
Operating Conditions			
Block	Temp (°C)	Pres(atm)	Size
CSTR-1	160	200	60 m ³
CSTR-2	160	200	60 m ³
FLASH	160	10	

* Mole fraction of potential site fraction is one.

Reactors / Kinetics

The set of reactions included from the built-in kinetics for this model is shown below:

Description	Reaction
Site activation by cocatalyst	$C_{ps} + A_m \rightarrow P_0^k$
Spontaneous site activation	$C_{ps} \rightarrow P_0^k$
Chain initiation	$P_0^k + M_i \rightarrow P_{\delta_i} i$
Propagation	$P^k_{\underline{n},j} + M_i \rightarrow P_{\underline{n} + \delta_i} i$
Chain transfer to hydrogen	$P^k_{\underline{n},j} + H_2 \rightarrow D^k_{\underline{n}} + P^k_0$
Chain transfer to monomer	$P^k_{\underline{n},j} + M_i \rightarrow D^k_{\underline{n}} + P^k_{\delta_i,i}$
Spontaneous chain transfer	$P^k_{\underline{n},j} \longrightarrow D^k_{\underline{n}} + P^k_0$
Spontaneous site deactivation	$P_0^k \longrightarrow C_{ds}$
	$P^k_{\underline{n},j} \longrightarrow C_{ds} + D^k_{\underline{n}}$

Process Studies

In order to determine the effect of feed flowrate on conversion and polymer properties, and the effect of hydrogen concentration on melt index and polydispersity index, a sensitivity study is carried out. Melt index is calculated in a user supplied subroutine (Xie, et al, 1994), and is chosen as one of the sampled parameters in a SENSITIVITY block. Other sampled parameters include the polymer properties, the component fractions used to determine conversion, and the flowrates.

An input summary is given in Figure 2.2.

```
;This application example requires a user FORTRAN subroutine USRPRP.FOR
;Please copy USRPRP.F from the application example directory and compile
; in your local directory. The subroutine provides the correlations for the
;melt viscosity, IV and zero shear viscosity. The parameters are provided in
;the subroutine itself. If you change the component names, you need to change
;the components ID's in the subroutine.
;
TITLE 'Ziegler-Natta Solution Polymerization of Ethylene'
IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' PRESSURE=atm &
        TEMPERATURE=C PDROP='N/sqm'
DEF-STREAMS CONVEN ALL
SYS-OPTIONS TRACE=YES
RUN-CONTROL MAX-TIME=10000.0
DESCRIPTION "
        Solution polymerization of ethylene. This file requires
        user FORTRAN USRPRP to calculate polymer properties.
DATABANKS PURE93 / POLYMER / SEGMENT / NOASPENPCD
PROP-SOURCES PURE93 / POLYMER / SEGMENT
COMPONENTS
   TICL4 TICL4 TICL4 /
   TEA C2H4 TEA /
   C2H4 C2H4 C2H4 /
   H2 H2 H2 /
   С6Н14 С6Н14-1 С6Н14 /
   HDPE HDPE HDPE /
    C2H4-R C2H4-R C2H4-R
;
      DEFINE FLOWSHEET INFORMATION
;
;
FLOWSHEET
   BLOCK CSTR-1 IN=R1FEED OUT=R1PROD
   BLOCK CSTR-2 IN=R1PROD FEED2 OUT=R2PROD
   BLOCK FLASH IN=R2PROD OUT=RECYCLE POLYMER
;
;
   THE PROPERTY CALCULATION METHOD (OPTION SET) SPECIFICATION FOLLOWS
   THE OPTION SET CHOSEN IS POLYSL (SANCHEZ - LACOMBE EQUATION OF STATE.)
;
;
   THIS OPTION SET ACCOUNTS FOR THE BEHAVIOR OF POLYMERS IN THE
   COMPONENT SYSTEM.
;
;
PROPERTIES POLYSL
```

```
PROP-REPLACE POLYSL POLYSL
   PROP MUVMX MUVMX05
   PROP KVMX KVMX02
   PROP KLMX KLMX02
   PROP MUL MULMH
   PROP MUV MUV05
   PROP KV KV01
   PROP KL KL02
PROP-DATA DATA1
   IN-UNITS SI
   PROP-LIST MW
   PVAL TICL4 176.0
   PVAL TEA 100.0
PROP-DATA MWC
   IN-UNITS MET TEMPERATURE=C THERMAL-COND='Watt/m-K' DELTA-T=C &
       MASS-HEAT-CA='kJ/kg-K' VOL-HEAT-CAP='kJ/cum-K'
    PROP-LIST CRITMW
   PVAL HDPE 3500.0
PROP-DATA PCES-1
   IN-UNITS ENG DENSITY='kg/cum' PRESSURE=bar TEMPERATURE=K &
       PDROP=psi
   PROP-LIST SLTSTR / SLPSTR / SLRSTR / TGVK
   PVAL C2H4 333.0 / 2400.0 / 631.0 / 150.0
   PVAL C2H4-R 663.150 / 4000.0 / 896.60 / 237.0
   PVAL H2 45.890 / 1000.0 / 142.660 / 150.0
   PVAL C6H14 483.130 / 2900.0 / 786.0 / 228.0
   PVAL TICL4 6200.0 / 50000.0 / 960.0 / 228.0
   PVAL TEA 6200.0 / 50000.0 / 960.0 / 228.0
PROP-DATA CPIG-1
    IN-UNITS MET MOLE-HEAT-CA='J/kmol-K'
    PROP-LIST CPIG
   PVAL C2H4 23194.0 78.65810
   PVAL C2H4-R 35100.0 68.22370
   PVAL C6H14 16321.0 431.710
   PVAL H2 28332.0 1.960
   PVAL TICL4 16321.0 431.710
   PVAL TEA 16321.0 431.710
PROP-DATA MULMH-1
   IN-UNITS MET
   PROP-LIST MULMH
   PVAL HDPE .0005740 5000.0 7.54220 1.0 1.0
PROP-DATA SLETIJ-1
   IN-UNITS SI PRESSURE=kPa PDROP=kPa
   PROP-LIST SLETIJ
   BPVAL H2 H2 0.0
   BPVAL H2 C2H4 .019860
   BPVAL H2 C6H14 0.0
   BPVAL H2 HDPE 0.0
   BPVAL C2H4 H2 .019860
   BPVAL C2H4 C2H4 0.0
```

BPVAL C2H4 C6H14 .14760 BPVAL C2H4 HDPE -.10930 BPVAL C6H14 H2 0.0 BPVAL C6H14 C2H4 .14760 BPVAL C6H14 C6H14 0.0 BPVAL C6H14 HDPE .05450 BPVAL HDPE H2 0.0 BPVAL HDPE C2H4 -.10930 BPVAL HDPE C6H14 .05450 BPVAL HDPE HDPE 0.0 PROP-DATA SLKIJ-1 IN-UNITS SI PRESSURE=kPa PDROP=kPa PROP-LIST SLKIJ BPVAL H2 H2 0.0 BPVAL H2 C2H4 0.0 BPVAL H2 C6H14 0.0 BPVAL H2 HDPE 0.0 BPVAL C2H4 H2 0.0 BPVAL C2H4 C2H4 0.0 BPVAL C2H4 C6H14 .02480 BPVAL C2H4 HDPE 0.0 BPVAL C6H14 H2 0.0 BPVAL C6H14 C2H4 .02480 BPVAL C6H14 C6H14 0.0 BPVAL C6H14 HDPE -.00470 BPVAL HDPE H2 0.0 BPVAL HDPE C2H4 0.0 BPVAL HDPE C6H14 -.00470 BPVAL HDPE HDPE 0.0 POLYMERS PARAM NSITES=4 SEGMENTS C2H4-R REPEAT CATALYST TICL4 .00010 POLYMERS HDPE ATTRIBUTES HDPE SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM & FMOM SMOM LDPN LZMOM LFMOM LSFLOW LSFRAC LEFLOW & LEFRAC LPFRAC SSFRAC SSFLOW SDPN SDPW SPDI SMWN SMWW & SZMOM SFMOM SSMOM SPFRAC LSDPN LSZMOM LSFMOM LSSFLOW & LSSFRAC LSEFLOW LSEFRAC LSPFRAC ATTRIBUTES TICL4 CPSFLOW CPSFRAC CVSFLOW CVSFRAC CDSFLOW & CDSFRAC DISTRIBUTION HDPE CHAIN-SIZE CLD NPOINTS=100 10000.0 USER-PROPERT DENS SUBROUTINE=USRPRP UNIT-TYPE=DENSITY USER-PROPERT IV SUBROUTINE=USRPRP USER-PROPERT MI-K SUBROUTINE=USRPRP USER-PROPERT MI-S SUBROUTINE=USRPRP USER-PROPERT ZVIS SUBROUTINE=USRPRP

```
PROP-SET DENS DENS SUBSTREAM=MIXED
PROP-SET IV IV SUBSTREAM=MIXED
PROP-SET MI-KAR MI-K SUBSTREAM=MIXED
PROP-SET MI-SIN MI-S SUBSTREAM=MIXED
PROP-SET ZVIS ZVIS SUBSTREAM=MIXED
STREAM FEED2
   SUBSTREAM MIXED TEMP=70.0 PRES=200.0 MASS-FLOW=10000.0 &
       NPHASE=1 PHASE=L
   MASS-FRAC TICL4 .00010 / TEA .000150 / C2H4 .20 / H2 &
       .00020 / C6H14 .79950
   COMP-ATTR TICL4 CPSFLOW ( 0.0 )
   COMP-ATTR TICL4 CPSFRAC ( 1.0 )
   COMP-ATTR TICL4 CVSFLOW ( 0.0 )
    COMP-ATTR TICL4 CVSFRAC ( 0.0 0.0 0.0 0.0 )
   COMP-ATTR TICL4 CDSFLOW ( 0.0 )
   COMP-ATTR TICL4 CDSFRAC ( 0.0 )
STREAM R1FEED
   SUBSTREAM MIXED TEMP=70.0 PRES=200.0 MASS-FLOW=60000.0 &
       NPHASE=1 PHASE=L
   MASS-FRAC TICL4 .00010 / TEA .000150 / C2H4 .10 / H2 &
       5.0000E-06 / C6H14 .899750
   COMP-ATTR TICL4 CPSFLOW (0.0)
   COMP-ATTR TICL4 CPSFRAC ( 1.0 )
   COMP-ATTR TICL4 CVSFLOW ( 0.0
   COMP-ATTR TICL4 CVSFRAC ( 0.0 0.0 0.0 0.0 )
   COMP-ATTR TICL4 CDSFLOW ( 0.0 )
   COMP-ATTR TICL4 CDSFRAC ( 0.0 )
BLOCK FLASH FLASH2
   PARAM TEMP=160.0 PRES=10.0
BLOCK CSTR-1 RCSTR
   PARAM VOL=60.0 TEMP=160.0 PRES=200.0 NPHASE=1 PHASE=L &
       MB-MAXIT=500 MB-TOL=.00010 FLASH-MAXIT=50 &
       FLASH-TOL=1.0000E-06
   MOLE-FLOW MIXED TICL4 .0340
   MOLE-FLOW MIXED TEA .090
   MOLE-FLOW MIXED C2H4 200.0
   MOLE-FLOW MIXED H2 .130
   MOLE-FLOW MIXED C6H14 626.40
   MOLE-FLOW MIXED HDPE 8.0
   COMP-ATTR MIXED TICL4 CPSFLOW ( .000010 )
   COMP-ATTR MIXED TICL4 CVSFLOW ( 1.0000E-09 1.2000E-08 &
        2.0000E-09 1.2000E-08 )
   COMP-ATTR MIXED TICL4 CDSFLOW ( 3.9581E-06 )
    COMP-ATTR MIXED HDPE ZMOM ( .4980 )
   COMP-ATTR MIXED HDPE SMOM ( 165000.0 )
   COMP-ATTR MIXED HDPE SFLOW ( 181.90 )
   COMP-ATTR MIXED HDPE LEFLOW ( .010 )
```

```
COMP-ATTR MIXED HDPE LSFLOW ( 4.50 )
    COMP-ATTR MIXED HDPE SZMOM ( .40 .10 .40 .10 )
COMP-ATTR MIXED HDPE SSFLOW ( 181.20 .640 181.20 .640 )
    COMP-ATTR MIXED HDPE SSMOM ( 166000.0 8.50 166000.0 8.50 &
        )
    COMP-ATTR MIXED HDPE LSEFLOW ( .00980 .000670 .00980 &
        .000670 )
    COMP-ATTR MIXED HDPE LSSFLOW ( 4.50 .00420 4.50 .00420 )
    CONVERGENCE SOLVER=NEWTON
    BLOCK-OPTION TERM-LEVEL=7
   REACTIONS RXN-IDS=ZN-R1
BLOCK CSTR-2 RCSTR
    PARAM VOL=60.0 TEMP=160.0 PRES=200.0 NPHASE=1 PHASE=L &
       MB-MAXIT=500 MB-TOL=.00010 FLASH-MAXIT=50 &
        FLASH-TOL=1.0000E-06 ALGORITHM=INTEGRATOR MAX-NSTEP=200
   MOLE-FLOW MIXED TICL4 .0340
    MOLE-FLOW MIXED TEA .090
    MOLE-FLOW MIXED C2H4 200.0
   MOLE-FLOW MIXED H2 .130
   MOLE-FLOW MIXED C6H14 626.40
   MOLE-FLOW MIXED HDPE 8.0
    COMP-ATTR MIXED TICL4 CPSFLOW ( .000010 )
    COMP-ATTR MIXED TICL4 CVSFLOW ( 1.0000E-09 1.2000E-08 &
        2.0000E-09 1.2000E-08 )
    COMP-ATTR MIXED TICL4 CDSFLOW ( 3.9581E-06 )
    COMP-ATTR MIXED HDPE ZMOM ( .4980 )
    COMP-ATTR MIXED HDPE SMOM ( 165000.0 )
    COMP-ATTR MIXED HDPE SFLOW ( 181.90 )
    COMP-ATTR MIXED HDPE LEFLOW ( .010 )
    COMP-ATTR MIXED HDPE LSFLOW ( 4.50 )
    COMP-ATTR MIXED HDPE SZMOM ( .40 .10 .40 .10 )
    COMP-ATTR MIXED HDPE SSFLOW ( 181.20 .640 181.20 .640 )
    COMP-ATTR MIXED HDPE SSMOM ( 166000.0 8.50 166000.0 8.50 &
    COMP-ATTR MIXED HDPE LSEFLOW ( .00980 .000670 .00980 &
        .000670)
    COMP-ATTR MIXED HDPE LSSFLOW ( 4.50 .00420 4.50 .00420 )
    CONVERGENCE SOLVER=NEWTON
    BLOCK-OPTION TERM-LEVEL=7
   REACTIONS RXN-IDS=ZN-R2
;
SENSITIVITY RTIME
   PARAM BASE-CASE=LAST
   DEFINE RHDPE2 MASS-FLOW STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE
    DEFINE RMW2 COMP-ATTR-VAR STREAM=R2PROD SUBSTREAM=MIXED
                                                              8
        COMPONENT=HDPE ATTRIBUTE=MWW ELEMENT=1
    DEFINE RMN2 COMP-ATTR-VAR STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=MWN ELEMENT=1
    DEFINE RPDI2 COMP-ATTR-VAR STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=PDI ELEMENT=1
    DEFINE RE22 MASS-FLOW STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=C2H4
```

```
DEFINE RHDPE1 MASS-FLOW STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE
    DEFINE RMW1 COMP-ATTR-VAR STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=MWW ELEMENT=1
    DEFINE RMN1 COMP-ATTR-VAR STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=MWN ELEMENT=1
    DEFINE RPDI1 COMP-ATTR-VAR STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=PDI ELEMENT=1
    DEFINE RE21 MASS-FLOW STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=C2H4
    DEFINE RMI2 STREAM-PROP STREAM=R2PROD PROPERTY=MI-KAR
    DEFINE RMI1 STREAM-PROP STREAM=R1PROD PROPERTY=MI-KAR
    DEFINE R2H2 MASS-FRAC STREAM=R2PROD SUBSTREAM=MIXED
        COMPONENT=H2
    DEFINE R1H2 MASS-FRAC STREAM=R1PROD SUBSTREAM=MIXED
        COMPONENT=H2
F
       CONV2 = RHDPE2/(RHDPE2+RE22) * 100
F
      CONV1 = RHDPE1/(RHDPE1+RE21) * 100
    TABULATE 1 "CONV1" COL-LABEL="CONV1"
TABULATE 2 "CONV2" COL-LABEL="CONV2"
    TABULATE 3 "RMW1" COL-LABEL="MW1"
    TABULATE 4 "RMW2" COL-LABEL="MW2"
    TABULATE 5 "RMN1" COL-LABEL="MN1"
    TABULATE 6 "RMN2" COL-LABEL="MN2
    TABULATE 7 "RPDI1" COL-LABEL="PDI1"
    TABULATE 8 "RPDI2" COL-LABEL="PDI2"
    TABULATE 9 "R1H2*1.0E6" COL-LABEL="R1H2" "PPM"
    TABULATE 10 "R2H2*1.0E6" COL-LABEL="R2H2" "PPM"
    TABULATE 11 "RMI1" COL-LABEL="MI1"
    TABULATE 12 "RMI2" COL-LABEL="MI2"
    VARY STREAM-VAR STREAM=R1FEED SUBSTREAM=MIXED &
        VARIABLE=MASS-FLOW
    RANGE LOWER="2E4" UPPER="1.5E6" NPOINT="20"
SENSITIVITY RTIME2
    PARAM BASE-CASE=LAST
    DEFINE RHDPE2 MASS-FLOW STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE
    DEFINE RMW2 COMP-ATTR-VAR STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=MWW ELEMENT=1
    DEFINE RMN2 COMP-ATTR-VAR STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=MWN ELEMENT=1
    DEFINE RPDI2 COMP-ATTR-VAR STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=PDI ELEMENT=1
    DEFINE RE22 MASS-FLOW STREAM=R2PROD SUBSTREAM=MIXED &
        COMPONENT=C2H4
    DEFINE RHDPE1 MASS-FLOW STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE
    DEFINE RMW1 COMP-ATTR-VAR STREAM=R1PROD SUBSTREAM=MIXED
                                                              δ
        COMPONENT=HDPE ATTRIBUTE=MWW ELEMENT=1
    DEFINE RMN1 COMP-ATTR-VAR STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=MWN ELEMENT=1
    DEFINE RPDI1 COMP-ATTR-VAR STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=HDPE ATTRIBUTE=PDI ELEMENT=1
    DEFINE RE21 MASS-FLOW STREAM=R1PROD SUBSTREAM=MIXED &
        COMPONENT=C2H4
```

```
DEFINE RMI2 STREAM-PROP STREAM=R2PROD PROPERTY=MI-KAR
    DEFINE RMI1 STREAM-PROP STREAM=R1PROD PROPERTY=MI-KAR
    DEFINE R2H2 MASS-FRAC STREAM=R2PROD SUBSTREAM=MIXED
                                                         æ
        COMPONENT=H2
    DEFINE R1H2 MASS-FRAC STREAM=R1PROD SUBSTREAM=MIXED &
       COMPONENT=H2
F
       CONV2 = RHDPE2/(RHDPE2+RE22) * 100
F
       CONV1 = RHDPE1/(RHDPE1+RE21) * 100
    TABULATE 1 "CONV1" COL-LABEL="CONV1"
    TABULATE 2 "CONV2" COL-LABEL="CONV2"
   TABULATE 3 "RMW1" COL-LABEL="MW1"
    TABULATE 4 "RMW2" COL-LABEL="MW2"
    TABULATE 5 "RMN1" COL-LABEL="MN1"
    TABULATE 6 "RMN2" COL-LABEL="MN2"
    TABULATE 7 "RPDI1" COL-LABEL="PDI1"
    TABULATE 8 "RPDI2" COL-LABEL="PDI2"
    TABULATE 9 "R1H2*1.0E6" COL-LABEL="R1H2" "PPM"
    TABULATE 10 "R2H2*1.0E6" COL-LABEL="R2H2" "PPM"
    TABULATE 11 "RMI1" COL-LABEL="MI1"
    TABULATE 12 "RMI2" COL-LABEL="MI2"
    VARY MASS-FLOW STREAM=FEED2 SUBSTREAM=MIXED COMPONENT=H2
   RANGE LOWER="0.0" UPPER="20" INCR="2.0"
CONV-OPTIONS
   PARAM CHECKSEQ=NO
SEQUENCE S-1 CSTR-1 CSTR-2 RTIME CSTR-1 CSTR-2 (RETURN RTIME) &
        RTIME2 CSTR-2 FLASH (RETURN RTIME2)
STREAM-REPOR NARROW MOLEFLOW MASSFLOW MASSFRAC PROPERTIES=DENS &
        IV MI-KAR MI-SIN ZVIS
REACTIONS ZN-R1 ZIEGLER-NAT
   DESCRIPTION "ZIEGLER-NATTA KINETIC SCHEME"
    PARAM
   SPECIES CATALYST=TICL4 COCATALYST=TEA MONOMER=C2H4 &
       SOLVENT=C6H14 HYDROGEN=H2 POLYMER=HDPE
    MON-RSEG C2H4 C2H4-R
    ACT-SPON 1 TICL4 .080 0.0 1.0
    ACT-SPON 2 TICL4 .080 0.0 1.0
    ACT-SPON 3 TICL4 0.0 0.0 1.0
   ACT-SPON 4 TICL4 0.0 0.0 1.0
   ACT-COCAT 1 TICL4 TEA .150 0.0 1.0
    ACT-COCAT 2 TICL4 TEA .150 0.0 1.0
    ACT-COCAT 3 TICL4 TEA 0.0 0.0 1.0
    ACT-COCAT 4 TICL4 TEA 0.0 0.0 1.0
    CHAIN-INI 1 C2H4 255.0 0.0 1.0
    CHAIN-INI 2 C2H4 90.0 0.0 1.0
    CHAIN-INI 3 C2H4 0.0 0.0 1.0
    CHAIN-INI 4 C2H4 0.0 0.0 1.0
    PROPAGATION 1 C2H4 C2H4 255.0 0.0 1.0
    PROPAGATION 2 C2H4 C2H4 90.0 0.0 1.0
    PROPAGATION 3 C2H4 C2H4 0.0 0.0 1.0
    PROPAGATION 4 C2H4 C2H4 0.0 0.0 1.0
    CHAT-MON 1 C2H4 C2H4 .090 0.0 1.0
    CHAT-MON 2 C2H4 C2H4 .240 0.0 1.0
```

CHAT-MON 3 C2H4 C2H4 0.0 0.0 1.0 CHAT-MON 4 C2H4 C2H4 0.0 0.0 1.0 CHAT-H2 1 C2H4 H2 5.550 0.0 1.0 CHAT-H2 2 C2H4 H2 18.50 0.0 1.0 CHAT-H2 3 C2H4 H2 0.0 0.0 1.0 CHAT-H2 4 C2H4 H2 0.0 0.0 1.0 CHAT-SPON 1 C2H4 .0040 0.0 1.0 CHAT-SPON 2 C2H4 .0120 0.0 1.0 CHAT-SPON 3 C2H4 0.0 0.0 1.0 CHAT-SPON 4 C2H4 0.0 0.0 1.0 DEACT-SPON 1 .00010 0.0 1.0 DEACT-SPON 3 0.0 0.0 1.0 DEACT-SPON 3 0.0 0.0 1.0	
REACTIONS ZN-R2 ZIEGLER-NAT	
DESCRIPTION "ZIEGLER-NATTA KINETIC SCHEME"	
PARAM	
SPECIES CATALYST=TICL4 COCATALYST=TEA MONOMER=C2H4	&
MON-RSEG C2H4 C2H4-R	
ACT-SPON 1 TICL4 .080 0.0 1.0	
ACT-SPON 2 TICL4 .080 0.0 1.0	
ACT-SPON 3 TICL4 .080 0.0 1.0	
ACT-SPON 4 TICL4 .080 0.0 1.0	
ACT-COCAT I TICL4 TEA .150 0.0 1.0 ACT-COCAT 2 TICL4 TEA 150 0.0 1.0	
ACT-COCAT 3 TICL4 TEA .150 0.0 1.0	
ACT-COCAT 4 TICL4 TEA .150 0.0 1.0	
CHAIN-INI 1 C2H4 255.0 0.0 1.0	
CHAIN-INI 2 C2H4 90.0 0.0 1.0	
$\begin{array}{c} \text{CHAIN-INI} & 3 & \text{C2H4} & 255.0 & 0.0 & 1.0 \\ \text{CHAIN-INI} & 4 & \text{C2H4} & 90 & 0 & 0 & 1 & 0 \\ \end{array}$	
PROPAGATION 1 C2H4 C2H4 255 0 0 0 1 0	
PROPAGATION 2 C2H4 C2H4 90.0 0.0 1.0	
PROPAGATION 3 C2H4 C2H4 255.0 0.0 1.0	
PROPAGATION 4 C2H4 C2H4 90.0 0.0 1.0	
CHAT-MON 1 C2H4 C2H4 .090 0.0 1.0	
$\begin{array}{c} \text{CHAI-MON} & 2 & \text{C2H4} & \text{C2H4} & \text{.240} & 0.0 & 1.0 \\ \text{CHAT-MON} & 3 & \text{C2H4} & \text{C2H4} & 0.90 & 0 & 0 & 1 & 0 \\ \end{array}$	
CHAT-MON 4 C2H4 C2H4 .240 0.0 1.0	
CHAT-H2 1 C2H4 H2 5.550 0.0 1.0	
CHAT-H2 2 C2H4 H2 18.50 0.0 1.0	
CHAT-H2 3 C2H4 H2 5.550 0.0 1.0	
$\begin{array}{c} \text{CHAI-HZ} 4 \text{ CZH4} \text{ HZ} 18.50 \text{ 0.0 1.0} \\ \text{CHAT-SDON 1 C2H4} 0040 0 0 1 0 \end{array}$	
CHAT-SPON 2 C2H4 .0120 0.0 1.0	
CHAT-SPON 3 C2H4 .0040 0.0 1.0	
CHAT-SPON 4 C2H4 .0120 0.0 1.0	
DEACT-SPON 1 .00010 0.0 1.0	
DEACT-SPON 2 .00060 0.0 1.0	
DEACT-SPON 5 .00010 0.0 1.0 DEACT-SPON 4 .00060 0.0 1 0	
;	

SELECTED SIMULATION RESULTS

A stream summary for the base case simulation is given in Figure 2.3. The results for the sensitivity study to determine the effect of feed flowrate to CSTR-1 on ethylene conversion, M_n , M_w , PDI, and melt index are shown in Figure 2.4 to Figure 2.9. Properties of the product exiting from CSTR-2 are influenced by the flowrates of both feeds. Increasing the feed to CSTR-1 decreases the residence time in CSTR-1 and CSTR-2, this leads to a decrease in conversion in both reactors as shown in Figure 2.4. Although conversion decreases with increases in CSTR-1 feed, Figure 2.5 and Figure 2.6 show an increase in the CSTR-2 polymer M_n and M_w . This is due to the concentration of hydrogen in CSTR-2. As CSTR-1 feed flow increases, hydrogen concentration in CSTR-2 decreases. As a result, chain transfer rate decreases, allowing longer polymer chain length.

The results for the sensitivity studies to determine the effects of hydrogen flowrate on polymer properties are shown in Figures 2.10-2.12. In this case, hydrogen flowrate in the intermediate feed to CSTR-2 is varied. As hydrogen flowrate increases, average molecular weight of HDPE in CSTR-2 decreases as shown in Figure 2.10. The effect of hydrogen concentration on melt index is shown in Figure 2.11. Finally, Figure 2.12 shows the molecular weight distribution for polymer produced at the different sites. As shown, although the polymer at each site follows the Flory distribution, the composite polymer MWD is quite broad. In conclusion, the studies show the importance of choosing the right operating conditions in order to optimize reactor performance and product properties.

Figure 2.3 Simulation Stream Summary

STREAM ID FROM : TO :	FEED2 CSTR-2	POLYMER FLASH 	R1FEED CSTR-1	R1PROD CSTR-1 CSTR-2	R2PROD CSTR-2 FLASH		
SUBSTREAM: MIXED PHASE: COMPONENTS: KMOL/HR	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID		
TICL4 TEA C2H4 H2 C6H14 HDPE C2H4-R	5.6821-03 1.5001-02 71.2952 0.9921 92.7786 0.0 0.0	3.9773-02 0.1050 0.3397 7.3279-04 32.2408 211.3763 0.0	3.4091-02 9.0000-02 213.8740 0.1488 626.4389 0.0 0.0	3.4091-02 8.9999-02 84.6404 0.1380 626.4389 129.2343 0.0	3.9773-02 0.1050 73.7973 1.0801 719.2176 211.3763 0.0		
COMPONENTS: KG/HR TICL4 TEA C2H4 H2 C6H14 HDPE C2H4-R COMPONENTS: MASS FRAC	1.0000 1.5000 2000.1000 2.0001 7995.3997 0.0 0.0	7.0000 10.4999 9.5311 1.4772-03 2778.4249 5929.9003 0.0	5.9999 8.9999 5999.9700 0.3000 5.3985+04 0.0 0.0	5.9999 8.9998 2374.4828 0.2783 5.3985+04 3625.5088 0.0	7.0000 10.4999 2070.2925 2.1773 6.1980+04 5929.9003 0.0		
TICL4 TEA C2H4 H2 C6H14 HDPE C2H4-R	1.0001-04 1.5001-04 0.2000 2.0001-04 0.7995 0.0 0.0	8.0134-04 1.2020-03 1.0911-03 1.6911-07 0.3180 0.6788 0.0	1.0000-04 1.5000-04 0.1000 5.0000-06 0.8997 0.0 0.0	$\begin{array}{c} 1.0000-04\\ 1.5000-04\\ 3.9575-02\\ 4.6392-06\\ 0.8997\\ 6.0425-02\\ 0.0 \end{array}$	$\begin{array}{c} 1.0000-04\\ 1.5000-04\\ 2.9576-02\\ 3.1105-05\\ 0.8854\\ 8.4713-02\\ 0.0 \end{array}$		
TOTAL FLOW: KG/HR	1.0000+04	8735.3577	6.0000+04	6.0000+04	7.0000+04		
STATE VARIABLES: TEMP C PRES ATM VFRAC LFRAC SFRAC	70.0000 200.0000 0.0 1.0000 0.0	160.0000 10.0000 0.0 1.0000 0.0	70.0000 200.0000 0.0 1.0000 0.0	160.0000 200.0000 0.0 1.0000 0.0	160.0000 200.0000 0.0 1.0000 0.0		
ENTHALPY: J/KG	-1.4000+06	-1.7604+06	-1.7858+06	-1.7716+06	-1.8030+06		
ENTROPY: J/KG-K	-5515.4330	-5832.6918	-5868.8939	-5669.4671	-5696.5274		
DENSITY: KG/CUM	622.0457	725.1154	646.1111	582.3813	591.3802		
AVG MW	60.5742	35.7856	71.3787	71.3796	69.6090		
Figure 2.3 Simulation Stream Summary (cont.)							
--	-------------------	-----------	---------------	-----------	---------------	------------------------	--
COMPONEN	IT ATTRIBUTES:						
TICL4	CPSFLOW						
	CPSFLOW	1.0001-04	1.7372-07	6.0000-04	1.7804-06	1.7372-07	
	CPSFRAC	1 0000	0 4017 04	1 0000	2 0 6 7 2 0 2	0 4017 04	
	CVSFLOW	1.0000	2.401/-04	1.0000	2.9073-03	2.401/-04	
	SITE_1	0.0	7.9316-08	0.0	1.4181-08	7.9316-08	
	SITE_2	0.0	2.4230-07	0.0	6.7815-08	2.4230-07	
	SITE_3	0.0	7.4688-09	0.0	0.0	7.4688-09	
	SITE_4	0.0	3.9196-08	0.0	0.0	3.9196-08	
	CVSFRAC	0 0	1 1 2 2 1 0 4	0 0	2 262E 0E	1 1 2 2 1 0 4	
	SIIE_I SITTE 2	0.0	2 4615-04	0.0	2.3035-05	1.1331-04 3.4615-04	
	SITE 3	0.0	1.0670-05	0.0	0.0	1.0670-05	
	SITE 4	0.0	5.5994-05	0.0	0.0	5.5994-05	
	CDSFLOW						
	CDSFLOW	0.0	3.6027-04	0.0	2.1848-04	3.6027-04	
	CDSFRAC		0 5146		0.0641	0 5146	
UDDE	CDSFRAC	0.0	0.5146	0.0	0.3641	0.5146	
HDPE	C2H4-R		1 0000		1 0000	1 0000	
	SFLOW		1.0000		1.0000	1.0000	
	C2H4-R		211.3719		129.2335	211.3719	
	DPN						
	DPN		990.4131		1176.9563	990.4131	
	DPW		2550 1020		4100 1400	2550 1020	
	DPW		35/8.1938		4199.1490	35/8.1938	
	דתק		3 6128		3 5678	3 6128	
	MWN		5.0120		3.3070	3.0120	
	MWN		2.7785+04		3.3018+04	2.7785+04	
	MWW						
	MWW		1.0038+05		1.1780+05	1.0038+05	
	ZMOM		0 0104		0 1009	0 0104	
	FMOM		0.2134		0.1098	0.2134	
	FMOM		211.3719		129.2335	211.3719	
	SMOM						
	SMOM		7.5633+05		5.4267+05	7.5633+05	
	LDPN		1110 6005		1.000.0000	1110 6005	
	LDPN		1113.6395		1697.9986	1113.6395	
			3 3919-04		3 7965-04	3 3919-04	
	LFMOM		3.3717 04		5.7505 04	3.3919 04	
	LFMOM		0.3777		0.6446	0.3777	
	LSFLOW						
	C2H4-R		0.3777		0.6446	0.3777	
	LSFRAC		1 0000		1 0000	1 0000	
	CZH4-R		1.0000		1.0000	1.0000	
	C2H4-R		3.3919-04		3.7965-04	3.3919-04	
	LEFRAC						
	C2H4-R		1.0000		1.0000	1.0000	
	LPFRAC						
	LPFRAC		1.5893-03		3.4576-03	1.5893-03	

Figure 2.3 Simulation S	Stream Summary (o	cont.)		
SSFRAC				
C2H4-R 1	1 0000	1 0000	1 0000	
	1 0000	1 0000	1 0000	
	1 0000	1.0000	1 0000	
$C2H4-R_3$	1.0000	1.0000	1.0000	
C2H4-R_4	1.0000	1.0000	1.0000	
SSFLOW				
C2H4-R_1	175.5652	108.6434	175.5652	
C2H4-R_2	28.3270	20.5900	28.3270	
C2H4-R_3	6.2346	6.5353-22	6.2346	
C2H4-R_4	1.2449	6.5353-22	1.2449	
SDPN				
SITE 1	1925.6597	2438.2717	1925.6597	
SITE 2	256,1980	315.5779	256,1980	
STTE 3	1428.0915	1.8680-02	1428.0915	
SITE 4	170 2189	1 8680-02	170 2189	
WDDD	170.2109	1.0000 02	1/0.2100	
OTTE 1	411E 00E0	107E E 121	411E 00E0	
SIIE_I	4115.2255	4875.5434	4113.2233	
SITE_2	551.2514	630.1559	551.2514	
SITE_3	2855.1831	5.2568-10	2855.1831	
SITE_4	339.4379	5.2568-10	339.4379	
SPDI				
SITE_1	2.1370	1.9995	2.1370	
SITE_2	2.1516	1.9968	2.1516	
SITE_3	1.9993	2.8141-08	1.9993	
SITE 4	1.9941	2.8141-08	1.9941	
SMWN				
SITE 1	5.4022+04	6.8403+04	5.4022+04	
STTE 2	7187 3180	8853 1488	7187 3180	
SIT <u>2</u> STTF 3	4 0063+04	0 5240	4 0063+04	
	4775 2025	0.5240	4776 2026	
SIIE_4	4775.2025	0.5240	4//0.2020	
SMMM	1 1545.05	1 2670 05	1 1 - 4 0 -	
SITE_I	1.1545+05	1.36/8+05	1.1545+05	
STTE_2	1.5465+04	1.7678+04	1.5465+04	
SITE_3	8.0099+04	1.4747-08	8.0099+04	
SITE_4	9522.5113	1.4747-08	9522.5113	
SZMOM				
SITE_1	9.1171-02	4.4558-02	9.1171-02	
SITE_2	0.1105	6.5246-02	0.1105	
SITE_3	4.3657-03	3.4986-20	4.3657-03	
SITE 4	7.3137-03	3.4986-20	7.3137-03	
SFMOM				
SITE 1	175.5652	108.6434	175.5652	
STTD_1 STTTF 2	28 3270	20 5900	28 3270	
	6 2346	6 5353-22	6 23/6	
	1 2440		1 2440	
SIIE_4	1.2449	0.5555-22	1.2449	
SSMOM	F 0040.05	F 0070.0F	R 0040.0F	
SITE_I	7.2249+05	5.2970+05	7.2249+05	
SITE_2	1.5615+04	1.29/5+04	1.5615+04	
SITE_3	1.7801+04	3.4355-31	1.7801+04	
SITE_4	422.5795	3.4355-31	422.5795	
SPFRAC				
SITE_1	0.8306	0.8406	0.8306	
SITE_2	0.1340	0.1593	0.1340	
SITE 3	2.9496-02	5.0570-24	2.9496-02	
SITE 4	5.8898-03	5.0570-24	5.8898-03	
		2.00.0 11		

Figure 2.3 Simulation Stream Summary (cont.)						
LSDPN						
SITE_1 SITE_2 SITE_3 SITE_4		1440.9513 171.1353 1428.0915 170 2189		2438.2717 315.5779 0.0 0.0	1440.9513 171.1353 1428.0915 170 2189	
LSZMOM		1,0.2109		0.0	1,0,210)	
SITE_1		2.3051-04		2.4725-04	2.3051-04	
SITE_2		7.5118-05		1.3240-04	7.5118-05	
SITE_3		2.1475-05		0.0	2.1475-05	
SITE_4		1.208/-05		0.0	1.208/-05	
STTE 1		0 3321		0 6028	0 3321	
SITE 2		1.2855-02		4.1783-02	1.2855-02	
SITE_3		3.0669-02		0.0	3.0669-02	
SITE_4		2.0574-03		0.0	2.0574-03	
LSSFLOW						
C2H4-R_1		0.3321		0.6028	0.3321	
C2H4-R_2		1.2855-02		4.1783-02	1.2855-02	
C2H4-R_3		3.0669-02		0.0	3.0669-02	
LSSFRAC		2.0574-05		0.0	2.0574-03	
C2H4-R 1		1.0000		1.0000	1.0000	
C2H4-R_2		1.0000		1.0000	1.0000	
C2H4-R_3		1.0000		0.0	1.0000	
C2H4-R_4		1.0000		0.0	1.0000	
LSEFLOW		0 0051 04		0 4505 04	0 0051 04	
C2H4-R_1		2.3051-04		2.4725-04	2.3051-04	
C2H4-R_Z C2H4-R_3		7.5118-05 2 1475-05		1.3240-04	7.5118-05 2 1475-05	
C2H4 R_5		1.2087-05		0.0	1.2087-05	
LSEFRAC		11200, 00		010	1.1007 00	
C2H4-R_1		1.0000		1.0000	1.0000	
C2H4-R_2		1.0000		1.0000	1.0000	
C2H4-R_3		1.0000		0.0	1.0000	
C2H4-R_4		1.0000		0.0	1.0000	
LSPFRAC SITTE 1		2 5283-03		5 5491-03	2 5283-03	
SITE 2		6.7939-04		2.0293-03	6.7939-04	
SITE_3		4.9190-03		9.8197-21	4.9190-03	
SITE_4		1.6526-03		9.8197-21	1.6526-03	
MIXED SUBSTREAM PROP	ERTIES:					
*** ALL PHASES ***						
DENS KG/CUM	0.0	925.7174	0.0	925.7174	925.7174	
IV UNITLESS	0.0	1.0007	0.0	1.0333	1.0007	
MI-K UNITLESS	0.0	0.9059	0.0	0.4730	0.9059	
MI-S UNITLESS	0.0	1.4412 1.2070+09	0.0	0.8268	1.4412	
ZVIS UNTILESS	0.0	1.2079+08	0.0	1.4092+08	1.20/9+08	
STREAM ID	RECYCLE					
FROM :	FLASH					
TO :						

SUBSTREAM: MIXI	ED	
PHASE:	VAPOR	
COMPONENTS: KM	DL/HR	
TICL4	0.0	
TEA	0.0	
C2H4	73,4575	
н2	1,0793	
С6н14	686 9767	
HDPE	0 0	
C2H4-R	0.0	
COMPONENTS: KG	/HR	
TTCL4	0.0	
	0.0	
C2H4	2060 7614	
U2117 U2	2000.7014	
112 CGU1 /	Z.I/30 5 9202±04	
LIDDE	0.0	
	0.0	
CZH4-K COMDONENTC · MA		
COMPONENTS: MA:	DS FRAC	
	0.0	
I LA COULA		
C2H4	3.3637-02	
HZ QCU14	3.5516-05	
C6H14	0.9663	
HDPE	0.0	
C2H4-R	0.0	
TOTAL FLOW:		
KG/HR	6.1265+04	
STATE VARIABLES	3:	
TEMP C	160.0000	
PRES ATM	10.0000	
VFRAC	1.0000	
LFRAC	0.0	
SFRAC	0.0	
ENTHALPY:		
J/KG	-1.5559+06	
ENTROPY :		
T/KG-K	-5802 3786	
0/10-1	-3002.3700	
DENSITY:		
KG/CUM	26.5809	
	00 4511	

Figure 2.4 Effect of Feed Flow Rate on Ethylene Conversion

Figure 2.5 Effect of Feed Flow Rate on M_n

Figure 2.6 Effect of Feed Flow Rate on M_w

Figure 2.7 Effect of Feed Flow Rate on the Hydrogen Concentration (PPM)

Figure 2.8 Effect of Feed Flow Rate on the Polydispersity Index

Figure 2.9 Effect of Feed Flow Rate on the Melt Index

Figure 2.10 Effect of the Concentration of Hydrogen on M_n and M_w

Figure 2.11 Effect of the Concentration of Hydrogen on the Melt Index and PDI

Figure 2.12 Molecular Weight Distribution of the Polymer Produced at Each Site

REFERENCES

MacAuley, K. B., J. F. MacGregor, A. E. Hamielec, AIChE Journal, 36, 837 (1990).

Xie, T., K. B. McAuley, J. C.C. Hsu and D. W. Bacon, "Gas phase ethylene polymerization: Production processes, polymer properties and reactor modeling", *Ind. Eng. Chem. Res.*, **33**, 449-479 (1994).

LOW-DENSITY POLYETHYLENE

HIGH PRESSURE PROCESS

SUMMARY

The LDPE high pressure process model illustrates the use of Polymers Plus to model a high pressure free-radical process for low-density polyethylene. The model considers the tubular jacketed reactor along with the post-polymerization devolatization. Among the parameters studied in the model are reactor temperature profile, monomer conversion, polymer molecular weight and degree of branching.

ABOUT THIS PROCESS

Low density polyethylene (LDPE), is part of the polyolefin family of polymers. This polymer exhibits a number of desirable properties, including strength, flexibility, impact resistance, resistance to solvents, to chemicals, and to oxidating agents. For this reason, it is one of the highest volume polymers in terms of production.

LDPE is produced by free-radical polymerization. It has been produced in batch processes. However, continuous processes are more commonly found, because they allow better control of the polymerization. Polymerization is carried out in tubular and autoclave reactors under high pressure (1300-3400 atm), and high temperatures (150-340°C). At such high compression states, the gaseous ethylene monomer behaves like a liquid. The reactor of choice for the production of LDPE is a tubular reactor. Some processes involve multizone tubular reactors with multiple initiator injection points along the length of the reactor.

PROCESS DEFINITION

In this example, polymerization of ethylene is carried out in a jacketed tubular reactor divided into four sections, with two initiator injection points. High and low pressure separators are also used. The flowsheet for the process is given in Figure 3.1.

The flowsheet is modeled using two RPlug in series, followed by a Mixer block for the second initiator injection point, two more RPlug in series, followed by two Flash2 blocks as the high and low pressure separators.

Figure 3.1 LDPE High Pressure Polymerization Flowsheet

Process Conditions

The process conditions are as listed in Table 3.1.

Table 3.1 Process Conditions

Components			
	Name	Databank	Description
Initiator	INI1	PURECOMP	Initiator
2nd initiator	INI2	PURECOMP	Initiator
Ethylene	E2	PURECOMP	Monomer
Polyethylene	PE	POLYMER	Polymer
	E2-SEG	SEGMENT	Ethylene segment
Water	WATER	PURECOMP	Coolant
Physical Properties	POLYSL property meth	nod with supplied parameters	
Feeds			
	Feed	Initiator Injection	Coolant
Temperature (°C)	125	125	160
Pressure (atm)	2000	2000	100
Component flows:		-	-
C2E (kg/sec)	17.4993		-
INI1	4.375E-4	1E-4	
INI2	2.1875E-4	5E-5	
WATER			44.4
Kinetics	FREE-RAD model (see	e Reactor Kinetics for rate const	ant parameters)
Operating Conditions			
Block	Temp (°C)	Pres (atm)	Size
PFR1	170 (coolant)	2000	250 m length by 0.059 m diam*
PFR2	170 (coolant)	2000	250 m length by 0.059 m diam*
PFR3	170 (coolant)	2000	250 m length by 0.059 m diam*
PFR4	170 (coolant)	2000	250 m length by 0.059 m diam*
MIX1		2000	
FL1	Duty=0	250	
FL2	Duty=0	1	

* A user heat transfer subroutine (Carr et al., 1955; Eirmann, 1965) is provided to these plug flow reactors.

Physical Property Models and Data

The POLYSL equation-of-state property method is used for the physical property calculations and phase equilibria. The unary input parameters for POLYSL are SLTSTR, SLPSTR, and SLRSTR, and correspond to the Sanchez-Lacombe equation of state T*, P*, and ρ^* parameters, respectively. The parameters were obtained by Sanchez-Lacombe by fitting experimental data (Sanchez, et al., 1976). An input summary containing these parameter values is given in the Process Studies section.

To improve predictions for phase equilibria in the high- and low-pressure separators, two binary interaction parameters between polyethylene and ethylene were introduced, namely SLKIJ and SLETIJ. These parameters were obtained by fitting VLE experimental data of polyethylene-ethylene binary systems at various temperatures.

Ideal gas heat capacity coefficients (CPIG) are entered for ethylene segment and pure ethylene. The coefficients are obtained from heat capacity data fit. CPIG is used for the calculation of ideal-gas enthalpy and entropy, which are added to the departure values calculated by the Sanchez-Lacombe equation of state. An input summary containing these parameter values is given in the Process Studies section.

Reactors / Kinetics

The built-in free-radical reactions included for this example are listed below along with their rate constant parameters.

Description	k ₀ †‡	E _a †	V†
	(m ³ / kmol)	(J / kmol)	$(m^3 / kmol)$
Initiator 1 decomposition	2.5E14	126E6	0
Initiator 2 decomposition	5.93E18	195E6	0
Chain initiation	2.5E8‡	35.3E6	0
Propagation	2.5E8‡	35.3E6	-21.3E-3
Chain transfer to monomer	1.25E6	45.4E6	0
Chain transfer to polymer	1.24E6	30.4E6	1.6E-3
Termination by combination	2.5E9	4.19E6	1E-3
Termination by disproportionation	2.5E9	4.19E6	1E-3
Beta scission	6.07E7	45.3E6	0
Short chain branching	1.3E9	41.6E6	0

 $\dagger \mathbf{k}_0$ is frequency factor, E_a is activation energy and V is activation volume

 \sharp k_0 is 2 times higher than in Mavridis and Kiparissides (1985).

Process Studies

The model is used to examine the reactor temperature profile, monomer conversion, number and weight average molecular weights, and frequency of short and long chain branches.

An Input Summary is given in Figure 3.2.

Figure 3.2 Input Summary for LDPE High Pressure Polymerization

;The LDPE application example requires a FORTRAN subroutine. Please copy ;the file (USRHPE.F) located in the application example directory to ;your working directory and compile. This file uses the component ID's ; of ethylene and LDPE to locate and get the flows and molecular weights. ;Please don't change the component ID's for ethylene and LDPE. ;This subroutine calculates the heat transfer coefficient and returns to ;the RPLUG. ; TITLE 'High-Pressure LDPE Tubular Reactor with Four Sections' IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' PRESSURE=bar & TEMPERATURE=C PDROP='N/sqm' DEF-STREAMS CONVEN ALL SYS-OPTIONS TRACE=YES RUN-CONTROL MAX-TIME=5000.0 DESCRIPTION "This flowsheet models a high-pressure LDPE tubular reactor flowsheet with four sections, two initiator injection points, and high and low pressure separators. " DATABANKS PURE93 / POLYMER / SEGMENT / ASPENPCD PROP-SOURCES PURE93 / POLYMER / SEGMENT / ASPENPCD COMPONENTS INI1 C2H4 INI1 / E2 C2H4 E2 / LDPE PE LDPE / E2-SEG C2H4-R E2-SEG / INI2 C2H4 INI2 / WATER H2O WATER FLOWSHEET BLOCK PFR1 IN=FEED CIN1 OUT=OUT1 COUT1 BLOCK PFR2 IN=OUT1 CIN2 OUT=OUT2 COUT2 BLOCK MIX1 IN=OUT2 INIFD1 OUT=MIXFD1 BLOCK PFR3 IN=MIXFD1 CIN3 OUT=OUT3 COUT3 BLOCK PFR4 IN=OUT3 CIN4 OUT=OUT4 COUT4 BLOCK FL1 IN=OUT4 OUT=VAP1 LIQ1 BLOCK FL2 IN=LIQ1 OUT=VAP2 LIQ2

Figure 3.2 Input Summary for LDPE High Pressure Polymerization (cont.)

```
PROPERTIES POLYSL
   PROPERTIES STEAM-TA
PROP-DATA PCES-2
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        PRESSURE=bar TEMPERATURE=C PDROP='N/sqm'
    PROP-LIST VLSTD
   PVAL E2-SEG 0.0
PROP-DATA POLYSL
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=bar PDROP='N/sqm'
   PROP-LIST SLTSTR / SLPSTR / SLRSTR
   PVAL E2 333.0 / 2400.0 / 631.0
   PVAL LDPE 667.70 / 3500.0 / 894.0
   PVAL INI1 333.0 / 2400.0 / 631.0
   PVAL INI2 333.0 / 2400.0 / 631.0
   PVAL WATER 623.0 / 2.6871390E+04 / 1105.0
PROP-DATA TGTM
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=bar TEMPERATURE=C PDROP='N/sqm'
    PROP-LIST TGVK / TMVK / CRITMW
   PVAL LDPE -36.0 / 141.60 / 3500.0
PROP-DATA CPIG-1
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        PRESSURE=bar TEMPERATURE=C PDROP='N/sqm'
    PROP-LIST CPIG
   PVAL E2-SEG 35342.0 70.20
   PVAL E2 42291.0 47.3550
PROP-DATA MULMH-1
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=bar TEMPERATURE=C PDROP='N/sqm'
   PROP-LIST MULMH
   PVAL LDPE .0005740 5000.0 7.54220 1.0 1.0
PROP-DATA SLETIJ-1
   IN-UNITS SI
    PROP-LIST SLETIJ
   BPVAL LDPE E2 -.148690
   BPVAL E2 LDPE -.148690
PROP-DATA SLKIJ-1
   IN-UNITS SI
   PROP-LIST SLKIJ
   BPVAL LDPE E2 .014170
   BPVAL E2 LDPE .014170
POLYMERS
    SEGMENTS E2-SEG REPEAT
   POLYMERS LDPE
   ATTRIBUTES LDPE DPN DPW PDI MWN MWW ZMOM FMOM SMOM &
        SFLOW SFRAC FLCB FSCB LCB SCB LSFLOW LSFRAC LEFLOW &
        LEFRAC
```

Figure 3.2 Input Summary for LDPE High Pressure Polymerization (cont.)

```
STREAM CIN1
    SUBSTREAM MIXED TEMP=160.0 PRES=100.0 NPHASE=1 PHASE=L
    MASS-FLOW WATER 160000.0
STREAM CIN2
   SUBSTREAM MIXED TEMP=160.0 PRES=100.0 NPHASE=1 PHASE=L
   MASS-FLOW WATER 160000.0
STREAM CIN3
   SUBSTREAM MIXED TEMP=160.0 PRES=100.0 NPHASE=1 PHASE=L
   MASS-FLOW WATER 160000.0
STREAM CIN4
   SUBSTREAM MIXED TEMP=160.0 PRES=100.0 NPHASE=1 PHASE=L
   MASS-FLOW WATER 160000.0
STREAM FEED
   SUBSTREAM MIXED TEMP=125.0 PRES=2000.0 MASS-FLOW=63000.0 &
        NPHASE=1 PHASE=L
    MASS-FRAC INI1 .0000250 / E2 .99996250 / INI2 .00001250
STREAM INIFD1
   SUBSTREAM MIXED TEMP=125.0 PRES=2000.0 NPHASE=1 PHASE=L
   MASS-FLOW INI1 .360 / INI2 .180
BLOCK MIX1 MIXER
   PARAM PRES=2000.0 NPHASE=1 PHASE=L
BLOCK FL1 FLASH2
   PARAM PRES=250.0 DUTY=0.0
BLOCK FL2 FLASH2
   PARAM PRES=1.0 DUTY=0.0
BLOCK PFR1 RPLUG
   SUBROUTINE QTRANS=USRHPE
   PARAM TYPE=COUNTER-COOL LENGTH=250.0 DIAM=.0590 NPHASE=1 &
       PHASE=L PRES=2000.0 NPOINT=20 CORR-METHOD=DIRECT &
        ERR-METHOD=STATIC
    COOLANT PRES=100.0 NPHASE=1 PHASE=L TEMP=170.0
    PROPERTIES POLYSL / STEAM-TA
   REACTIONS RXN-IDS=R1
BLOCK PFR2 RPLUG
    SUBROUTINE QTRANS=USRHPE
    PARAM TYPE=COUNTER-COOL LENGTH=220.0 DIAM=.0590 NPHASE=1 &
        PHASE=L PRES=2000.0 NPOINT=20 CORR-METHOD=NEWTON &
        ERR-METHOD=STATIC
    COOLANT PRES=100.0 NPHASE=1 PHASE=L TEMP=170.0
    PROPERTIES POLYSL / STEAM-TA
   REACTIONS RXN-IDS=R1
BLOCK PFR3 RPLUG
   SUBROUTINE QTRANS=USRHPE
    PARAM TYPE=COUNTER-COOL LENGTH=250.0 DIAM=.0590 NPHASE=1 &
       PHASE=L PRES=2000.0 NPOINT=20 CORR-METHOD=DIRECT &
        ERR-METHOD=STATIC
```

Figure 3.2 Input Summary for LDPE High Pressure Polymerization (cont.)

```
COOLANT PRES=200.0 NPHASE=1 PHASE=L TEMP=170.0
    PROPERTIES POLYSL / STEAM-TA
   REACTIONS RXN-IDS=R1
BLOCK PFR4 RPLUG
   SUBROUTINE QTRANS=USRHPE
   PARAM TYPE=COUNTER-COOL LENGTH=220.0 DIAM=.0590 NPHASE=1 &
        PHASE=L PRES=2000.0 NPOINT=20 CORR-METHOD=NEWTON &
        ERR-METHOD=STATIC
   COOLANT PRES=200.0 NPHASE=1 PHASE=L TEMP=170.0
   PROPERTIES POLYSL / STEAM-TA
   REACTIONS RXN-IDS=R1
CONV-OPTIONS
   PARAM CHECKSEQ=NO
STREAM-REPOR NOMOLEFLOW MASSFLOW MASSFRAC
PROPERTY-REP NOPCES
;
;
     DEFINE POLYMERIZATION KINETICS
REACTIONS R1 FREE-RAD
   DESCRIPTION "EXAMPLE FREE-RADICAL INPUT"
   PARAM QSSA=YES
   SPECIES INITIATOR=INI1 INI2 MONOMER=E2 POLYMER=LDPE
   MON-RSEG E2 E2-SEG
   INIT-DEC INI1 2.5000E+14 1.2600E+08 0.0 EFFIC=.980 &
        NRADS=2
   INIT-DEC INI2 5.9300E+18 1.9500E+08 0.0 EFFIC=.50 NRADS=2
   CHAIN-INI E2 2.5000E+08 3.5300E+07 0.0
   PROPAGATION E2 E2 2.5000E+08 3.5300E+07 -.02130
   CHAT-MON E2 E2 1250000.0 4.5400E+07 0.0
    CHAT-POL E2 E2 1240000.0 3.0400E+07 .00160
   B-SCISSION E2 6.0700E+07 4.5300E+07 0.0
   TERM-DIS E2 E2 2.5000E+09 4190000.0 .0010
   TERM-COMB E2 E2 2.5000E+09 4190000.0 .0010
   SC-BRANCH E2 E2 1.3000E+09 4.1600E+07 0.0
;
```

SELECTED SIMULATION RESULTS

This model was used to study several process parameters for the production of LDPE. The parameters evaluated for the first reactor section (PFR1) included:

- DPn and DPw vs. Reactor Length (Figure 3.4)
- Initiator Decomposition Rate vs. Reactor Length (Figure 3.5)
- Coolant and Reactant Temperature Profiles (Figure 3.6)
- Remaining Ethylene Mole fraction Profile in PFR1 and PFR3 (Figure 3.7)
- Reactor Temperature Profiles (Figure 3.8)

A stream summary is given in Figure 3.3.

Figure 3.3 Simulation Stream Summary						
STREAM ID	LIQ1	LIQ2	MIXFD1	OUT1	OUT2	
FROM :	FL1	FL2	MIX1	PFR1	PFR2	
TO :	FL2		PFR3	PFR2	MIX1	
SUBSTREAM: MIXED						
PHASE:	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	
COMPONENTS: KG/HR						
INI1	0.0	0.0	0.3600	0.0	0.0	
E2	1858.1598	5.1679	5.4700+04	5.4700+04	5.4700+04	
LDPE	1.2583+04	1.2583+04	8300.4737	8300.4737	8300.4737	
E2-SEG	0.0	0.0	0.0	0.0	0.0	
INI2	0.0	0.0	0.1800	0.0	5.1647-18	
WATER	0.0	0.0	0.0	0.0	0.0	
COMPONENTS: MASS FRAC						
INI1	0.0	0.0	5.7142-06	0.0	0.0	
E2	0.1286	4.1054-04	0.8682	0.8682	0.8682	
LDPE	0.8713	0.9995	0.1317	0.1317	0.1317	
E2-SEG	0.0	0.0	0.0	0.0	0.0	
INI2	0.0	0.0	2.8571-06	0.0	8.1979-23	
WATER	0.0	0.0	0.0	0.0	0.0	
TOTAL FLOW:						
KG/HR	1.4441+0	04 1.2588+	04 6.3001+	04 6.3000+	6.3000+04	
STATE VARIABLES:						
TEMP C	275.1009	274.1323	210.7043	258.8699	210.7051	
PRES BAR	250.0000	1.0000	2000.0000	2000.0000	2000.0000	
VFRAC	0.0	0.0	0.0	0.0	0.0	
LFRAC	1.0000	1.0000	1.0000	1.0000	1.0000	
SFRAC	0.0	0.0	0.0	0.0	0.0	
ENTHALPY:						
J/KG	-9.8247+05	5 -1.4671+0	6 1.6713+0	6 1.7759+0	6 1.6713+06	

Figure 3.3 Simulation Stream Summary (cont.)

ENTROPY: J/KG-K		-5309.4733	-5955.9761	-2682.5826	-2558.6667	-2682.6177
DENSITY: KG/CUM	I	610.2955	701.0621	527.6187	508.5215	527.6185
AVG MW		28.0537	28.0537	28.0537	28.0537	28.0537
COMPONEN	T ATTRIBUTES	:				
LDPE	DPN					
	DPN	949.7347	949.7347	931.0067	931.0067	931.0067
	DPW DPW DDI	3850.3877	3850.3877	3277.7105	3277.7105	3277.7105
	PDI PDI MMN	4.0541	4.0541	3.5206	3.5206	3.5206
	MWN	2.6644+04	2.6644+04	2.6118+04	2.6118+04	2.6118+04
	MWW	1.0802+05	1.0802+05	9.1952+04	9.1952+04	9.1952+04
	ZMOM	0.4721	0.4721	0.3177	0.3177	0.3177
	FMOM	448.4362	448.4362	295.7931	295.7931	295.7931
	SMOM SMOM	1.7267+06	1.7267+06	9.6952+05	9.6952+05	9.6952+05
	E2-SEG	448.4362	448.4362	295.7931	295.7931	295.7931
	E2-SEG	1.0000	1.0000	1.0000	1.0000	1.0000
	FLCBN	0.6149	0.6149	0.3846	0.3846	0.3846
	FSCBN	28.7080	28.7080	26.9860	26.9860	26.9860
	LCBN	0.2757	0.2757	0.1137	0.1137	0.1137
	SCBN LSFLOW	12.8737	12.8737	7.9822	7.9822	7.9822
	E2-SEG	0.0	0.0	0.0	0.0	0.0
	E2-SEG LEFLOW	0.0	0.0	0.0	0.0	0.0
	E2-SEG LEFRAC	0.0	0.0	0.0	0.0	0.0
	E2-SEG	0.0	0.0	0.0	0.0	0.0
STREAM I FROM : TO :	D	OUT3 PFR3 PFR4	OUT4 PFR4 FL1	VAP1 FL1 	VAP2 FL2 	
SUBSTREA PHASE: COMPONEN	M: MIXED TS: KG/HR	LIQUID	LIQUID	VAPOR	VAPOR	
INI1 E2 LDPE E2-SEG		0.0 5.0417+04 1.2583+04 0.0	1.3930-16 5.0417+04 1.2583+04 0.0	0.0 4.8559+04 0.0 0.0	0.0 1852.9918 0.0 0.0	

Figure 3	3.3 Simula	tion Strea	am Summ	ary (cont	.)	
INI2 WATER COMPONEN	TS: MASS FRA	0.0 0.0	0.0	0.0	0.0 0.0	
INI1 E2 LDPE E2-SEG INI2 WATER		0.0 0.8002 0.1997 0.0 0.0 0.0	2.2111-21 0.8002 0.1997 0.0 0.0 0.0	0.0 1.0000 0.0 0.0 0.0 0.0	0.0 1.0000 0.0 0.0 0.0 0.0	
TOTAL FLO KG/H	W: R	6.3001+0	04 6.3001+0	4.8559+0	4 1852.9918	
STATE VA TEMP PRES VFRAC LFRAC SFRAC	RIABLES: C BAR	264.9666 2000.0000 0.0 1.0000 0.0	235.5654 2000.0000 0.0 1.0000 0.0	275.1009 250.0000 1.0000 0.0 0.0	274.1323 1.0000 1.0000 0.0 0.0	
ENTHALPY: J/KG		1.5485+06	1.4842+06	2.2177+06	2.3098+06	
ENTROPY: J/KG-K		-2741.7665	-2818.1600	-2326.0946	-844.1011	
DENSITY: KG/CUM		519.6656	530.9541	154.8557	0.6167	
AVG MW		28.0537	28.0537	28.0537	28.0537	
COMPONEN	T ATTRIBUTES	:				
LDPE	DPN DPN	949.7347	949.7347			
	DPW DPW	3850.3877	3850.3877			
	PDI PDI MMM	4.0541	4.0541			
	MWN MWN MIAIM	2.6644+04	2.6644+04			
	MWW ZMOM	1.0802+05	1.0802+05			
	ZMOM FMOM	0.4721	0.4721			
	FMOM	448.4362	448.4362			
	SMOM SFLOW	1.7267+06	1.7267+06			
	E2-SEG SFRAC	448.4362	448.4362			
	E2-SEG FLCB	1.0000	1.0000			
	FLCBN FSCB	0.6149	0.6149	MISSING	MISSING	
	FSCBN	28.7080	28.7080	MISSING	MISSING	

Figure 3.3 Simulation Stream Summary (cont.)							
LCB							
LCBN	0.2757	0.2757	MISSING	MISSING			
SCB							
SCBN	12.8737	12.8737	MISSING	MISSING			
LSFLOW							
E2-SEG	0.0	0.0	MISSING	MISSING			
LSFRAC							
E2-SEG	0.0	0.0	MISSING	MISSING			
LEFLOW							
E2-SEG	0.0	0.0	MISSING	MISSING			
LEFRAC							
E2-SEG	0.0	0.0	MISSING	MISSING			

Figure 3.4 PFR1 DPn and DPw vs. Reactor Length

Figure 3.5 PFR1 Initiator Decomposition Rate vs. Reactor Length

Figure 3.6 PFR1 Coolant and Reactant Temperature Profiles

Figure 3.7 PFR1 and PFR3 Ethylene Mole Fraction Profile

Figure 3.8 Reactor Temperature Profiles

REFERENCES

Brandup, J., and E. H. Immergut, Polymer Handbook, 3rd Ed., John Wiley, N.Y. (1989).

Carr, N. L., J. D. Parent, and R. E. Peck, "Viscosity of Gases and Gas Mixtures at High Pressures," *Chem. Eng. Progr. Symposium Ser.* No. 16, 51, 91 (1955).

Danner, R. P., and M. S. High, <u>Handbook of Polymer Solution Thermodynamics</u>, DIPPR (1982).

Eirmann, K., "Modellmässige Deutung de Wärmeleitfahigkeit von Hochpolymeren," *Koll. Z.*, 201, 3 (1965).

Hellwege, K. H., W. Knoppf and W. Wetzel, "Spezifische Wäarme von Polyolefinen und einigen anderen Hochpolymeren im Temperaturbereich von 300°C - 180°C," *Koll. Z.*, 180, 126 (1962).

Mavridis, I., and C. Kiparissides, "Optimization of a High-Pressure Polyethylene Tubular Reactor," *Polymer Process Engineering*, **3**(3), 263-290 (1985).

Michels, A., and M. Geldermans, "Isotherms of Ethylene Up to 3,000 Atmospheres Between 0°C and 150°C," *Physica*, **9**, 967 (1942).

Odian, G., Principles of Polymerization, 3rd ed. John Wiley and Sons, New York (1991).

Sanchez, I. C., and R. H. Lacombe, "An Elementary Molecular Theory of Chemical Fluids. Pure Fluids," *J. Phys. Chem.*, **80**(21), 2352-2362 (1976).

Sanchez, I. C., and R. H. Lacombe, "Statistical Thermodynamics of Polymer Solutions," *Macromolecules*, **11**(6), 1145-1156 (1978).

4 Nylon 6

CAPROLACTAM POLYMERIZATION PROCESS

SUMMARY

The nylon 6 caprolactam polymerization process model illustrates the use of Polymers Plus to model the polymerization of caprolactam to Nylon 6. This multistage reactor model accounts for the step-growth polymerization kinetics. This model is used to study the effect of feed flow rate on caprolactam conversion, degree of polymerization, and extraction value.

ABOUT THIS PROCESS

Nylon 6 is produced industrially on a large scale for synthetic fibers, films, plastics, etc. In one process, it is obtained by polymerizing caprolactam in the presence of water in a continuous flowsheet. Process modeling plays an important role in quality control, modification of existing plants, development of new processes, etc.

Nylon is commonly produced in a conventional VK column reactor shown in Figure 4.1. The reactor is essentially a vertical tube operating at atmospheric pressure. A mixture of caprolactam, water and stabilizer is continuously fed to the top of the column. The ring opening reaction initiates polymerization in zone 1 and the excess water is evaporated in this zone. The vapor coming out of zone 1 is sent to a distillation column. Caprolactam from the distillation column is recycled to the reactor and condensate water is evaporated in zone 2, polymerization proceeds under near adiabatic conditions. No water is evaporated in this zone.

The feed to the process is a mixture of caprolactam (99% by weight) and water (1% by weight) at 260°C, 1 atm. When this mixture is heated to temperatures above 220-260°C, five main equilibrium reactions occur: (1) ring opening of caprolactam, (2) polycondensation of the end groups, (3) polyaddition of caprolactam, (4) ring opening of cyclic dimer, and (5) polyaddition of cyclic dimer. These reactions must all be taken into account in the model.

PROCESS DEFINITION

In this example, the top portion of the VK column (zone 1) will be modeled as two stirred tank reactors. The bottom portion of the column (zone 2 and below) will be modeled as a plug flow reactor. The distillation column will be included in the simulations as a multistage separator. A flash tank will be inserted after each stirred tank in zone 1 to account for VLE calculations. The plug flow reactor will be considered liquid filled. Figure 4.2 shows the process flow diagram.

As shown in Figure 4.2 the flowsheet consists of two RCSTR in series, with a Flash2 in the middle, a second Flash2 followed by an RPlug, and finally a RadFrac block for the water-caprolactam separation.

Figure 4.1 Conventional VK Column for Caprolactam Polymerization

Figure 4.2 Caprolactam Polymerization Model Flowsheet
Process Conditions

The process conditions are as listed in Table 4.1.

Table 4.1 Process Conditions

Components			
	Name	Databank	Description
Caprolactam	CL	PURECOMP	Monomer
Aminocaproic Acid	ACA	PURECOMP	Monomer
Cyclic Dimer	CD	PURECOMP	Monomer
Water	H2O	PURECOMP	Catalyst
Nylon	NYLON T-NH2 T-COOH B-ACA	Polymer Segment Segment Segment	Polymer NH2 segment COOH segment ACA segment
Physical Properties	POLYNRTL property method	with supplied parameters	
Feeds			
Temperature (°C)	260		
Pressure (atm)	1		
Flowrate (kg/hr)	40		
Caprolactam	99.0% by weight		
Water	1.0% by weight		
Kinetics	STEP-GROWTH model		
Operating Conditions			
Block	Temp (°C)	Pres (atm)	Size
CSTR-1	260	1	75 L
CSTR-2	260	1	75 L
PLUG	260	1	500 m length by .0357 m diam
R1FLASH		1	Duty=0
R2FLASH		1	Duty=0
DISTIL		1	19 total condenser, reflux ratio of 3

Physical Property Models and Data

The Polymer Non-Random Two Liquid activity coefficient model property method (POLYNRTL) is used. Antoine constants for vapor pressure are entered for the components. Racket equation parameters for density calculations are also entered.

	ACA	CD	H2O	CL	Nylon
MW	131.17420	226.3180			
Racket	131.17420	226.3180	18.01520	113.1590	113.1590
	1.0	1.0	1.0	1.0	1.0
	0.0	0.0	0.0	0.0	0.0

Reactors / Kinetics

The main reactions used in the step-growth kinetics are as shown below:

De	scription	Reaction				
1	Ring-opening of caprolactam	$NH(CH_2)_5 - CO + H_2O \implies H_2N - (CH_2)_5 - COOH$				
2	Polycondensation	••NH2 + HOOC••• ← ••NHCO••• + H2O				
3	Polyaddition of caprolactam	••NH ₂ + CO−(CH ₂) ₅ - NH → •NHCO - (CH ₂) ₅ - NH ₂				
4	Ring-opeining of cyclic dimer	$NH(CH_2)_5CONH(CH_2)_5CO + H_2O \longrightarrow H_2N(CH_2)_5CONH(CH_2)_5 - COOH$				
5	Polyaddition of cyclic dimer	$\text{WNH}_2 + \text{NH}(CH_2)_5 CONH(CH_2)_5 CO \longrightarrow \text{WNH}CO(CH_2)_5 NHCO(CH_2)_5 - NH_2$				

A set of rate parameters reported in the literature was used in this example and is given in Table 4.2. The polycondensation reaction is modeled using the step growth kinetics. Ring opening and polyaddition of caprolactam and cyclic dimer are modeled using the user kinetics. Both the polycondensation reaction (2) and polyaddition reaction (3) form linear dimer, trimer and so on. The reversible ring opening reaction (4) produces cyclic dimer from linear dimer. The formation of cyclic trimer and higher cyclics considered negligible, is not considered in the present model.

To model the ring opening reaction, one needs to specify both the forward and reverse reactions, for the uncatalyzed reaction, and the reaction catalyzed by the carboxyl ends of polymer and aminocaproic acid. This results in 6 user reactions to include ring-opening of caprolactam in the model, and 6 user reactions to include ring opening of cyclic dimer. Similarly, an additional 30 reactions are needed to include polyaddition of caprolactam and cyclic dimer in the model. In the model, it is assumed that the concentration of linear dimer and trimer is the same as that of aminocaproic acid.

	A _o	Eo	A _c	E _c
Ring opening of caprolactam	(f) 5.9874x 10 ⁵	19.88	4.3075x 10 ⁷	18.806
	(r) 3.1663x 10 ⁷	17.962	2.2779x 10 ⁹	16.88
Polycondensation	(f) 1.8942x 10 ¹⁰	23.271	1.2114x 10 ¹⁰	20.670
	(r) 1.17802x 10 ¹⁰	29.216	7.5338x 10 ⁹	26.616
Polayaddition of caprolactam	(f) 2.8558x 10 ⁹	22.845	1.6377x 10 ¹⁰	20.107
	(r) 9.4153x 10 ¹⁰	26.888	5.3993x 10 ¹¹	24.151
Ring opening of cyclic dimer	(f) 8.5778x 10 ¹¹	42.000	2.3307x 10 ¹²	37.400
	(r) 1.2793x 10 ¹⁵	51.600	3.4761x 10 ¹⁵	47.000
Polyaddition of cyclic dimer	(f) 2.5701x 10 ⁸	21.300	3.011x 10 ⁹	20.400
	(r) 1.9169x 10 ⁸	24.469	2.2458x 10 ⁹	23.569

 Table 4.2 Rate Parameters for Caprolactam Polymerization Model

o= uncatalyzed c = catalyzed f = forward reaction r = reverse reaction

 A_o in kg/mol/h, A_c in kg²/mol²/h, E_o and E_c in kcal/mol

Process Studies

In order to determine the effect of feed flow rate on caprolactam conversion, degree of polymerization, and extraction value, a sensitivity study is carried out with the feed mass flow as the varied parameter. The sampled parameters are the polymer properties, the component fractions used to determine conversion, and the flowrates.

An Input Summary is given in Figure 4.3.

TITLE 'Caprolactam polymerization' IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' & VOLUME-FLOW='l/hr' PRESSURE=atm TEMPERATURE=C TIME=hr & VOLUME=1 MOLE-ENTHALP='kcal/mol' MOLE-ENTROPY='kcal/mol-K' & INVERSE-TIME='1/hr' LN-INV-TIME='ln(1/hr)' PDROP='N/sqm' DEF-STREAMS CONVEN ALL DIAGNOSTICS HISTORY SIM-LEVEL=3 PROP-LEVEL=3 RUN-CONTROL MAX-TIME=15000.0 DESCRIPTION "This is a model of a NYLON-6 process. " DATABANKS POLYMER / PURE93 / SEGMENT / NOASPENPCD PROP-SOURCES POLYMER / PURE93 / SEGMENT COMPONENTS H20 H20 H20 / CL C6H11NO CL / ACA C6H11NO ACA / CD C6H11NO CD / NYLON NYLON6 NYLON / T-NH2 C6H12NO-E-1 T-NH2 / T-COOH C6H12NO2-E-1 T-COOH / B-ACA C6H11NO-R-1 B-ACA FLOWSHEET BLOCK CSTR-1 IN=FEED RECYCLE R2-COND OUT=R1OUT BLOCK DISTIL IN=R1VAP OUT=COND RECYCLE BLOCK CSTR-2 IN=R1-OLIGO OUT=R2OUT BLOCK R1FLASH IN=R1OUT OUT=R1VAP R1-OLIGO BLOCK R2FLASH IN=R2OUT OUT=R2-COND R2-OLIGO BLOCK PLUG IN=R2-OLIGO OUT=POLYMER PROPERTIES POLYNRTL ; The rate constants in the literature are given in mass units. ; P+ needs the rate constants ; in volume units. In order to use the rate constants in mass units ; fix the density of the components as 1 g/cc. This is done by ; replacing the density models and using the RACKETT parameters. PROP-REPLACE POLYNRTL POLYNRTL PROP PHIVMX PHIVMX00 PROP VLMX VLMX01 PROP PHIV PHIV00 PROP PHIL PHIL00 MODEL ESIG

```
PROP-DATA MW
   IN-UNITS SI
    PROP-LIST MW
   PVAL ACA 131.17420
   PVAL CD 226.3180
PROP-DATA PLXANT-1
   IN-UNITS SI PRESSURE=atm PDROP='N/sqm'
    PROP-LIST PLXANT
   PVAL ACA -40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
   PVAL CD -40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
PROP-DATA RACKET-1
    IN-UNITS SI PRESSURE=atm MOLE-VOLUME='cc/mol' PDROP='N/sqm'
    PROP-LIST RACKET
   PVAL H2O 18.01520 1.0 0.0
   PVAL CL 113.1590 1.0 0.0
   PVAL ACA 131.17420 1.0 0.0
   PVAL CD 226.3180 1.0 0.0
   PVAL NYLON 113.1590 1.0 0.0
POLYMERS
    SEGMENTS T-NH2 END / T-COOH END / B-ACA REPEAT
    POLYMERS NYLON
   ATTRIBUTES NYLON SFLOW ZMOM FMOM DPN MWN EFRAC SFRAC
STREAM FEED
   SUBSTREAM MIXED TEMP=260.0 PRES=1.0 MASS-FLOW=40.0 NPHASE=1 &
        PHASE=L
   MASS-FRAC H20 .010 / CL .990
BLOCK R1FLASH FLASH2
   PARAM PRES=1.0 DUTY=0.0
BLOCK R2FLASH FLASH2
   PARAM PRES=1.0 DUTY=0.0
BLOCK DISTIL RADFRAC
   PARAM NSTAGE=20
   COL-CONFIG REBOILER=NONE CONDENSER=TOTAL
   FEEDS R1VAP 21
   PRODUCTS COND 1 L / RECYCLE 20 L
   P-SPEC 1 1.0
   COL-SPECS MOLE-RR=3.0
BLOCK CSTR-1 RCSTR
   DESCRIPTION "CAPROLACTAM POLYMERIZATION"
   PARAM VOL=75.0 TEMP=260.0 PRES=1.0 PHASE=L MB-MAXIT=350 &
       MB-TOL=.000010 DAMP-FAC=.10
   MOLE-FLOW MIXED CL .068540
   MOLE-FLOW MIXED H20 .017250
   MOLE-FLOW MIXED NYLON .11670
   MOLE-FLOW MIXED ACA .00012620
   REACTIONS RXN-IDS=NYLON
```

```
BLOCK CSTR-2 RCSTR
   PARAM VOL=75.0 TEMP=260.0 PRES=1.0 PHASE=L MB-MAXIT=350 &
        MB-TOL=.000010 DAMP-FAC=.10
   MOLE-FLOW MIXED H20 .00280
   MOLE-FLOW MIXED CL .03850
   MOLE-FLOW MIXED ACA .00001610
   MOLE-FLOW MIXED NYLON .137780
   REACTIONS RXN-IDS=NYLON
BLOCK PLUG RPLUG
   PARAM TYPE=T-SPEC LENGTH=500.0 DIAM=.03568250 PHASE=L &
        PRES=1.0 NPOINT=20 INT-TOL=.000010 FLASH=YES
    COOLANT TOL=.000010
    T-SPEC 0.0 260.0 / 1.0 260.0
    REACTIONS RXN-IDS=NYLON
SENSITIVITY FLOW
   PARAM BASE-CASE=LAST
    DEFINE R1CL MASS-FLOW STREAM=R1OUT SUBSTREAM=MIXED &
        COMPONENT=CL
   DEFINE R1NYL MASS-FLOW STREAM=R1OUT SUBSTREAM=MIXED &
        COMPONENT=NYLON
    DEFINE R1DP COMP-ATTR-VAR STREAM=R1OUT SUBSTREAM=MIXED &
        COMPONENT=NYLON ATTRIBUTE=DPN ELEMENT=1
    DEFINE R2CL MASS-FLOW STREAM=R2OUT SUBSTREAM=MIXED &
        COMPONENT=CL
    DEFINE R2NYL MASS-FLOW STREAM=R2OUT SUBSTREAM=MIXED &
        COMPONENT=NYLON
    DEFINE R2DP COMP-ATTR-VAR STREAM=R2OUT SUBSTREAM=MIXED &
        COMPONENT=NYLON ATTRIBUTE=DPN ELEMENT=1
    DEFINE R3DP COMP-ATTR-VAR STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=NYLON ATTRIBUTE=DPN ELEMENT=1
    DEFINE R3CL MASS-FLOW STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=CL
    DEFINE R3NYL MASS-FLOW STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=NYLON
    DEFINE R3ACA MASS-FLOW STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=ACA
    DEFINE R3CD MASS-FLOW STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=CD
    DEFINE R3F STREAM-VAR STREAM=FEED SUBSTREAM=MIXED &
        VARIABLE=MASS-FLOW
    DEFINE R1COND MASS-FLOW STREAM=COND SUBSTREAM=MIXED &
        COMPONENT=H2O
    DEFINE R3FW MASS-FRAC STREAM=R2-OLIGO SUBSTREAM=MIXED &
        COMPONENT=H2O
    DEFINE R2COND MASS-FLOW STREAM=R2-COND SUBSTREAM=MIXED &
        COMPONENT=H2O
    DEFINE R2FW MASS-FRAC STREAM=R1-OLIGO SUBSTREAM=MIXED &
        COMPONENT=H2O
    DEFINE FWF MASS-FRAC STREAM=FEED SUBSTREAM=MIXED &
        COMPONENT=H2O
    DEFINE R3H2O MASS-FLOW STREAM=POLYMER SUBSTREAM=MIXED &
       COMPONENT=H2O
       EV = (R3CL+R3H2O+R3ACA+R3CD)/R3F*100
F
   TABULATE 1 "R1NYL/(R1NYL+R1CL)" COL-LABEL="R1-CONV"
```

TABULATE 2 "R2NYL/(R2NYL+R2CL)" COL-LABEL="R2-CONV" TABULATE 3 "R3NYL/(R3NYL+R3CL)" COL-LABEL="R3-CONV" TABULATE 4 "R1DP" COL-LABEL="R1-DP" TABULATE 5 "R2DP" COL-LABEL="R2-DP" TABULATE 6 "R3DP" COL-LABEL="R3-DP" TABULATE 7 "EV" COL-LABEL="EXTRACT" TABULATE 8 "FWF*100." COL-LABEL="FEED WF" "WATER" "PERCENT." TABULATE 9 "R2FW*100." COL-LABEL="R2OUT" "WATER" "PERCENT.' TABULATE 10 "R3FW*100." COL-LABEL="R3WF" "WATER" "PERCENT." TABULATE 11 "R1COND" COL-LABEL="R1-COND" TABULATE 12 "R2COND" COL-LABEL="R2-COND" VARY STREAM-VAR STREAM=FEED SUBSTREAM=MIXED & VARIABLE=MASS-FLOW RANGE LIST=10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 & 100.0 CONV-OPTIONS PARAM TRACE=.00010 CHECKSEQ=NO WEGSTEIN MAXIT=50 STREAM-REPOR NOZEROFLOW MOLEFLOW MASSFLOW MASSFRAC REACTIONS NYLON STEP-GROWTH SPECIES POLYMER=NYLON REAC-GROUP TNH2 E-GRP / TCOOH N-GRP / BCAP EN-GRP SG-RATE-CON CNT=1 PRE-EXP=1.8940E+10 ACT-ENERGY=23.2710 SG-RATE-CON CNT=2 CAT-SPEC=ACA PRE-EXP=1.2110E+10 & ACT-ENERGY=20.670 SG-RATE-CON CNT=3 CAT-SPEC=T-COOH PRE-EXP=1.2110E+10 & ACT-ENERGY=20.670 SG-RATE-CON CNT=4 PRE-EXP=1.1780E+10 ACT-ENERGY=29.21680 SG-RATE-CON CNT=5 CAT-SPEC=ACA PRE-EXP=7.5340E+09 & ACT-ENERGY=26.61580 SG-RATE-CON CNT=6 CAT-SPEC=T-COOH PRE-EXP=7.5340E+09 & ACT-ENERGY=26.61580 RXN-SET CNT3=1 ELECTRO-GRP=TNH2 NUCLEO-GRP=TCOOH RC-SETS=1 2 & 3 RXN-SET CNT3=2 NUCLEOPHILE=H2O RC-SETS=4 5 6 SPECIES-GRP T-NH2 TNH2 1 / T-NH2 BCAP 1 / T-COOH TCOOH & 1 / T-COOH BCAP 1 / ACA TNH2 1 / ACA TCOOH 1 / & ACA BCAP 1 / B-ACA BCAP 1 / H2O TNH2 1 / H2O & TCOOH 1 STOIC 1 CL -1.0 / H2O -1.0 / ACA 1.0 STOIC 2 CL -1.0 / H2O -1.0 / ACA 1.0 STOIC 3 CL -1.0 / H2O -1.0 / ACA 1.0 STOIC 4 ACA -1.0 / CL 1.0 / H2O 1.0 $\,$ STOIC 5 ACA -1.0 / CL 1.0 / H2O 1.0 STOIC 6 ACA -1.0 / CL 1.0 / H2O 1.0 STOIC 7 CL -1.0 / B-ACA 1.0 STOIC 8 CL -1.0 / B-ACA 1.0 STOIC 9 CL -1.0 / B-ACA 1.0 STOIC 10 B-ACA -1.0 / CL 1.0 STOIC 11 B-ACA -1.0 / CL 1.0 STOIC 12 B-ACA -1.0 / CL 1.0 STOIC 13 CL -1.0 / ACA -1.0 / T-NH2 1.0 / T-COOH 1.0 STOIC 14 CL -1.0 / ACA -1.0 / T-NH2 1.0 / T-COOH 1.0

STOIC 15 CL -1.0 / ACA	-1.0 / T-NH2	1.0 / T-COOH	1.0	
STOIC 16 T-NH2 -1.0 / T	-COOH -1.0 /	ACA 1.0 / CL	1.0	
STOIC 17 T-NH2 -1.0 / T	-COOH -1.0 /	ACA 1.0 / CL	1.0	
STOIC 18 T-NH2 -1.0 / T	-COOH -1.0 /	ACA 1.0 / CL	1.0	
STOIC 19 CL -1.0 / B-AC	A 1.0			
STOIC 20 CL -1.0 / B-AC	A 1.0			
STOIC 21 CL -1.0 / B-AC	A 1.0			
STOIC 22 CD -1.0 / H20	-1.0 / T-NH2	1.0 / T-COOH	1.0	
STOIC 23 CD -1.0 / H20	-1.0 / T-NH2	1.0 / T-COOH	1.0	
STOIC 24 CD -1 0 / H20	-1.0 / T-NH2	1 0 / T-COOH	1 0	
STOIC 25 T-NH2 -1.0 / T	-COOH -1.0 /	CD 1.0 / H20	1.0	
STOIC 26 T-NH2 -1 0 / T	-COOH -1 0 /	CD 1 0 / H20	1 0	
STOIC 27 T-NH2 -1 0 / T	-COOH -1 0 /	CD 1 0 / H20	1 0	
STOIC 28 CD -1.0 / B-AC	A 2.0	02 110 / 1120		
STOIC 29 CD -1.0 / B-AC	A 2.0			
STOIC 30 CD -1.0 / B-AC	A 2.0			
STOIC 31 B-ACA -2.0 / C	D 1.0			
STOIC 32 B-ACA -2.0 / C	D 1.0			
STOIC 33 B-ACA -2.0 / C	D 1.0			
STOIC 34 CD -1.0 / ACA	-1.0 / T-NH2	1.0 / T-COOH	1.0	æ
/ B-ACA 1.0	1.0 / 1 1.111	110 / 1 00011	1.0	<u>م</u>
STOIC 35 CD -1.0 / ACA	-1.0 / T-NH2	1.0 / T-COOH	1.0	æ
/ B-ACA 1.0		,		
STOIC 36 CD -1.0 / ACA	-1.0 / T-NH2	1.0 / T-COOH	1.0	&
/ B-ACA 1.0				
STOIC 37 T-NH2 -1.0 / T	-COOH -1.0 /	B-ACA -1.0 /	ACA	&
1.0 / CD 1.0				
STOIC 38 T-NH2 -1.0 / T	-COOH -1.0 /	B-ACA -1.0 /	ACA	&
1.0 / CD 1.0				
STOIC 39 T-NH2 -1.0 / T	-COOH -1.0 /	B-ACA -1.0 /	ACA	&
1.0 / CD 1.0				
STOIC 40 CD -1.0 / B-AC	A 2.0			
STOIC 41 CD -1.0 / B-AC	A 2.0			
STOIC 42 CD -1.0 / B-AC	A 2.0			
RATE-CON 1 598740.0 19.	880			
RATE-CON 2 4.3080E+07 1	8.8060			
RATE-CON 3 4.3080E+07 1	8.8060			
RATE-CON 4 3.1660E+07 1	7.9620			
RATE-CON 5 2.2780E+09 1	6.8880			
RATE-CON 6 2.2780E+09 1	6.8880			
RATE-CON 7 2.8560E+09 2	2.8450			
RATE-CON 8 1.6380E+10 2	0.1070			
RATE-CON 9 1.6380E+10 2	0.1070			
RATE-CON 10 9.4150E+10	26.8880			
RATE-CON 11 5.3990E+11	24.1510			
RATE-CON 12 5.3990E+11	24.1510			
RATE-CON 13 2.8560E+09	22.8450			
RATE-CON 14 1.6380E+10	20.1070			
RATE-CON 15 1.6380E+10	20.1070			
RATE-CON 16 9.4150E+10	26.8880			
RATE-CON 1/ 5.3990E+11	24.1510			
KATE-CON 18 5.3990E+11	24.1510			
KATE-CON 19 9.4150E+10	20.8880			
KATE-CON 20 5.3990E+11	24.151U			
RATE-CON 21 5.3990E+11	∠4.1510 42.0			
RATE-CON 22 8.5//8E+11	4Z.U			

Figure 4.3 Input Summary for Caprolactam Polymerization (cont.)
RATE-CON 23 2.3307E+12 37.40
RATE-CON 24 2.3307E+12 37.40
RATE-CON 25 1.2793E+15 51.60
RATE-CON 26 3.4761E+15 47.0
RATE-CON 27 3.4761E+15 47.0
RATE-CON 28 2.5701E+08 21.30
RATE-CON 29 3.0110E+09 20.40
RATE-CON 30 3.0110E+09 20.40
RATE-CON 31 1.9169E+08 24.4690
RAIE-CON 32 2.2458E+09 23.5090
RAIE-CON 32 2.2450E+09 23.3050
PATE-CON 35 2.010 From 20.40
RATE-CON 35 3 0110F+09 20 40
RATE-CON 37 1 9169F+08 24 4690
RATE-CON 38 2.2458E+09 23.5690
RATE-CON 39 2.2458E+09 23.5690
RATE-CON 40 3.8338E+08 24.4690
RATE-CON 41 4.4916E+09 23.5690
RATE-CON 42 4.4916E+09 23.5690
POWLAW-EXP 1 CL 1.0 / H2O 1.0
POWLAW-EXP 2 CL 1.0 / H2O 1.0 / T-COOH 1.0
POWLAW-EXP 3 CL 1.0 / H2O 1.0 / ACA 1.0
POWLAW-EXP 4 ACA 1.0
POWLAW-EXP 5 ACA 1.0 / T-COOH 1.0
POWLAW-EXP 6 ACA 2.0
POWLAW-EXP 7 CL 1.0 / T-NH2 1.0
POWLAW-EXP 8 CL 1.0 / T -NH2 1.0 / T -COOH 1.0
POWLAW-EXP 9 CL I.U / T-NH2 I.U / ACA I.U
POWLAW-EXP II I-NH2 I.0 $/$ T COOH I 0
$\begin{array}{c} \text{POWLAW-EXP} 11 & \text{PNI2} 1.0 & \text{PCO-1} 0 \\ \text{DOWLAW-EVD} 12 & \text{T-NI2} 1.0 & \text{ACO-1} 0 \\ \end{array}$
DOWLAW-EXP 13 CL 1 0 / ACA 1 0
POWLAW-EXP 14 CL 1.0 / ACA 1.0 / T-COOH 1.0
POWLAW-EXP 15 CL 1.0 / ACA 2.0
POWLAW-EXP 16 ACA 1.0
POWLAW-EXP 17 T-COOH 1.0 / ACA 1.0
POWLAW-EXP 18 ACA 2.0
POWLAW-EXP 19 ACA 1.0
POWLAW-EXP 20 ACA 1.0 / T-COOH 1.0
POWLAW-EXP 21 ACA 2.0
POWLAW-EXP 22 CD 1.0 / H2O 1.0
POWLAW-EXP 23 CD 1.0 / H2O 1.0 / T-COOH 1.0
POWLAW-EXP 24 CD 1.0 / H2O 1.0 / ACA 1.0
POWLAW-EXP 25 ACA 1.0
POWLAW-EXP 20 I-COOH I.U / ACA I.U
POWLAW-EAP $2/$ ALA 2.0
POWLAW-EXP 20 CD 1.0 / T -NH2 1.0 DOWLAW-EXP 29 CD 1.0 / T -NH2 1.0 / T -COOH 1.0
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
POWLAW-EXP 31 T-NH2 1.0
POWLAW-EXP 32 T-NH2 1.0 / T-COOH 1.0
POWLAW-EXP 33 T-NH2 1.0 / ACA 1.0
POWLAW-EXP 34 CD 1.0 / ACA 1.0
POWLAW-EXP 35 CD 1.0 / ACA 1.0 / T-COOH 1.0

```
POWLAW-EXP 36 CD 1.0 / ACA 2.0
POWLAW-EXP 37 ACA 1.0
POWLAW-EXP 38 T-COOH 1.0 / ACA 1.0
POWLAW-EXP 39 ACA 2.0
POWLAW-EXP 40 ACA 1.0
POWLAW-EXP 41 ACA 1.0 / T-COOH 1.0
POWLAW-EXP 42 ACA 2.0
;
;
```

SELECTED SIMULATION RESULTS

For the base case simulation, Figure 4.4 shows a summary report for the flowsheet streams.

The effect of feed flow rate on caprolactam conversion, degree of polymerization (Dp) and extraction value is shown in Figure 4.5, Figure 4.6, and Figure 4.7 respectively. Increasing the feed to CSTR-1 decreases the total residence time. Therefore, caprolactam conversion decreases in all of the reactors as shown in Figure 4.5. Since the caprolactam conversion decreases, DP of the polymer produced in CSTR-1, CSTR-2 and Plug decreases, and is shown in Figure 4.6.

Extraction value (EV) is the sum of the extractables from the polymer. These include unreacted caprolactam, aminocaproic acid, cyclic dimer and water. Extraction value is an indicator of the cost of recycling unreacted monomers. Since conversion decreases with an increase in feed flow rate, EV increases as shown in Figure 4.7. Therefore, one has to find the optimum feed flow rate which increases the production rate while minimizing the percentage of extractables.

DP in the plug flow reactor is determined by the concentration of water in the feed to the plug flow reactor. An increase of the feed flow rate to CSTR-1 results in an increase of water in the feed to the Plug as shown in Figure 4.8. Figure 4.9 shows the DP profile as a function of reactor length. The plug flow reactor is a closed system and water resulting from polycondensation remains in the polymer melt. At the end of the plug flow reactor, DP reaches an equilibrium value. This results in a flat profile towards the end of the reactor.

Figure 4.4 Simulation Stream Summary

COND FEED POLYMER R1-OLIGO R1OUT

STREAM ID FROM : TO :	COND DISTIL	FEED CSTR-1	POLYMER PLUG 	R1-OLIGO R1FLASH CSTR-2) R1OUT CSTR-1 R1FLASH
SUBSTREAM: MIXED PHASE:	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
COMPONENTS: KG/HR H2O CL ACA CD NYLON COMPONENTS: MASS FRA H2O CL ACA	0.3002 0.0 0.0 0.0 0.0 C 1.0000 0.0 0.0	0.4000 39.6000 0.0 0.0 0.0 1.0000-02 0.9900 0.0	6.9704-02 3.3863 1.1683-03 0.2300 36.0128 1.7558-03 8.5299-02 2.9429-05	6.3807-02 11.3952 2.2681-02 0.1051 28.3241 1.5987-03 0.2855 5.6830-04	0.6602 13.0005 2.2681-02 0.1051 28.3241 1.5677-02 0.3087 5.3859-04
CD NYLON TOTAL FLOW:	0.0	0.0 0.0	5.7943-03 0.9071	2.6351-03 0.7096	2.4974-03 0.6725
KG/HR	0.3002	40.0000	39.7001	39.9110	42.1127
STATE VARIABLES: TEMP C PRES ATM	100.0178 1.0000	260.0000 1.0000	260.0000 1.0000	243.6194 1.0000	260.0000 1.0000
J/KG	-1.5547+07	-2.4544+06	-1.2667+06	-1.5727+06	-1.7461+06
ENTROPY: J/KG-K	-8109.9795	-4471.8775	-4625.9284	-4661.0296	-4581.5103
AVG MW COMPONENT ATTRIBUTES	18.0152	107.4829	112.4430	112.3675	104.6345
T-NH2 T-COOH B-ACA ZMOM			1.6580-03 1.6580-03 0.3146	5.0787-03 5.0787-03 0.2393	5.0787-03 5.0787-03 0.2393
ZMOM FMOM			1.6580-03	5.0787-03	5.0787-03
FMOM DPN			0.3179	0.2494	0.2494
DPN MWN			191.7923	49.1257	49.1274
MWN EFRAC			2.1721+04	5577.0586	5577.2502
T-NH2 T-COOH SFRAC			0.5000 0.5000	0.5000 0.5000	0.5000 0.5000
T-NH2 T-COOH B-ACA			5.2140-03 5.2140-03 0.9895	2.0356-02 2.0356-02 0.9592	2.0355-02 2.0355-02 0.9592

Figure 4.4 Simulation Stream Summary (cont.)

R1VAP R2-COND R2-OI	JIGO R2OUT REG	CYCLE			
STREAM ID FROM : TO :	R1VAP R1FLASH DISTIL	R2-COND R2FLASH CSTR-1	R2-OLIGO R2FLASH PLUG	R2OUT CSTR-2 R2FLASH	RECYCLE DISTIL CSTR-1
SUBSTREAM: MIXED					
PHASE:	VAPOR	VAPOR	LIQUID	LIQUID	LIQUID
COMPONENTS: KG/HR					
Н2О	0.5964	5.8683-02	4.4147-02	0.1028	0.2961
CL	1.6053	0.1523	6.7594	6.9117	1.6053
ACA	0.0	0.0	3.0179-03	3.0179-03	0.0
CD	0.0	0.0	0.1451	0.1451	0.0
NYLON	0.0	0.0	32.7484	32.7484	0.0
COMPONENTS: MASS FF	AC	0 0500	1 1100 00	0 5565 00	0 1
H2O	0.2708	0.2780	1.1120-03	2.5765-03	0.1557
CL	0.7291	0.7219		0.1/31	0.8442
ACA	0.0	0.0	7.6016-05 2.6567.02	7.5014-05	0.0
	0.0	0.0	3.050/-03	3.03/4-03	0.0
TOTAL FLOW:	0.0	0.0	0.0240	0.8205	0.0
KG/HR	2.2017	0.2110	39.7001	39.9112	1.9014
STATE VARIABLES:					
TEMP C	243.6194	258.3760	258.3760	260.0000	118.3754
PRES ATM	1.0000	1.0000	1.0000	1.0000	1.0000
ENTHALPY: J/KG	-4.8894+06	-4.9419+06	-1.3745+06	-1.3934+06	-4.6369+06
ENTROPY: J/KG-K	-2922.3338	-2853.6000	-4616.5061 -	4607.5387 -	5473.6225
AVG MW	46.5564	45.8409	112.7048	111.8422	62.0918
COMPONENT ATTRIBUTE NYLON SFLOW	:S:				
T-NH2			3.0625-03	3.0625-03	
T-COOH			3.0625-03	3.0625-03	
B-ACA 7MOM			0.2827	0.2827	
ZMOM			3.0625-03	3.0625-03	
FMOM FMOM			0.2889	0.2889	
DPN			94.3381	94.3381	
MWN MWN			1.0693+04	1.0693+04	
EFRAC			0 5000	0 5000	
T-NH2			0.5000	0.5000	
'I'-COOH			0.5000	0.5000	
SFRAC			1 0600 02	1 0600 02	
			1 0600-02	1 0600-02	
B-ACA			0.9788	0,9788	
2					

Figure 4.5 Effect of Feed Flow Rate on the Caprolactam Conversion

Figure 4.6 Effect of Feed Flow Rate on the Degree of Polymerization

Figure 4.7 Effect of Feed Flow Rate on the Extraction Value

Figure 4.8 Effect of Feed Flow Rate on the % of Water in the Reactor Feed

Figure 4.9 Degree of Polymerization Profile in the Plug Flow Reactor

REFERENCES

Gupta, A. K. and K. S. Gandhi, "Modeling of Backmixing in Continuous Polymerization of Caprolactam in VK Column Reactors," *Ind. Eng. Chem. Product Research and Development*, **24**, 327 (1985).

Hotyzer P. J., J. Hoogschagen and D. W. Van Krevelen, "Optimization of Caprolactam Polymerization," *Chem. Eng. Sci.*, **20**, 247 (1965).

Reimschuessel H. K., "Nylon 6: Chemistry and Mechanisms," *J. Polymerization Sci.: Macromolecular Reviews*, **12**, 65 (1977).

Tai K., Y. Arai and T. Tagawa, "The Simulation of Hydrolytic Polymerization of Caprolactam in Various Reactors," *J. Appl. Polymer Sci.*, **22**, 731 (1982).

Tai K., and T. Tagawa, "Simulation of Hydrolytic Polymerization of Caprolactam in Various Reactors. A review on recent advances in reaction engineering of polymerization," *I&EC Product Research and Development*, **22**, 192 (1983).

STEADY-STATE APPLICATION Nylon 6 Caprolactam Process

5 STYRENE BUTADIENE

EMULSION COPOLYMERIZATION PROCESS

SUMMARY

The styrene butadiene emulsion copolymerization process model illustrates the use of Polymers Plus to model the free-radical emulsion polymerization of styrene and butadiene in a semi-batch reactor. The model is used to examine several process parameters as a function of time: average number of radicals per particle, monomer concentration in the various phases, and monomer conversion.

ABOUT THIS PROCESS

In this process, the emulsion copolymerization of styrene and butadiene is carried out in a batch reactor using ammonium persulfate (APS) as the initiator, sodium lauryl sulfate (SLS) as the emulsifier and tertiary dodecyl mercaptane (TDM) as a chain transfer agent. Functionalized styrene-butadiene emulsions are used in a variety of applications such as paper coatings, carpet backings, non-wovens, etc. In addition, emulsion polymerization is the major route for the production of synthetic rubber used in the tire industries. Most styrene-butadiene rubber (SBR) latexes are manufactured in semi-batch reactors. SBR production technology is detailed by Blackley (Blackley, 1983).

In a typical semi-batch process employing *in-situ* seeding, the initial charge is used for the production of seed particles, with the desired particle size and particle size distribution. Usually, anionic emulsifiers and water soluble persulfate initiators are used for particle nucleation by the micellar mechanism.

When the initial mixture is heated, the radicals generated from the initiator become surface active and enter micelles to form particles. Once the particle specifications are met, monomers and other ingredients, such as chain transfer agent, stabilizers, initiators, are continuously added to the reactor, and the particles are grown to the desired final particle size.

The latter stage of the reaction is also known as the growth stage of the reaction, and is responsible for the development of the properties of the emulsion polymer: molecular weight, composition, micro structure, etc. The growth stage is the better understood stage of the process. Therefore, this stage provides more opportunities to control the emulsion process.

The adjustable process parameters include temperature and feeding strategy of monomer and other ingredients. Control of polymer composition is very often achieved by feeding the monomers in a manner such that there is no separate monomer droplet present in the reactor. Very often the productivity of the reactor is limited by its cooling capacity. Chain transfer agents are usually added to control molecular weight, and degree of branching.

PROCESS DEFINITION

As shown in Figure 5.1, the process flowsheet consists of the batch reactor with an initial batch charge and a continuous feed for the addition of monomers and other ingredients.

This model provides the base case which can be used to study various process variables: effect of initiator and emulsifier levels, temperature, Smith-Ewart kinetics, etc.

Figure 5.1 Styrene Butadiene Copolymerization Flowsheet

Process Conditions

The process conditions are as listed in Table 5.1.

Table 5.1 Process Conditions

Components						
	Name	Databank	Description			
Styrene	STY	PURE10	Monomer			
Butadiene	BD	PURE10	Monomer			
Water	H2O	PURE10	Dispersant			
Ammonia persulfate	APS	PURE103	Initiator (Mw=220.0) Select H2O			
Sodium lauryl sulfate	SLS	PURE10	Emulsifier (Mw=288.0) Select H2O			
Polymer	POLYMER	POLYMER	Polymer			
Styrene-segment	STY-SEG	SEGMENT	Repeat segment			
Butadiene-segment	BD-SEG	SEGMENT	Repeat segment			
Tert dodecyl mercaptane	TDM	PURE10	Chain transfer agent (MW= 224, select C8H8)			
Polymer Characterization	Choose emulsion polymer attributes					
	Distribution = chain-size					
	No. of points = 100 (up	per = 100000)				
Physical Properties	POLYNRTL property m	nethod with supplied binary intera	action parameters			
Feeds						
Charge Stream		CFEED				
Temperature (°C)	20	20				
Pressure (atm)	10	10				
Styrene (kg/hr)	300	700				
Butadiene (kg/hr)	300	700				
Sodium laurylsulfate (kg/hr)	30	100				
Ammonium persulfate (kg/hr)	7	3				
TDM (kg/hr)	30	0				
Water (kg/hr)	1000	1000				

continued

Continuous Feed	Continuous Feed				
Time (hr)	Total (kg/hr)				
0.0	0.0				
1.0	0.0				
1.0	1200.0				
2.0	1200.0				
2.0	0.0				
Kinetics	EMULSION				
Operating Conditions					
B1 Pressure (atm)	10				
FLASH Option	NO				
Temperature profile					
Time (hr)	Temperature (°C)				
0.0	65.0				
0.5	65.0				
0.5	70.0				
1.0	70.0				
1.0	75.0				
2.0	75.0				

Table 5.1 Process Conditions (cont.)

Physical Property Models and Data

The Polymer Non-Random Two Liquid activity coefficient model (POLYNRTL) is used as the physical property method. The thermophysical properties (density, heat capacity, etc.) of the monomers are obtained from the Aspen Plus pure component databank. The polymer physical properties are calculated using the van Krevelen method. The NRTL binary interaction parameters supplied are as follows:

NRTL									
H2O	STY-SEG	10.0	0.0	.30	0.0	0.0	0.0	0.0	1000.0
STY-SEG	H2O	10.0	0.0	.30	0.0	0.0	0.0	0.0	1000.0
H2O	STY	3.6260	1513.50	.360	0.0	0.0	0.0	0.0	1000.0
STY	H2O	-4.4360	2869.70	.360	0.0	0.0	0.0	0.0	1000.0
H2O	BD	3.5890	862.820	.30	0.0	0.0	0.0	0.0	1000.0
BD	H2O	8520	702.170	.30	0.0	0.0	0.0	0.0	1000.0
STY-SEG	STY	0.0	411.83830	.1670	0.0	0.0	0.0	0.0	1000.0
STY	STY-SEG	0.0	-16.0	.1670	0.0	0.0	0.0	0.0	1000.0

Reactors / Kinetics

There are considerable data available on the kinetics of emulsion copolymerization of styrene and butadiene. It is assumed that the primary chain transfer reaction is similat to that of a monomer. It is also assumed that the molecular weight is controlled solely by the chain transfer events. In other words, the termination reactions do not contribute to the molecular weight development. However, the termination reaction rate constant is used in the calculation of the average number of radicals per particle.

The rate constants for the kinetic scheme are obtained from Broadhead et al. and are summarized in the following table (Broadhead, 1984; Ponnuswamy, et al. 1997):

Reaction	Phase	Comp 1	Comp 2	k ₀	E _a (J/kmol)
Initiator decomposition	Dispersant	Ammonium persulfate		1.0E16	1.402E8
Propagation	Polymer	Styrene	Styrene	2.2E7	3.2E7
Propagation	Polymer	Styrene	Butadiene	4.4E7	3.2E7
Propagation	Polymer	Butadiene	Butadiene	1.2E8	3.88E7
Propagation	Polymer	Butadiene	Styrene	8.5E7	3.88E7
Chain transfer-monomer	Polymer	Styrene	Styrene	2.2E3	3.2E7
Chain transfer-monomer	Polymer	Styrene	Butadiene	4.4E3	3.2E7
Chain transfer-monomer	Polymer	Butadiene	Butadiene	1.2E4	2.24E6
Chain transfer-monomer	Polymer	Butadiene	Styrene	8.5E3	3.88E7
Chat-agent	Polymer	Styrene	TDM	2.83E5	3.88E7
Chat-agent	Polymer	Butadiene	TDM	8.5E5	2.68E7
Termination by combination	Polymer	Styrene	Styrene	1.3E9	9.9E6
Termination by combination	Polymer	Styrene	Butadiene	1.3E9	9.9E6
Termination by combination	Polymer	Butadiene	Butadiene	1.3E9	9.9E6
Termination by combination	Polymer	Butadiene	Styrene	1.3E9	9.9E6

In addition to the free-radical reaction rate constants, the following rate constants were used for the radical exchange events:

Reaction	k ₀	E _a (J/kmol)
Absorption into particle	1.0E-7	0.0
Absorption into micelles	1.0E-7	0.0
Desorption from particle	0.0	0.0

	CMC kmol / m ³	Area m ³ / kmole
Emulsifier parameters	0.009	5.0E6
Monomer partitioning (mass)	styrene	.70 homosaturation in polymer
	butadiene	.50 homosaturation in polymer
	TDM	.8 homosaturation in polymer

Other parameters affecting the kinetics are the emulsifier parameters and the monomer partitioning are listed below:

Process Studies

The model was used to examine the following process parameters as a function of time through user profiles.

(K)
%
(m ³)
(Kmol/m^3)
(Kmol/m^3)
(\mathbf{m}^3)
(Kmol/m^3)
· /
(Kmol/m^3)
(Kmol/m^3) (m ³)
(Kmol /m ³) (m ³) (Kmol /m ³)
(Kmol /m ³) (m ³) (Kmol /m ³) (Kmol /m ³)

An input summary is given in Figure 5.2.

Figure 5.2 Input Summary for Styrene Butadiene Copolymerization

```
TITLE 'Emulsion Copolymerization of Styrene and Butadiene'
IN-UNITS SI MASS-FLOW='kg/hr' PRESSURE=bar TEMPERATURE=C TIME=hr &
        PDROP='N/sqm'
DEF-STREAMS CONVEN ALL
SYS-OPTIONS TRACE=YES
DESCRIPTION "This example illustrates the use of Polymers Plus to
       model the copolymerization of styrene and butadiene
        in a batch reactor. "
DATABANKS PURE93 / POLYMER / SEGMENT / NOASPENPCD
PROP-SOURCES PURE10 / POLYMER / SEGMENT
COMPONENTS
   H2O H2O H2O /
   STY C8H8 STY /
   BD C4H6-4 BD /
   POLYMER POLYMER POLYMER /
   STY-SEG C8H8-R STY-SEG /
   BD-SEG C4H6-R-1 BD-SEG /
   APS H2O APS /
   SLS H2O SLS /
   TDM C8H8 TDM
FLOWSHEET
   BLOCK B1 IN=CHARGE CFEED OUT=PROD1
PROPERTIES POLYNRTL
PROP-DATA MW
   IN-UNITS SI MASS-FLOW='kg/hr' PRESSURE=bar TEMPERATURE=C &
       TIME=hr PDROP='N/sqm'
   PROP-LIST MW
   PVAL APS 228.0
   PVAL SLS 288.0
   PVAL TDM 202.4
PROP-DATA TGVK
   IN-UNITS SI MASS-FLOW='kg/hr' PRESSURE=bar TEMPERATURE=C &
       TIME=hr PDROP='N/sam'
   PROP-LIST TGVK
   PVAL STY-SEG 100.0
   PVAL BD-SEG -54.0
```

Figure 5.2 Input Summary for Styrene Butadiene Copolymerization (cont.)

```
PROP-DATA NRTL-1
    IN-UNITS SI
    PROP-LIST NRTL
   BPVAL H20 STY-SEG 10.0 0.0 .30 0.0 0.0 0.0 0.0 1000.0
   BPVAL STY-SEG H2O 10.0 0.0 .30 0.0 0.0 0.0 0.0 1000.0
    BPVAL H20 STY 3.6260 1513.50 .360 0.0 0.0 0.0 0.0 &
        1000.0
    BPVAL STY H20 -4.4360 2869.70 .360 0.0 0.0 0.0 0.0 &
        1000.0
   BPVAL H2O BD 3.5890 862.820 .30 0.0 0.0 0.0 0.0 1000.0
    BPVAL BD H20 -.8520 702.170 .30 0.0 0.0 0.0 0.0 1000.0
   BPVAL STY-SEG STY 0.0 411.83830 .1670 0.0 0.0 0.0 0.0 &
        1000.0
    BPVAL STY STY-SEG 0.0 -16.0 .1670 0.0 0.0 0.0 0.0 &
        1000.0
POLYMERS
    SEGMENTS STY-SEG REPEAT / BD-SEG REPEAT
    POLYMERS POLYMER
   ATTRIBUTES POLYMER SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM &
        FMOM SMOM PSDZMOM PSDFMOM DIAV LSFLOW LSFRAC LEFLOW &
        LEFRAC LZMOM LFMOM LSMOM LPFRAC
    DISTRIBUTION POLYMER CHAIN-SIZE CLD NPOINTS=100 100000.
PROP-SET PS-1 MASSFRAC SUBSTREAM=MIXED COMPS=POLYMER PHASE=L
STREAM CFEED
    SUBSTREAM MIXED TEMP=20.0 PRES=10.
    MASS-FLOW H20 1000.0 / STY 700.0 / BD 700.0 / POLYMER &
        0.0 / APS 3.0 / SLS 100.
STREAM CHARGE
    SUBSTREAM MIXED TEMP=20.0 PRES=10.
   MASS-FLOW H2O 1000.0 / STY 300.0 / BD 300.0 / POLYMER &
        0.0 / APS 7.0 / SLS 30.0 / TDM 30.
BLOCK B1 RBATCH
   USER-VECS NUSER-PROF=13
    USERPROF ELEMENT=1 LABEL="TGAVG" UNIT-LABEL="DEG K"
    USERPROF ELEMENT=2 LABEL="NBAR" UNIT-LABEL="#/PARTICLE"
    USERPROF ELEMENT=3 LABEL="S-COVER" UNIT-LABEL="%"
    USERPROF ELEMENT=4 LABEL="M-VOL" UNIT-LABEL="M**3"
    USERPROF ELEMENT=5 LABEL="CM-1" UNIT-LABEL="KMOL/M**3"
    USERPROF ELEMENT=6 LABEL="CM-2" UNIT-LABEL="KMOL/M**3"
    USERPROF ELEMENT=7 LABEL="AQ-VOL" UNIT-LABEL="M**3"
    USERPROF ELEMENT=8 LABEL="CAQ-1" UNIT-LABEL="KMOL/M**3"
    USERPROF ELEMENT=9 LABEL="CAQ-2" UNIT-LABEL="KMOL/M**3"
    USERPROF ELEMENT=10 LABEL="POL-VOL" UNIT-LABEL="M**3"
    USERPROF ELEMENT=11 LABEL="CPOL-1" UNIT-LABEL="KMOL/M**3"
    USERPROF ELEMENT=12 LABEL="CPOL-2" UNIT-LABEL="KMOL/M**3"
   USERPROF ELEMENT=13 LABEL="CONVER" UNIT-LABEL="MASS FRAC"
    PARAM TYPE=T-PROFILE PRINT-TIME=0.2 CYCLE-TIME=1.0 &
        MAX-TIME=10. MAX-NPOINT=100 PRES=10. NPHASE=1 &
        HINIT=0.00001 FLASH=NO
```

Figure 5.2 Input Summary for Styrene Butadiene Copolymerization (cont.)

```
INTEG-PARAMS MAXSTEP=30. <sec>
    T-PROF 0.0 65.0 / .50 65.0 / 0.5 70.0 / 1.0 70.0 / \&
       1.0 75.0 / 2.0 75.0
    STOP 1 REACTOR TIME 10.
   PROP-REACTOR PS-1
   BLOCK-OPTION STREAM-LEVEL=4 TERM-LEVEL=7
   REACTIONS RXN-IDS=EMLRXN
   FEED-PROF SID=CFEED TIME=0.0 1.0 1.0 2.0 2.0 FLOW=0.0 &
        0.0 1200.0 1200.0 0.0
CONV-OPTIONS
   PARAM CHECKSEQ=NO
STREAM-REPOR MOLEFLOW MASSFLOW MOLEFRAC MASSFRAC
REACTIONS EMLRXN EMULSION
   PARAM KBASIS=MASS QSSA=YES
   SPECIES INITIATOR=APS MONOMER=STY BD CHAINTAG=TDM &
        EMULSIFIER=SLS DISPERSANT=H20 POLYMER=POLYMER
   MON-RSEG STY STY-SEG / BD BD-SEG
   INIT-DEC DISPERSANT APS 1.0000E+16 1.4020E+08 0.0 &
        EFFIC=.80 NRADS=2
   PROPAGATION POLYMER STY STY 2.2E7 3.2E7
   PROPAGATION POLYMER BD BD 1.2E8 38800000.
    PROPAGATION POLYMER STY BD 4.4E7 3.2E7
   PROPAGATION POLYMER BD STY 8.5E7 38800000.
   CHAT-MON POLYMER STY STY 2200. 3.2E7
    CHAT-MON POLYMER STY BD 4400. 3.2E7
   CHAT-MON POLYMER BD STY 8500. 38800000.
    CHAT-MON POLYMER BD BD 12000. 38800000.
    CHAT-AGENT POLYMER STY TDM 283000. 26800000.
   CHAT-AGENT POLYMER BD TDM 850000. 38800000.
    TERM-COMB POLYMER STY STY 1.30E9 9.90E6
   TERM-COMB POLYMER STY BD 1.30E9 9.90E6
   TERM-COMB POLYMER BD BD 1.30E9 9.90E6
    TERM-COMB POLYMER BD STY 1.30E9 9.90E6
   ABS-MIC 1.0000E-07 0.0
   ABS-PART 1.0000E-07 0.0
   DES-PART 0.0 0.0
   EMUL-PARAMS SLS 0.009 5.0E6
    SPLIT-PM STY 0.7
    SPLIT-PM BD 0.5
    SPLIT-PM TDM 0.8
;
```

SELECTED SIMULATION RESULTS

Figures 5.3 through Figure 5.8 give the selected results for emulsion polymerization of styrene and butadiene in a semi-batch reactor.

Figure 5.3 gives the nucleation and growth of emulsion polymer particles in the reactor. It is observed that the number of particles formed early remains constant throughout the reaction. In this figure, first moment which is the total volume of the unswollen polymer particles increases throughout the polymerization as expected. It is also observed that the average diameter of the unswollen particle increases as expected.

Figure 5.3 Particle Nucleation and Growth

Figure 5.4 gives the mass of monomers and polymer in the reactor. Although the flow rates of styrene and butadiene are equal, it is observed that butadiene reacts faster than styrene due to its higher reactivity.

Figure 5.4 Component Mass Profiles in Reactor

Figure 5.5 gives the volume of the monomer, polymer, and aqueous phases in the reactor. It is observed that the monomer droplets are completely depleted after 2.5 hours. As expected the volume of the swollen polymer phase decreases after the depletion of the monomer droplets.

Figure 5.5 Phase Volume Profiles in Reactor

Figure 5.6 gives the number average and weight average degree of polymerization.

Figure 5.6 Degree of Polymerization vs. Time

Figure 5.7 gives the composition of the polymer. As expected the composition of the reactive butadiene monomer in the polymer is higher in comparison to styrene.

Figure 5.7 Polymer Composition Profile

Figure 5.8 plots the chain length distribution

Figure 5.8 Chain Length Distribution

REFERENCES

Blackley, D. C., <u>Synthetic Rubbers: Their Chemistry and Technology</u>, Applied Science Publishers, New York (1983).

Broadhead, T. O., "Dynamic Modeling of the Emulsion Copolymerization of Styrene/Butadiene," M. E. Thesis, McMaster Univ. (1984).

Ponnuswamy, S. R. and A. E. Hamielec, "Emulsion Polymerization Theory and Practice," Lecture Notes for Intensive Short Course on Polymer Reaction Engineering, Burlington, Ontario Canada, April (1997).

STEADY-STATE APPLICATION Styrene Butadiene Emulsion Process
6

STYRENE ETHYL ACRYLATE

FREE-RADICAL COPOLYMERIZATION PROCESS

SUMMARY

The styrene ethyl acrylate free-radical copolymerization process model illustrates the use of Polymers Plus to model a styrene ethyl acrylate free-radical process. The process modeled is an experimental system developed by McManus and Penlidis at the University of Waterloo. The model is then used along with the experimental data generated at the University of Waterloo to estimate reaction rate constant parameters.

ABOUT THIS PROCESS

The copolymerization of styrene with ethyl acrylate is of considerable interest to the polymer industry. Recently, McManus and Penlidis at the University of Waterloo conducted a detailed study on the copolymerization of styrene and ethyl acrylate, and generated extensive data by varying the initiator concentration, feed composition, and the reactor temperature (McManus and Penlidis, 1996). Other similar studies have been done for this system (Fehervari, et al, 1981). A number of investigators estimated the kinetic parameters, but there are many discrepancies between kinetic rate constants and the reactivity ratios reported in the literature. McManus and Penlidis reviewed the information available on the kinetic data and estimated the reactivity ratios.

PROCESS DEFINITION

The copolymerization of styrene and ethyl acrylate is carried out in a batch reactor. The batch reactor is charged with a pre-mixed stream of styrene, ethyl acrylate, and the initiator azo-bis-isobutyronitrile. The reactor is operated at a constant temperature and pressure. The flowsheet is shown in Figure 6.1.

Figure 6.1 Styrene/Ethyl Acrylate Copolymerization Flowsheet

Process Conditions

The process conditions are as listed in Table 6.1. More details on the process data and the parameter regressing procedure are given next.

Table 6.1 Process Conditions

Components			
	Name	Databank	Description
Initiator	AIBN	PURECOMP	Initiator
Styrene	STY	PURECOMP	Monomer
Ethyl Acrylate	EA	PURECOMP	Monomer
Polymer	POLYMER	POLYMER	Polymer
	STY-SEG	SEGMENT	Styrene segment
	EA-SEG	SEGMENT	Ethyl Acrylate segment
Physical Properties	POLYNRTL propert	y method with supplied parameters	
Monomer Stream		Initiator Stream	
Temperature (°C)	50 or 60	50 or 60	
Pressure (atm)	1	1	
Mass flow kg/h	1000		
Mole flow of AIBN		0.05 MR/L in reaction mixture	
Mole fraction of styrene	0.762		
Mole fraction of ethyl acrylate	0.238		
Kinetics	EMULSION model		
Operating Conditions			
ВАТСН			
Temperature (°C)	50 or 60		
Pressure (atm)	1		
Reaction time	22		
Cycle time	1		

Reactors / Kinetics

The reaction set used in this process and the initial rate constant parameters are listed below:

Description	k ₀ (m ³ /kmol)	E _a (J / kmol)	V (m ³ / kmol)	EFFIC
INIT-DEC AIBN	1.82E15	1.288E8 E	0.0	0.50808
CHAIN-INI STY	4.5E6	2.6E7	0.0	
CHAIN-INI EA	3.0E6	2.24E7	0.0	
PROPAGATION STY STY	2.3438E6	2.6E7	0.0	
PROPAGATION STY EA	3.26562E6	2.6E7	0.0	
PROPAGATION EA STY	1.49182E7	2.24E7	0.0	
PROPAGATION EA EA	3.000E6	2.24E7	0.0	
CHAT-MON STY STY	117.190	2.6000E+07	0.0	
CHAT-MON STY EA	163.30	2.6000E+07	0.0	
CHAT-MON EA STY	746.0	2.2400E+07	0.0	
CHAT-MON EA EA	95.50	2.2400E+07	0.0	
TERM-COMB STY STY	1.4592E9	7E6	0.0	
TERM-COMB STY EA	6.63E9	14.6E6	0.0	
TERM-COMB EA STY	6.63E9	14.6E6	0.0	
TERM-COMB EA EA	3.00E10	22.2E6	0.0	

Reaction	Correlation	Parameters
INIT-DEC	2	-17.40 0.05528 17.8240 -05090 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
TERMINATION	2	1.0 0.0 2.570 005050 9.560 01760 -3.030 .007850 0.0 2.0

Gel effect is applied to the initiation and termination reactors using correlation No. 2.

Parameter Regression

The experimental data reported by the University of Waterloo group includes conversion, polymer composition, number and weight average molecular weights as a function of time. This data was generated by varying: (1) the initial mole ratio of styrene to EA, (2) the initiator concentration, and (3) the reactor temperature. The DATA-FIT capability is used to fit the reaction rate constant parameters.

Monomer conversion and number average molecular weights were used to regress the kinetic parameters. Table 6.2 and Table 6.3 show the experimental data obtained at 50 and 60° C. To indicate the accuracy of the experiments, data obtained with a replicate experiment are also included in Table 6.2 and Table 6.3. An input summary is given in Figure 6.2.

Homo-propagation rate constants are regressed to fit the conversion data. Crosspropagation rate constants are calculated using the reactivity ratios. Homo-termination rate constants are regressed to fit the molecular weights. Cross-termination rate constants are set to the square-root of the product of the homo-termination rate constants.

Table 6.2 Styrene/Ethyl Acrylate Copolymerization Data

T=50°C, Styrene Mole Fraction in the feed=0.762, and AIBN=0.05 mol/L

	Data u	sed in Data-Fit	Replicate Experiment		Simula	tion Results
Time	Conversion	Molecular Weight	Conversion	Molecular Weight	Conversion	Molecular Weight
(min)	(mass %)	(M _n)	(mass %)	(M _n)	(mass %)	(M _n)
0	0	9.61E+04	0	0.00E+00	0	92990
120	5.68	9.61E+04	5.62	98204	5.36	92990
240	10.79	9.69E+04	11.58	84913	10.6	95576.3
360	16.09	9.85E+04	16.48	89791	15.82	98699.5
480	21.06	1.02E+05	21.86	99669	21.11	1.02E+05
600	26.16	1.02E+05	26.82	99269	26.55	1.07E+05
660			28.63	101179		
720	37.55	1.04E+05	32.3	97121	32.25	1.12E+05
840	36.6	1.05E+05	37.08	105809	38.33	1.18E+05
900			41.8	106172		
930	39.36	1.12E+05				
960		1.12E+05	42.82	101569	44.98	1.26E+05
1020	45.97					
1080					52.44	1.35E+05
1110	54.68	1.12E+05	56.22	99967		
1200	61.44	1.15E+05			61.08	1.46E+05
1290	68.66	1.35E+05	70.71	108848		
1320					71.37	1.60E+05
1410	77.46	1.34E+05	79.37	142398		
1440					83.38	1.78E+05
1560					94.04	1.92E+05
1620	97.44	1.21E+05				
1680					98.37	1.94E+05
1760			99.5	201441		

Table 6.3 Styrene/Ethyl Acrylate Copolymerization Data

	Data us	sed in Data-Fit	Replicate Experiment		Simula	tion Results
Time	Conversion	Molecular Weight	Conversion	Molecular Weight	Conversion	Molecular Weight
(min)	(mass %)	(M _n)	(mass %)	(M _n)	(mass %)	(M _n)
0	0	6.13E+04	0.00E+00	53353	0	60149
60	7.73	6.13E+04			6.9	60149
90			5.62	53353		
120	14.16	6.34E+04			13.44	63142
180	21.14	6.73E+04	11.58	58819	19.788	66606
240	27.25	6.49E+04	16.48	50716	26.088	7.06E+04
300	34.02	7.09E+04	21.86	51287	32.47	7.51E+04
360	40.32	6.17E+04	26.82	59017	39.07	8.04E+04
390			28.63	64038		
420	47.11	6.99E+04			46.04	8.64E+04
465	49.25	7.54E+04				
480			32.3	68012	53.55	9.35E+04
510	57.32	8.09E+04				
540			37.08	73434	61.81	1.02E+05
555	62.15	6.49E+04				
600	71.16	9.14E+04	41.8	74867	71	1.12E+05
645	83.02	9.37E+04				
660			42.82	97000	81	1.23E+05
705	94.8	1.12E+05				
720			56.22	98327	90.39	1.32E+05
780	100	1.26E+05	70.71	120620	96.39	1.38E+05
			79.37	109391		
840					98.67	1.38E+05
900					99.3	1.37E+05

T=60°C, Styrene Mole Fraction in the feed=0.762, and AIBN=0.05 mol/L

In the styrene-ethyl acrylate kinetic scheme, 11 reactions were chosen and the gel-effect was applied to the termination and initiation reaction. Recall that $k = k_o \exp\left(-\frac{E}{RT} - \frac{\Delta VP}{RT}\right)$.

This results in 34 kinetic parameters and 20 gel-effect parameters available for fitting. The available data is not sufficient to regress all these parameters. The following approach was used to reduce the number of parameters needed for a good fit.

- 1. Since the batch reactor is operated at 1 atm, the effect of activation volume on the rate constant can be neglected for all the reactions. Therefore, the activation volume was set to zero for all the reactions. Note that at high pressures the effect of activation volume cannot be neglected.
- 2. The initiator decomposition rate constants were known. Typically these can be obtained from a good polymer handbook or from the supplier. They can also be calculated using the half-life data. (See Appendix G of the *Polymers Plus User Guide*).
- 3. Chain initiation rate constants are in general faster than the propagation rate constants. Therefore these constants were set to be the same or greater than the propagation rate constants.
- 4. There are two homo-propagation reactions and two cross-propagation reactions in the kinetic scheme. The number of regressable parameters is then eight excluding the activation volume parameters. The number of regressable propagation parameters can be reduced if the homo-propagation rate constants and/or the reactivity ratios are known. If the homo-propagation rate constants are known then reactivity ratios can be estimated. If the reactivity ratios are known homo-propagation rate constants constants can be estimated. In this example, reactivity ratios were given (Fehervari, 1981), and the homo-propagation rate constants were regressed. The cross-propagation rate constants were calculated using the following equations.

$$r_{1} = k_{p}^{11} / k_{p}^{12}$$
$$r_{2} = k_{p}^{22} / k_{p}^{21}$$

Where:

STY=1

EA=2

5. Four termination reactions are considered in this scheme. Cross-termination reactions involving STY and EA segments were set to have the same rate constant. This reduces specification of the rate constants to three. If the homo-termination rate constants are known, the cross-termination rate constants can be estimated using the following equations.

$$k_{12} = \sqrt{k_{11}k_{22}}$$
$$k_{21} = k_{12}$$

In this example homo-termination rate constants were regressed using the molecular weight data.

- 6. In the kinetic scheme termination by combination was selected. It is possible that termination by disproportionation can also occur. One needs to know apriori the termination mechanism. As a general rule if polydispersity (PDI) is 1.5 termination by combination is controlling and if PDI is two termination is controlled by the disproportionation reaction.
- 7. At high conversion termination is diffusion controlled. This is modeled using the geleffect option. Therefore use of low conversion data is recommended for regression of the kinetic parameters without using gel-effect. High conversion data is then used to regress the gel-effect parameters.
- 8. Monomer conversion data was used to regress the initiator efficiency, propagation and the termination rate constants. Molecular weight data was used to regress the propagation and the termination rate constants. The gel-effect parameters influence both the conversion and the molecular weight.
- 9. Chain transfer reactions do not affect the conversion but affect the polymer molecular weight.

Table 6.4 summarizes the approach for fitting the kinetic rate constant parameters.

				Red	quired Data		
Reaction	Parameter	Conversion	MWn	PDI	LCB	SCB	Copolymer
			or DP _n				Composition
INIT-DEC	k _d	Initiator					
PROPAGATION	k _p	Monomer	*	*			*
CHAT-MON	k _{trm}		*	*			
CHAT-SOL	k		*	*			
CHAT-AG	k _{tra}		*	*			
TERM-DIS	k _{td}	Monomer	*	*			
TERM-COM	<i>k.</i>	Monomer	*	*			
INHIBITION	k_x	Monomer	*	*			
CHAT-POL	k _{trp}			**	*		
SC-BRANCH	k _{scb}					*	

Table 6.4 Kinetic Parameter Fitting for Free-Radical Polymerization Data

.

Figure 6.2 Input Summary for Styrene and Ethyl Acrylate Copolymerization

TITLE 'Data-fit Example Using Free Radical Polymerization' IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' PRESSURE=atm & TEMPERATURE=C TIME=hr VOLUME=1 MASS-DENSITY='gm/cc' & PDROP='N/sqm' OUT-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' PRESSURE=atm & TEMPERATURE=C TIME=min VOLUME=1 MASS-DENSITY='gm/cc' & PDROP='N/sqm' DEF-STREAMS CONVEN ALL RUN-CONTROL MAX-TIME=1200000.0 DESCRIPTION "Batch reactor data for styrene-ethyl acrylate polymerization is used to regress propagation and termination rate constants " DATABANKS PURE93 / POLYMER / SEGMENT / NOASPENPCD PROP-SOURCES PURE93 / POLYMER / SEGMENT COMPONENTS AIBN C8H8 AIBN / STY C8H8 STY / EA C5H8O2 EA / STY-SEG C8H8-R STY-SEG / EA-SEG C5H8O2-R-2 EA-SEG / POLYMER PS-1 POLYMER FLOWSHEET BLOCK BATCH IN=FEED OUT=POLYMER BLOCK MIX IN=MONOMER INIT OUT=FEED PROPERTIES POLYNRTL ;USER-PROPS GMRENA 1 2 1 / GMRENB 1 2 1 / GMRENC 1 2 1 & / GMREND 1 2 1 ; PROP-DATA U-1 IN-UNITS ENG PROP-LIST MW PVAL AIBN 164.2120 POLYMERS SEGMENTS STY-SEG REPEAT / EA-SEG REPEAT POLYMERS POLYMER ATTRIBUTES POLYMER SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM & FMOM SMOM ;LDPN LZMOM LFMOM LSFLOW LSFRAC LEFLOW & LEFRAC LPFRAC ;

Figure 6.2 Input Summary for Styrene and Ethyl Acrylate Copolymerization (cont.)

```
DISTRIBUTION POLYMER CHAIN-SIZE NPOINTS=100
; DEF-STREAMS CONVEN POLYMER
PROP-SET INITCONC
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        PRESSURE=atm TEMPERATURE=C PDROP='N/sqm'
    PROPNAME-LIS MOLECONC UNITS='mol/l' SUBSTREAM=MIXED &
        COMPS=AIBN
PROP-SET PS-2
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr'
                                                       æ
       PRESSURE=atm TEMPERATURE=C PDROP='N/som'
    PROPNAME-LIS MASSFRAC SUBSTREAM=MIXED COMPS=POLYMER PHASE=L
STREAM INIT
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        PRESSURE=atm TEMPERATURE=C VOLUME=1 MASS-DENSITY='gm/cc' &
        PDROP='N/sqm
    SUBSTREAM MIXED TEMP=50.0 PRES=1.0
   MOLE-FLOW AIBN .05710370
STREAM MONOMER
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        PRESSURE=atm TEMPERATURE=C VOLUME=1 MASS-DENSITY='gm/cc' &
        PDROP='N/sqm'
    SUBSTREAM MIXED TEMP=60.0 PRES=1.0 MASS-FLOW=1000.0
    MOLE-FRAC STY .7620 / EA .2380
BLOCK MIX MIXER
    IN-UNITS ENG
    BLOCK-OPTION TERM-LEVEL=7
BLOCK BATCH RBATCH
   PARAM TYPE=T-SPEC PRINT-TIME=1.0 CYCLE-TIME=1.0 &
      MAX-TIME=25.0 MAX-NPOINT=27 TEMP=60.0 ERR-METHOD=DYNAMIC
    STOP 1 REACTOR TIME 25.0
    PROP-REACTOR PS-2
   REACTIONS RXN-IDS=STY-EA
FORTRAN F-1
   DEFINE F PARAMETER 1
F
      F = 5
   EXECUTE FIRST
FORTRAN K-PROP
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=atm TEMPERATURE=C PDROP='N/sqm'
    DEFINE PROP11 REACT-VAR REACTION=STY-EA VARIABLE=PRPRE-EXP &
        SENTENCE=PROPAGATION ID1=STY ID2=STY
   DEFINE PROP12 REACT-VAR REACTION=STY-EA VARIABLE=PRPRE-EXP &
        SENTENCE=PROPAGATION ID1=STY ID2=EA
    DEFINE PROP21 REACT-VAR REACTION=STY-EA VARIABLE=PRPRE-EXP &
       SENTENCE=PROPAGATION ID1=EA ID2=STY
    DEFINE PROP22 REACT-VAR REACTION=STY-EA VARIABLE=PRPRE-EXP &
        SENTENCE=PROPAGATION ID1=EA ID2=EA
```

Figure 6.2 Input Summary for Styrene and Ethyl Acrylate Copolymerization (cont.)

```
F
       R1
              = 0.717
              = 0.128
F
       R2
F
       PROP12 = PROP11/R1
       PROP21 = PROP22/R2
F
    READ-VARS PROP11 PROP22
    WRITE-VARS PROP12 PROP21
FORTRAN K-TERM
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr'
                                                        8
        PRESSURE=atm TEMPERATURE=C PDROP='N/sqm'
    DEFINE TC11 REACT-VAR REACTION=STY-EA VARIABLE=TCPRE-EXP
                                                               æ
        SENTENCE=TERM-COMB ID1=STY ID2=STY
    DEFINE TC12 REACT-VAR REACTION=STY-EA VARIABLE=TCPRE-EXP
                                                               8
        SENTENCE=TERM-COMB ID1=STY ID2=EA
    DEFINE TC21 REACT-VAR REACTION=STY-EA VARIABLE=TCPRE-EXP
                                                               æ
        SENTENCE=TERM-COMB ID1=EA ID2=STY
    DEFINE TC22 REACT-VAR REACTION=STY-EA VARIABLE=TCPRE-EXP &
        SENTENCE=TERM-COMB ID1=EA ID2=EA
    DEFINE F PARAMETER 1
      TC12 = F^*(TC11^*TC22)^{**0.5}
F
      TC21 = F^*(TC11^*TC22)^{**0.5}
F
    READ-VARS TC11 TC22
    WRITE-VARS TC12 TC21
CONV-OPTIONS
    PARAM CHECKSEQ=NO
STREAM-REPOR MOLEFLOW MASSFLOW MOLEFRAC MASSFRAC &
        PROPERTIES=INITCONC
;
     PROPAGATION STY STY 23438.0 2.6000E+07
     Gel effect is added to this file
;
REACTIONS STY-EA FREE-RAD
    IN-UNITS SI
    PARAM QSSA=YES
    SPECIES INITIATOR=AIBN MONOMER=STY EA POLYMER=POLYMER
    MON-RSEG STY STY-SEG / EA EA-SEG
    INIT-DEC AIBN 1.8200E+15 1.2880E+08 EFFIC=.5080
    CHAIN-INI STY 4500000.0 2.6000E+07
    CHAIN-INI EA 3000000.0 2.2400E+07
    PROPAGATION STY STY 2343800.0 2.6000E+07
    PROPAGATION STY EA 3265620.0 2.6000E+07
    PROPAGATION EA STY 1.4918E+07 2.2400E+07
    PROPAGATION EA EA 3000000.0 2.2400E+07
    CHAT-MON STY STY 117.190 2.6000E+07
    CHAT-MON STY EA 163.30 2.6000E+07
    CHAT-MON EA STY 746.0 2.2400E+07
    CHAT-MON EA EA 95.50 2.2400E+07
    TERM-COMB STY STY 1.4592E+09 7000000.0
    TERM-COMB STY EA 6.6300E+10 1.4600E+07
    TERM-COMB EA STY 6.6300E+10 1.4600E+07
    TERM-COMB EA EA 3.0000E+11 2.2200E+07
    GEL-EFFECT INIT-EFF 2 MAX-PARAMS=10 GE-PARAMS=-17.40 &
        .055280 17.8240 -.05090 0.0 0.0 0.0 0.0 0.0 2.0
```

Figure 6.2 Input Summary for Styrene and Ethyl Acrylate Copolymerization (cont.)

```
GEL-EFFECT TERMINATION 2 MAX-PARAMS=10 GE-PARAMS=1.0 0.0 &
        2.570 -.005050 9.560 -.01760 -3.030 .007850 0.0 2.0
;
     DATA MWN
     VARY PARAMETER 1
;
;
    LIMITS 1 100
REGRESSION K-TERM
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr'
                                                       &
       PRESSURE=atm TEMPERATURE=C PDROP='N/sqm'
   DATA WPOLY
    VARY REACT-VAR REACTION=STY-EA VARIABLE=PRPRE-EXP &
       SENTENCE=PROPAGATION ID1=STY ID2=STY
    LIMITS 5E4 1E7
   ALGORITHM MXPASS=3000
DATA-SET MWN
    IN-UNITS ENG
    DEFINE TIME BLOCK-VAR BLOCK=BATCH VARIABLE=VALUE &
        SENTENCE=STOP ID1=1
    DEFINE MWN COMP-ATTR-VAR STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=POLYMER ATTRIBUTE=MWN ELEMENT=1
    INPUT TIME
    RESULT MWN
    USE STD-DEV .010 5000.0 / DATA 2.0 96148.0 / DATA 4.0 &
        96939.0 / DATA 6.0 98547.0 / DATA 8.0 102418.0 / &
        DATA 10.0 101941.0 / DATA 12.0 104354.0 / DATA 14.0
                                                            æ
        105066.0 / DATA 15.50 112415.0 / DATA 17.0 112159.0 &
        / DATA 18.50 112001.0 / DATA 20.0 114564.0 / DATA \&
        21.50 135065.0 / DATA 23.50 133690.0 / DATA 27.0 &
        120899.0
DATA-SET WPOL-SFR
    TN-UNITS ENG
    DEFINE TIME BLOCK-VAR BLOCK=BATCH VARIABLE=VALUE &
        SENTENCE=STOP ID1=1
   DEFINE WPOLY MASS-FRAC STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=POLYMER
    DEFINE SFRAC COMP-ATTR-VAR STREAM=POLYMER SUBSTREAM=MIXED &
        COMPONENT=POLYMER ATTRIBUTE=SFRAC ELEMENT=1
    INPUT TIME
   RESULT WPOLY SFRAC
    USE STD-DEV .010 .010 .010 / DATA 2.0 .05680 .7590 / &
        DATA 4.0 .10790 .7980 / DATA 6.0 .16090 .7660 / &
        DATA 8.0 .21060 .7360 / DATA 10.0 .26160 .7710 / &
        DATA 12.0 .37550 .7510 / DATA 14.0 .3660 .7630 /
                                                         æ
       DATA 20.0 .61440 .780 / DATA 21.50 .68660 .7870 /
                                                          8
        DATA 23.50 .77460 .7970 / DATA 27.0 .97440 .7550
         / DATA 27 .9744
;
```

Figure 6.2 Input Summary for Styrene and Ethyl Acrylate Copolymerization (cont.)

```
DATA-SET WPOLY

IN-UNITS ENG

DEFINE TIME BLOCK-VAR BLOCK=BATCH VARIABLE=VALUE &

SENTENCE=STOP ID1=1

DEFINE WPOLY MASS-FRAC STREAM=POLYMER SUBSTREAM=MIXED &

COMPONENT=POLYMER

INPUT TIME

RESULT WPOLY

USE STD-DEV .010 .010 / DATA 2.0 .05680 / DATA 4.0 &

.10790 / DATA 6.0 .16090 / DATA 8.0 .21060 / DATA &

10.0 .26160 / DATA 12.0 .37750 / DATA 14.0 .3660 / &

DATA 15.50 .39360 / DATA 17.0 .45970 / DATA 18.50 &

.54680 / DATA 20.0 .61440 / DATA 21.50 .68660 / &

DATA 23.50 .77460

;
```

SELECTED SIMULATION RESULTS

Figure 6.3 and Figure 6.4 show estimated molecular weight and monomer conversion as a function of the experimental data. As shown in these figures a good match is obtained between the predictions and experimental data. The values of the fitted parameters are as follows:

Reaction	Parameter	Estimate	Std. Dev.	Confidence Lower Limit	Internal Upper Limit
Styrene homo-propagation	Pre-exponential factor	2.154×10^{7}	19169.6	2.1168×10^{6}	2.1919×10^{6}
EA homo-propagation	Pre-exponential factor	3.0×10^{6}	6.65×10^{6}	5×10^{5}	1.0×10^{7}
Styrene homo-termination	Pre-exponential factor	1.26×10^{9}			
EA homo-termination	Pre-exponential factor	2.6×10 ⁹			

Figure 6.5 and Figure 6.6 show the conversion and molecular weight data comparison of the simulation results with the experimental data at 50 and 60°C respectively.

Figure 6.3 Estimated vs. Measured MW_n

Figure 6.4 Estimated vs. Measured Monomer Conversion

Figure 6.5 Comparison of Simulation Results and Experimental Data at 50°C

Figure 6.6 Comparison of Simulation Results and Experimental Data at 60°C

REFERENCES

Fehervari, A, T. Foldes-Berezsnich, and F. Tudos, J. Macromol. Sci. Chem., A16, 993, (1981).

McManus, N. T. and A. Penlidis, "A kinetic investigation of styrene/ethyl acrylate copolymerization", *J. Polym. Sci. Polym. Chem.*, **34**, 237.

7 METHYL METHACRYLATE

POLYMERIZATION IN ETHYL ACETATE

SUMMARY

The methyl methacrylate polymerization in ethyl acetate model illustrates the use of Polymers Plus to model a solution polymerization process for methyl methacrylate in ethyl acetate. Among the studies carried out using this model are the effect of initiator concentration and reactor temperature on molecular weight and conversion.

ABOUT THIS PROCESS

Polymethyl methacrylate is part of the polyacrylic group of polymers. It is used in the manufacture of lenses or other clear coverings and is also known under the trade names plexiglass, lucite, acrylate, etc.

This methyl methacrylate polymerization is carried out in a free-radical solution process. Solution polymerization is used when both the monomer and the initiator are soluble in the solvent. Typically, solution processes result in low viscosity, provide good mixing, and improve heat transfer limitations, while improving temperature control and reducing gel effect. On the other hand, these processes result in lower reaction rate and in lower polymer molecular weight due to chain transfer to solvents. Furthermore, solvent removal can be costly.

The flowsheet for this process consists of a batch reactor followed by a devolatizer for solvent removal. The reactor feed contains methyl methacrylate dissolved in ethyl acetate, with AIBN as the initiator. The reactor operates under constant temperature and pressure.

PROCESS DEFINITION

The batch reactor is modeled using RBatch, and the devolitizer using Flash2 as shown in Figure 7.1.

Figure 7.1 Methyl Methacrylate Polymerization Flowsheet

Process Conditions

The process conditions are as listed in Table 7.1

Table 7.1 Process Conditions

Name	Databank	Description		
MMA	PURECOMP	Monomer		
EA	PURECOMP	Solvent		
PMMA	POLYMER	Polymer		
MMA-R	SEGMENT	Methyl methacrylate segment		
AIBN	PURECOMP	Initiator (Mw=164.210)		
POLYNRTL property me	thod with supplied parameters			
0				
1				
100 (25 wt%)				
300 (75 wt%)				
3.757 (50 mol/CUM in AIBN				
batch feed				
FREE-RAD model				
RBATCH	FLASH			
50	60			
1 atm	100 mmHg			
	Name MMA EA PMMA MMA-R AIBN POLYNRTL property me 0 1 100 (25 wt%) 300 (75 wt%) 3.757 (50 mol/CUM) in AIBN batch feed FREE-RAD model 50 1 atm	NameDatabankMMAPURECOMPEAPURECOMPPMMAPOLYMERMMA-RSEGMENTAIBNPURECOMPPOLYNRTL propertywith supplied parameters0		

Reactors / Kinetics

The kinetic parameters of solution polymerization of methyl methacrylate are available in literature (Ellis, 1988). The reactions used in this model and their rate constant parameters are listed below:

Description	k _o	(J/Kmol)	Efficiency
Initiator decomposition	1.2525E14	1.228E8	0.5
Chain initiation	4.92E5	1.824E7	
Propagation	4.92E5	1.82E7	
Chain transfer to monomer	7.177E9	7.513E7	
Chain transfer to solvent	4.673E8	6.57E7	
Termination by disproportionation	9.8E7	2.937E6	

Because of the presence of large amount of solvents (75% by weight), gel-effect is not significant and is therefore not considered. At high monomer conversion, gel-effect can be used to improve the agreement between the model predictions and experimental data.

In the batch reactor two reactor stop conditions are provided: stop after 5 hours of reaction time, or stop at 99% monomer conversion (corresponds to PMMA mass fraction of 0.2452). The first option is used to obtain conversion and polymer molecular weight information as a function of time. The second option is used to examine the effect of temperature and initiator concentration of PMMA properties at a given conversion.

Process Studies

The PMMA process model is used to examine process variables such as conversion number and weight average molecular weight as a function of time, at three different reactor temperatures. The model predictions are compared against literature data (Ellis, 1990).

The model is also used to study the effects of initiator concentration and polymerization temperature on the following: reaction time to reach 99% monomer conversion, peak heat load, number and weight average molecular weight.

A sensitivity study is also performed to show the percent solids as a function of outlet temperature.

An input summary is given in Figure 7.2.

Figure 7.2 Input Summary for Methyl Methacrylate Polymerization

```
TITLE 'Polymerization of MMA'
TN-UNITS MET
DEF-STREAMS CONVEN ALL
DESCRIPTION "
        Polymerization of methyl methacrylate(MMA) in a batch reactor.
DATABANKS POLYMER / SEGMENT / PURE93 / NOASPENPCD
PROP-SOURCES POLYMER / SEGMENT / PURE93
COMPONENTS
   MMA C5H802-D3 MMA /
   EA C4H8O2-3 EA /
   AIBN C5H8O2-D3 AIBN /
   PMMA PMMA PMMA /
   MMA-R C5H8O2-R-1 MMA-R
FLOWSHEET
   BLOCK FLASH IN=PROD OUT=FV FL
   BLOCK RBATCH IN=FEED OUT=PROD
PROPERTIES POLYNRTL
USER-PROPS GMRENA 1 2 1 / GMRENB 1 2 1 / GMRENC 1 2 1 &
       / GMREND 1 2 1
PROP-DATA U-1
   IN-UNITS MET
    PROP-LIST MW
   PVAL AIBN 164.210
```

Figure 7.2 Input Summary for Methyl Methacrylate Polymerization (cont.)

```
POLYMERS
    SEGMENTS MMA-R REPEAT
    POLYMERS PMMA
   ATTRIBUTES PMMA SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM &
        FMOM SMOM LDPN LZMOM LFMOM LSFLOW LSFRAC LEFLOW &
       LEFRAC LPFRAC
   DISTRIBUTION PMMA CHAIN-SIZE CLD NPOINTS=100 3000.
PROP-SET PS-1 MASSFRAC SUBSTREAM=MIXED COMPS=PMMA MMA EA &
       PHASE=L
PROP-SET PS-2 MOLECONC UNITS='kmol/cum' SUBSTREAM=MIXED &
       COMPS=AIBN PHASE=L
PROP-SET PS-3 MOLECONC UNITS='kmol/cum' SUBSTREAM=MIXED &
       COMPS=AIBN MMA PHASE=L
STREAM FEED
   SUBSTREAM MIXED TEMP=273.0 PRES=1.0
   MASS-FLOW MMA 100.0 / EA 300.0 / AIBN 3.7570
BLOCK FLASH FLASH2
   PARAM TEMP=333.150 PRES=.131578947
BLOCK RBATCH RBATCH
   PARAM TYPE=T-SPEC PRINT-TIME=.50 CYCLE-TIME=1.0 &
       MAX-TIME=100.0 MAX-NPOINT=202 PRES=1.0 TEMP=323.0
   STOP 1 REACTOR MASS-FRAC .24520 FROM-BELOW COMP=PMMA &
       SSID=MIXED
   PROP-REACTOR PS-1
   REACTIONS RXN-IDS=REAC-1
FORTRAN F-1
   DEFINE FTEMP STREAM-VAR STREAM=FEED SUBSTREAM=MIXED &
       VARIABLE=TEMP
   DEFINE RTEMP BLOCK-VAR BLOCK=RBATCH VARIABLE=TEMP &
       SENTENCE=PARAM
F
       FTEMP = RTEMP
   EXECUTE BEFORE BLOCK RBATCH
CONV-OPTIONS
   PARAM CHECKSEQ=NO
STREAM-REPOR NOMOLEFLOW MASSFLOW PROPERTIES=PS-2 PS-3
REACTIONS REAC-1 FREE-RAD
   IN-UNITS SI
    PARAM
    SPECIES INITIATOR=AIBN MONOMER=MMA SOLVENT=EA POLYMER=PMMA
   MON-RSEG MMA MMA-R
    INIT-DEC AIBN 1.2525E+14 1.2280E+08 EFFIC=.50
    CHAIN-INI MMA 492000.0 1.8240E+07
   PROPAGATION MMA MMA 492000.0 1.8240E+07
    CHAT-MON MMA MMA 7.1770E+09 7.5130E+07
    CHAT-SOL MMA EA 4.6730E+08 6.5700E+07
    TERM-DIS MMA MMA 9.8000E+07 2937000.0
```

SELECTED SIMULATION RESULTS

Figure 7.3 shows the mass flow of PMMA versus the time. This is equivalent to monomer conversion versus time since the feed rate is 100 kg/hr. Figure 7.3 indicates that at high temperature, over 90% of monomers are converted within 5 hours, while at low temperature (50°C), only 40% of monomers are converted. These results are within 1% deviation from literature simulation results (Ellis 1988).

Figure 7.4 shows the PMMA number-average molecular weight versus time at different reacting temperatures. As temperature increases, the number-average molecular weight of PMMA decreases. The Polymers Plus predictions agree closely with literature simulation. At high monomer conversion, the addition of gel-effect is needed to improve agreement between the predictions and experimental data.

Figure 7.5 shows the reaction time in hours needed to reach 99% monomer conversion at various temperatures. The five lines correspond to five initiator concentrations. At constant initiator concentration, the reaction time decreases with temperature. At constant temperature, the reaction time decreases as initiator concentration increases. Therefore, higher reaction temperature and initiator concentration allow faster monomer conversion.

Figure 7.6 and Figure 7.7 show the molecular weight dependency of temperature and initiator concentration. In general, both the number and weight-average molecular weight increase as temperature and initiator concentration decrease. The ratio of Mw and Mn gives the polydispersity index (PDI). Figure 7.8 shows that at a given conversion, PDI decreases as temperature increases, and increases as initiator concentration increases.

Figure 7.9 shows the instantaneous reactor heat duty as a function of reactor temperature and initiator concentration. For the case of a reactor with specified temperature, the maximum heat duty occurs immediately after reactions start. In our simulation, the maximum heat duty is reported at 0.5 hr. This is the first data point computed when the time interval is set to 0.5 hr, and is therefore not the true peak heat duty. Smaller time intervals may be used to obtain more accurate peak heat duty.

Figure 7.10 shows the results of the sensitivity study on the flash block. As the flash temperature varies, the polymer content in the liquid output stream changes accordingly. No binary parameters are used in the polymer NRTL model. If liquid-vapor equilibria data is available, the binary parameters may be fitted to allow more accurate predictions.

Figure 7.3 PMMA Mass Flow (Monomer Conversion) vs. Time

Figure 7.4 PMMA Number-Averaged Molecular Weight vs. Time

Figure 7.5 Reaction Time at 99% Conversion vs. Temperature

Figure 7.6 MWn at 99% Conversion vs. Temperature

Figure 7.7 MWw at 99% Conversion vs. Temperature

Figure 7.8 PMMA Polydispersity Index

Figure 7.9 Reactor Heat Duty

Figure 7.10 PMMA Percent in Solid Outlet vs. Flash Temperature

REFERENCES

Ellis, M. F., T. W. X. Taylor, V. Gonzalez, and K. F. Jensen, "Estimation of the Molecular Weight Distribution in Batch Polymerization", *AIChE J.*, **34**, 1341 (1988).

Ellis, M. F, "Online Control and Estimation of the Molecular Weight Distribution in a Batch Polymerization Reactor", PhD Thesis, Dept. Of Chem. Engr., Univ. Of Minn. (1990).

Grulke, E. A., Polymer Process Engineering, Prentice Hall, New Jersey (1994).

Tulig, T. J., and M. Tirrell, "Toward a Molecular Theory of the Trommsdorff Effect", *Macromolecules*, **14**, 1501 (1981).

WITH STYRENE MONOMER DISTILLATION

SUMMARY

The polystyrene with styrene monomer distillation model illustrates the use of Polymers Plus to model and predict the extent of polymer formation during styrene distillation. The model examines the optimum level of inhibitor to minimize polymer formation.

ABOUT THIS PROCESS

Product from a styrene plant consists of 60% styrene, 40% ethyl benzene and small amounts of toluene and benzene. Styrene is purified in a series of distillation columns. During distillation styrene polymerization occurs and the extent of polymerization depends on the time and temperature. To reduce polymer formation inhibitor is commonly used in the feed. The amount of inhibitor needs to be optimized since too little will produce more polymer waste and too high concentration of inhibitor will be expensive. The purpose of this example is to find an optimum level of inhibitor needed to minimize polymer formation and to maximize the process profitability.

PROCESS DEFINITION

The key simulation inputs for the problem definition are described below.

As shown in the Figure 8.1, the flowsheet consists of three RadFrac block, each one followed by a CSTR, a Flash and RStoic block.

Figure 8.1 Polystyrene Monomer Distillation Process Flowsheet

There are three RadFrac blocks in the flowsheet. The purpose of the first column is to separate benzene and toluene from the feed. The purpose of the second column is to recover the ethyl benzene in the overhead product, and the third column is to separate the polymer from the styrene monomer and recover the monomer in the overhead product.

Reboiler of each column is modeled as a single CSTR where the polymerization take place.

The purpose of the RStoic block is to convert the polymer produced in the CSTR into a Dummy polymer since RadFrac block doesn't handle polymer attributes.

The process conditions are listed in Table 8.1.

Process Conditions

Table 8.1 Process Col	nditions
-----------------------	----------

Component	Name	Databank	Description
Styrene	STY	PURECOMP	Monomer
Etylbenzene	EB	PURECOMP	Chain transfer agent
Benzene	BEN	PURECOMP	Solvent
Toluene	TOL	PURECOMP	Solvent
Inhibitor	INHIBIT	PURECOMP	Inhibitor
Coinitiator	CINI		Coinitiator
PS	PS	POLYMER	Polymer
	STY-SEG	SEGMENT	Styrene segment
	PS-DUMMY	PURECOMP	Dummy polymer
Feed Stream			
Temperature	25 °C		
Pressure	4.5 Bar		
Mass Flow	18000 Kg/hr		
Mass fraction of styrene	0.63		
Mass fraction of ethyl benzene	0.34		
Mass fraction of toluene	0.007		
Mass fraction of benzene	0.016		
Mass fraction of inhibitor	0		
Operating Conditions			
Block	Temp (C)	Pres(Bar) Top/Bottom	Specifications
BT-COL		0.27 / 0.4	21 stages + condenser
			RR = 0.85
			Feed - stage 3
CSTR-1	109	0.4	50 m ³
			Residence time = 1 hr
EB-COL		0.05 / 0.43	19 stages + condenser
			RR = 15
	110	0.40	Feed - stage 5
CSR1-2	113	0.43	50 m ³
		0.05/0.14	
STY-CUL		0.0570.14	19 stages + condenser
			Kix = 2.7 Feed - stage 2
CSRT-3	100	0.14	50 m ³
			Residence time = 1

All the Flash and RStoic blocks are operated at pressure drop zero and duty zero.

Polymers and Segments

Polystyrene is a homopolymer and the styrene segment is the only repeat unit. The set of component attributes required for free-radical polymerization is used for PS.

Physical Property Models and Data

The Polymer Non-Random Two Liquid activity coefficient model (POLYNRTL) is used as the physical property method. The thermophysical properties (density, heat capacity, etc.) of styrene, ethyl benzene, benzene, toluene and inhibitor are obtained from the Aspen Plus Pure Component Databank. Note that inhibitors are given the properties of styrene with the exception of molecular weight. The polymer thermophysical properties are calculated using the Van Krevelen group contribution method.

The Non-Random Two Liquid activity coefficient model (NRTL) is used as the physical property method inside the RadFrac blocks.

Reactors / Kinetics

The specific reactions included from the built-in kinetics are shown below:

Description	Reaction
Thermal initiation	$3M \rightarrow R^{\star}$
Chain initiation	$R^* + M \rightarrow P1$
Propagation	$Pn + M \rightarrow Pn+1$
Chain transfer to monomer	$Pn + M \rightarrow Dn + P1$
Chain thansfer to EB	Pn + EB → Dn + P1
Termination by combination	Pn + Pm → Dn+m
Termination by inhibition	Pn + X → Dn

The induced initiation reaction is configured for thermal initiation by setting third-order thermal initiation with respect to monomer. A coinitiator, which is required for the induced initiation reaction, is included in the list of components, but its feed rate is set to zero so that it will not influence the rate for the thermal initiation reaction.

Inhibitor Common inhibitors used in this process are nitrobenzene, dinitro-o-bencene, dinitro-mbencene, dinitro-p-bencene, 4,6 dinitro-o-cresol, etc. In this example 4,6 dinitro-o-cresol is used as inhibitor. (Mw = 198.135)

Process Studies

Input summary is given in Figure 8.2.

Figure 8.2 Input Summary TITLE 'Styrene Distillation IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='MMkcal/hr' δ HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' & MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' & MASS-ENTHALP='kcal/kg' HEAT=MMkcal MOLE-CONC='mol/l' & PDROP=bar DEF-STREAMS CONVEN ALL DESCRIPTION " Polystyrene is formed in the reboiler during the distillation of styrene. This example shows how to optimize the amount of inhibitor required to supress the formation of polystyrene. ' DATABANKS POLYMER / SEGMENT / PURE93 / NOASPENPCD PROP-SOURCES POLYMER / SEGMENT / PURE93 COMPONENTS STY C8H8 STY / PS PS-1 PS / STY-SEG C8H8-R STY-SEG / EB C8H10-4 EB / BEN C6H6 BEN / TOL C7H8 TOL / PS-DUMMY PS-1 PS-DUMMY / PSDUMMY PS-1 PSDUMMY / INHIBIT C8H8 INHIBIT / CINI C8H8 CINI FLOWSHEET BLOCK FLASH-1 IN=IN-FLSH1 OUT=BT-RCY OUT-R1 BLOCK BT-COL IN=BT-FEED BT-RCY OUT=BT-TOP BT-BOT BLOCK CSTR-1 IN=BT-BOT OUT=IN-FLSH1 BLOCK EB-COL IN=EB-RCY EB-FEED OUT=EB-TOP EB-BOT BLOCK CSTR-2 IN=EB-BOT OUT=IN-FLSH2 BLOCK FLASH-2 IN=IN-FLSH2 OUT=EB-RCY OUT-R2

```
BLOCK PUMP-1 IN=OUT-R1 OUT=OUTPUMP1
    BLOCK RSTOIC-1 IN=OUTPUMP1 OUT=EB-FEED
    BLOCK PUMP-2 IN=OUT-R2 OUT=OUTPUMP2
   BLOCK RSTOIC-2 IN=OUTPUMP2 OUT=STY-FEED
   BLOCK STY-COL IN=STY-FEED STY-RCY OUT=STY-TOP STY-BOT
    BLOCK CSTR-3 IN=STY-BOT OUT=IN-FLSH3
   BLOCK FLASH-3 IN=IN-FLSH3 OUT=STY-RCY OUT-R3
PROPERTIES POLYNRTL
   PROPERTIES NRTL
USER-PROPS GMRENA 1 2 1 / GMRENB 1 2 1 / GMRENC 1 2 1 &
        / GMREND 1 2 1
PROP-DATA MW
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='MMkcal/hr' &
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &
        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum' &
       MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &
        MASS-ENTHALP='kcal/kg' HEAT=MMkcal MOLE-CONC='mol/l' &
        PDROP=bar
    PROP-LIST MW
    PVAL INHIBIT 198.1350
PROP-DATA U-1
    IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='MMkcal/hr' &
        HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C &
        VOLUME=cum DELTA-T=C HEAD=meter MOLE-DENSITY='kmol/cum'
                                                                &
        MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &
       MASS-ENTHALP='kcal/kg' HEAT=MMkcal MOLE-CONC='mol/l' &
        PDROP=bar
   PROP-LIST DHFORM
   PVAL PS-DUMMY 0.0
   PVAL PSDUMMY 0.0
PROP-DATA PLXANT-1
    IN-UNITS SI PRESSURE=bar TEMPERATURE=C PDROP='N/sqm'
    PROP-LITST PLXANT
   PVAL INHIBIT -30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
POLYMERS
    SEGMENTS STY-SEG REPEAT
   POLYMERS PS
   ATTRIBUTES PS SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM FMOM &
        SMOM LDPN LZMOM LFMOM LSFLOW LSFRAC LEFLOW LEFRAC &
        LPFRAC
STREAM BT-FEED
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=bar TEMPERATURE=C DELTA-T=C &
        PDROP-PER-HT='mbar/m' PDROP=bar
    SUBSTREAM MIXED TEMP=25.0 PRES=4.50 MASS-FLOW=18000.0
    MASS-FRAC STY .630 / EB .340 / BEN .0160 / TOL .0070 &
        / INHIBIT 0.0
```

STREAM BT-RCY IN-UNITS MET MASS-FLOW='kg/sec' MOLE-FLOW='kmol/sec' & VOLUME-FLOW='cum/hr' ENTHALPY-FLO='MMkcal/hr' & HEAT-TRANS-C='kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE=C & TIME=sec VOLUME=cum DELTA-T=C HEAD=meter & MOLE-DENSITY='kmol/cum' MASS-DENSITY='kg/cum' & MOLE-ENTHALP='kcal/mol' MASS-ENTHALP='kcal/kg' HEAT=MMkcal & MOLE-CONC='mol/l' PDROP=bar SUBSTREAM MIXED TEMP=109.0 PRES=.40 MASS-FLOW=.021505555 MASS-FRAC STY .5650 / EB .3970 / BEN .0190 / TOL $\ \&$.0180 STREAM EB-RCY SUBSTREAM MIXED PRES=.450 VFRAC=1.0 MASS-FLOW=49696.0 MASS-FRAC STY .8420 / EB .1580 STREAM STY-RCY SUBSTREAM MIXED PRES=.40 VFRAC=1.0 MOLE-FLOW=35999.9997 MASS-FRAC STY .9090 / EB .090 BLOCK FLASH-1 FLASH2 IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' & VOLUME-FLOW='cum/hr' PRESSURE=bar TEMPERATURE=C DELTA-T=C & PDROP-PER-HT='mbar/m' PDROP=bar PARAM PRES=0.0 DUTY=0.0 BLOCK FLASH-2 FLASH2 PARAM PRES=0.0 DUTY=0.0 BLOCK FLASH-3 FLASH2 PARAM PRES=0.0 DUTY=0.0 BLOCK BT-COL RADFRAC IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' & VOLUME-FLOW='cum/hr' PRESSURE=bar TEMPERATURE=C DELTA-T=C & PDROP-PER-HT='mbar/m' PDROP=bar PARAM NSTAGE=22 ALGORITHM=STANDARD ABSORBER=NO COL-CONFIG REBOILER=NONE CONDENSER=PARTIAL-V DIAGNOSTICS TERM=4 FEEDS BT-FEED 3 / BT-RCY 23 PRODUCTS BT-TOP 1 V / BT-BOT 22 L P-SPEC 1 .270 / 22 .40 COL-SPECS MOLE-RR=.850 T-EST 1 43.0 / 2 57.0 / 22 113.0 PROPERTIES NRTL BLOCK EB-COL RADFRAC PARAM NSTAGE=20 COL-CONFIG REBOILER=NONE CONDENSER=PARTIAL-V FEEDS EB-RCY 21 / EB-FEED 5 PRODUCTS EB-TOP 1 V / EB-BOT 20 L P-SPEC 2 .050 / 20 .430 COL-SPECS MOLE-RR=15.0 PROPERTIES NRTL

```
BLOCK STY-COL RADFRAC
   PARAM NSTAGE=20
    COL-CONFIG REBOILER=NONE CONDENSER=PARTIAL-V
   FEEDS STY-FEED 2 / STY-RCY 21
   PRODUCTS STY-TOP 1 V / STY-BOT 20 L
   P-SPEC 1 .050 / 20 .140
   COL-SPECS MOLE-RR=2.70
   PROPERTIES NRTL
BLOCK RSTOIC-1 RSTOIC
   PARAM PRES=0.0 DUTY=0.0
   STOIC 1 MIXED PS -1.0 / PS-DUMMY 1.0
   CONV 1 MIXED PS 1.0
BLOCK RSTOIC-2 RSTOIC
   PARAM PRES=0.0 DUTY=0.0
    STOIC 1 MIXED PS -1.0 / PSDUMMY 1.0
   CONV 1 MIXED PS 1.0
BLOCK CSTR-1 RCSTR
   PARAM VOL=50.0 TEMP=109.0 PRES=.40 NPHASE=2 PHASE=L &
       PH-RES-TIME=1.0
   REACTIONS RXN-IDS=R-1
BLOCK CSTR-2 RCSTR
   PARAM VOL=50.0 TEMP=113.0 PRES=.430 NPHASE=2 PHASE=L &
       PH-RES-TIME=1.0
   REACTIONS RXN-IDS=R-1
BLOCK CSTR-3 RCSTR
   PARAM VOL=50.0 TEMP=100.0 PRES=.140 NPHASE=2 PHASE=L &
       MB-MAXIT=100 ALGORITHM=INTEGRATOR MAX-NSTEP=100 &
        PH-RES-TIME=1.0
   REACTIONS RXN-IDS=R-1
BLOCK PUMP-1 PUMP
   PARAM PRES=4.130
BLOCK PUMP-2 PUMP
   PARAM PRES=6.20
SENSITIVITY S-1
   PARAM BASE-CASE=FIRST
   DEFINE INHI MASS-FRAC STREAM=BT-FEED SUBSTREAM=MIXED &
        COMPONENT=INHIBIT
   DEFINE R1PS MASS-FLOW STREAM=OUT-R1 SUBSTREAM=MIXED &
        COMPONENT=PS
   DEFINE R2PS MASS-FLOW STREAM=OUT-R2 SUBSTREAM=MIXED &
        COMPONENT=PS
    DEFINE R3PS MASS-FLOW STREAM=OUT-R3 SUBSTREAM=MIXED &
        COMPONENT=PS
   DEFINE STY MASS-FLOW STREAM=BT-FEED SUBSTREAM=MIXED &
        COMPONENT=STY
    DEFINE FEEDI MASS-FLOW STREAM=BT-FEED SUBSTREAM=MIXED &
        COMPONENT=INHIBIT
```

```
F
F
                PS1 = R1PS / STY
F
                PS2 = R2PS / STY
                PS3 = R3PS / STY
F
                PSTOT =(R1PS+R2PS+R3PS)/STY
F
F
               PS0 = 731 / STY
F
F
                PPMIN = INHI * 1.0E6
F
F
                P = PS0 - PSTOT
F
F
               PROFIT = P - 100 * FEEDI/STY
    TABULATE 1 "PPMIN" COL-LABEL="INHIBIT" "PPM"
    TABULATE 2 "PS1" COL-LABEL="PS1" "POLYMER" "CSTR-1"
    TABULATE 3 "PS2" COL-LABEL="PS2" "POLYMER" "CSTR-2"
    TABULATE 4 "PS3" COL-LABEL="PS3" "POLYMER" "CSTR-3"
    TABULATE 5 "PSTOT" COL-LABEL="PSTOT" "TOTAL" "POLYMER"
    TABULATE 6 "PROFIT" COL-LABEL="PROFIT"
    VARY MASS-FLOW STREAM=BT-FEED SUBSTREAM=MIXED &
       COMPONENT=INHIBIT
    RANGE LIST=0.0 .60 .90 1.10 1.30 1.540 1.80 2.0 2.20 &
        3.0 3.60
CONV-OPTIONS
    PARAM TEAR-METHOD=BROYDEN CHECKSEO=NO
STREAM-REPOR MOLEFLOW MASSFLOW MASSFRAC
PROPERTY-REP PARAMS
REACTIONS R-1 FREE-RAD
    IN-UNITS SI
    DESCRIPTION "FREE RADICAL KINETIC SCHEME"
    PARAM QSSA=YES
    SPECIES COINITIATOR=CINI MONOMER=STY CHAINTAG=EB SOLVENT=TOL &
        BEN INHIBITOR=INHIBIT POLYMER=PS
    MON-RSEG STY STY-SEG
    INIT-SP STY CINI 438000.0 1.1480E+08
    CHAIN-INI STY 1.0510E+07 2.9570E+07
    PROPAGATION STY STY 1.0510E+07 2.9570E+07
    CHAT-MON STY STY 3310000.0 5.3020E+07
    CHAT-AGENT STY EB 1051.0 2.9590E+07
    TERM-COMB STY STY 1.2550E+09 7017000.0
    INHIBITION STY INHIBIT 1.0500E+09 2.9570E+07
    INIT-SP-EFF STY COEFFA=0. COEFFB=3. COEFFC=0.
;
```

SELECTED SIMULATION RESULTS

A sensitivity study is carried out by varying the inhibitor feed mass fraction in the feed stream. The purpose of this sensitivity is to find an optimum level of inhibitor needed to minimize polymer formation and to maximize the process profitability.

Process profitability is calculated as follows with the assumption that inhibitor is 100 times more expensive than styrene monomer:

PROFIT = PS0 - PSTOT - 100 * FEEDI / STY

Where:

- PS0 = Mass flow of polymer produced without inhibitor in the feed / Mass flow of styrene in the feed
- PSTOT = Mass flow of polymer produced with inhibitor in the feed / Mass flow of styrene in the feed
- FEEDI = Mass flow of inhibitor in the feed
- STY = Mass flow of styrene in the feed

Result of the sensitivity studies are shown in Table 8.2, Figure 8.3 and Figure 8.4. Figure 8.5 lists the base case results without inhibitor.

	VARY 1 BT-FEED MIXED INHIBIT MASSFLOW KG/HR	inhibit PPM	PS1 POLYMER CSTR-1	PS2 POLYMER CSTR-2	PS3 POLYMER CSTR-3	PSTOT TOTAL POLYMER	PROFIT
1	0.0	0.0	.0287989	.0346101	5.91407E-4	.0640005	1.03317E-5
2	.6000000	33.33222	3.92755E-3	.0137747	7.81626E-7	.0177030	.0410537
3	.900000	49.99750	2.37145E-3	6.27258E-3	1.04793E-7	8.64414E-3	.0474857
4	1.100000	61.10738	1.87434E-3	4.46425E-3	5.29183E-8	6.33864E-3	.0480399
5	1.300000	72.21700	1.55031E-3	3.45389E-3	3.40637E-8	5.00424E-3	.0476230
6	1.540000	85.54823	1.28486E-3	2.71437E-3	2.37673E-8	3.99925E-3	.0465264
7	1.800000	99.99000	1.08459E-3	2.20499E-3	1.80608E-8	3.28960E-3	.0449593
8	2.000000	111.0988	9.69132E-4	1.92762E-3	1.53588E-8	2.89676E-3	.0436008
9	2.200000	122.2073	8.76254E-4	1.71301E-3	1.34416E-8	2.58928E-3	.0421570
10	3.000000	166.6389	6.35590E-4	1.18955E-3	9.34595E-9	1.82515E-3	.0359158
11	3.600000	199.9600	5.28641E-4	9.70951E-4	7.88327E-9	1.49960E-3	.0309874

Table 8.2 Effect of Inhibitor Feed Mass Fraction on the PolymerFormation and Process Profitability

Figure 8.3 Effect of the Inhibitor Feed Mass Fraction on Polymer Production

Figure 8.4 Effect of the Inhibitor Feed Mass Fraction on Process Profitability

Figure 8.5 Base Case Results (without Inhibitor)

Display STREAMS Units:	From	BT-FEED	BT-TOP BT-COL	BT-BOT BT-COL	EB-TOP EB-COL	EB-BOT EB-COL
Format: FULL	TO Phas	BL-COL	VAPOR	LIOUID	VAPOR	LIOUID
Substream: MIXED						
Mass Flow [KG/ STY PS STY-SEG EB BEN TOL PS-DUMMY PSDUMMY INHIBIT CINI	HR]	11419.94 0.0 6163.142 290.0302 126.8882 0.0 0.0 3.600000 0.0	23.67650 0.0 29.85802 224.6098 4.381624 0.0 1.0088E-35 0.0	15991.42 0.0 9384.942 230.1220 257.2611 0.0 3.600000 0.0	448.0206 0.0 1919.846 65.41839 122.4934 1.0000E-35 0.0 1.0079E-35 0.0	40001.33 0.0 18859.06 4.92818E-6 7.75698E-3 6.037053 0.0 3.426566 0.0
Mass Frac						
STY PS STY-SEG EB BEN TOL PS-DUMMY PSDUMMY INHIBIT CINI TOTAL FLOW [KG/	HR]	.6343142 0.0 .3423283 .0161095 7.04794E-3 0.0 0.0 1.99960E-4 0.0 18003.60	.0838029 0.0 .1056824 .7950059 .0155087 0.0 3.5708E-35 0.0 282.5259	.6182087 0.0 .3628105 8.89624E-3 9.94540E-3 0.0 0.0 1.39172E-4 0.0 25867.34	.1752972 0.0 .7511786 .0255962 .0479280 1.000E-35 0.0 3.9435E-35 0.0 2555.778	$\begin{array}{c} .6794873\\ 0.0\\ 0.0\\ .3203517\\ 8.3713E-11\\ 1.31765E-7\\ 1.02549E-4\\ 0.0\\ 5.82058E-5\\ 0.0\\ 58869.86\\ 110.5070\end{array}$
Temperature [C] Pressure [BAR	1	25.00000 4.500000	62.28629 .2700000	107.6298	51.66729 .0500000	112.5972 .4300000
	-					
Display STREAMS Units: Format: FULL	From To Phas	STY-TOP STY-COL VAPOR	STY-BOT STY-COL CSTR-3 LIQUID			
Display STREAMS Units: Format: FULL Substream: MIXED Mass Flow [KG	From To Phas /HR]	STY-TOP STY-COL VAPOR	STY-BOT STY-COL CSTR-3 LIQUID			
Display STREAMS Units: Format: FULL Substream: MIXED Mass Flow [KG STY PS STY-SEG FD	From To Phas /HR]	STY-TOP STY-COL VAPOR 10908.77 0.0 0.0 0.212.226	STY-BOT STY-COL CSTR-3 LIQUID 50280.95 0.0 0.0			
Display STREAMS Units: Format: FULL Substream: MIXED Mass Flow [KG STY PS STY-SEG EB BEN TOL PS-DUMMY PSDUMMY INHIBIT CINI	From To Phas /HR]	STY-TOP STY-COL VAPOR 10908.77 0.0 4213.336 2.88599E-7 9.54756E-4 2.2330E-35 5.0867E-24 0.0	STY-BOT STY-COL CSTR-3 LIQUID 50280.95 0.0 26.87380 1.8536E-25 1.4825E-13 6.037053 11.08821 3.12351 0.0			
Display STREAMS Units: Format: FULL Substream: MIXED Mass Flow [KG STY PS STY-SEG EB BEN TOL PS-DUMMY INHIBIT CINI Mass Frac STY PS	From To Phas /HR]	STY-TOP STY-COL VAPOR 10908.77 0.0 4213.336 2.88599E-7 9.54756E-4 2.2330E-35 5.0867E-24 0.0 .7213790	STY-BOT STY-COL CSTR-3 LIQUID 50280.95 0.0 26.87380 1.8536E-25 1.4825E-13 6.037053 11.08821 3.123351 0.0			
Display STREAMS Units: Format: FULL Substream: MIXED Mass Flow [KG STY PS STY-SEG EB BEN TOL PS-DUMMY PSDUMMY INHIBIT CINI Mass Frac STY-SEG EB BEN TOL PS-DUMMY PSDUMMY INHIBIT CINI TOLA Flow [KG/H	From To Phas /HR]	STY-TOP STY-COL VAPOR 10908.77 0.0 4213.336 2.88599E-7 9.54756E-4 2.2330E-35 4.1013E-35 5.0867E-24 0.0 .7213790 0.0 .2786210 1.9085E-11 6.31364E-8 1.4766E-35 2.7121E-35 3.3637E-28 0.0 15122.11	STY-BOT STY-COL CSTR-3 LIQUID 50280.95 0.0 0.0 26.87380 1.8536E-25 1.4825E-13 6.037053 11.08821 3.123351 0.0 .9990637 0.0 5.33973E-4 3.6830E-30 2.9456E-18 1.19954E-4 2.20319E-4 6.20598E-5 0.0 50328.07			

9 POLYPROPYLENE

GAS PHASE POLYMERIZATION PROCESSES

SUMMARY

The polypropylene gas-phase polymerization process model illustrates the use of Polymers Plus to model a gas-phase UNIPOL process for propylene homopolymerization using a four site Ziegler-Natta kinetic model. The atactic content, melt flow ratio and molecular weight averages are some of the polymer product properties and attributes predicted by the simulation.

ABOUT THIS PROCESS

There are three types of processes commonly employed for the manufacture of isotactic polypropylene (PP) homo- and co-polymers. These include liquid slurry processes, bulk or liquid pool processes, and gas-phase processes. Table 9.1 provides basic information on these processes and lists some of the companies that have commercialized the process technology. All of these processes use a Ziegler-Natta catalyst (usually TiCl₄) in either a supported or non-supported form together with an alkylaluminum or aluminum chlorides (e.g. triethlyaluminum) cocatalyst.

Liquid slurry processes use an inert hydrocarbon diluent as the slurry medium or polymer suspending agent. This process is still the most widely used process for PP manufacture. Continuous stirred tank reactors are usually used and several reactor may be used in series or parallel arrangements. Typical reactor operating conditions and residence times are listed in Table 9.1.

Process	Reactor	Diluent /	Catalyst	Tacticity	Temp.	Press.	Residence	e Company
		Solvent		(%)	(°C)	(atm)	Time (hr)	
Bulk (Liquid Pool)	loop reactor	Liquid monomer	supported Ti Catalyst	up tp 99%	60-80	30-40	1-2	Himont Mitsui
	CSTR	Liquid monomer	unsupported or supported Ti catalyst	up to 98%	60-75	30-40	2.0	Dart El Paso Montedison Sumitomo
Diluent Slurry	CSTR	n-hexane, n-heptane	unsupported or supported Ti catalyst	up to 98%	60-80	15-20	3-4	Amoco Montedison
Gas	fluidized bed	N2	supported Ti catalyst	up to 98%	60-80	20	3-5	Sumitomo Union Carbide
	vertical stirred bed		unsupported or supported Ti catalyst	up to 98%	70-90	20	4	BASF ICI USI
	horizontal compartmented stirred bed		unsupported or supported Ti catalyst	up to 98%	70-90	20	4	Amoco

Table 9.1 Summary of Processes for Propylene Polymerization

Bulk or liquid pool processes are a special case of the slurry processes. They use liquid propylene instead of an inert diluent as the slurry medium to suspend the polymer. The increased monomer concentration leads to higher polymerization rates in liquid pool processes relative to slurry processes. Hence, shorter reactor residence times may be employed. Several reactor types, including stirred autoclaves with evaporative cooling and loop reactors, are used to attain good heat transfer rates.

In gas-phase processes, gaseous propylene is contacted with solid catalyst/polymer powder in fluidized bed or mechanically stirred bed reactors. The reactor temperature is usually controlled by evaporative cooling of liquid propylene. The unreacted monomer is removed from the reactor headspace, condensed or cooled and recirculated to the reactor.

Polymers Plus can be used with Aspen Plus for the simulation of steady-state operation of any of the PP processes described above. Polymers Plus can be used with Aspen Custom Modeler when dynamic simulation or detailed modeling of the flow patterns or heat transfer within the reactor is desired. This example describes a steady-state simulation of a gas-phase UNIPOL flowsheet.

PROCESS DEFINITION

A Polymers Plus model is developed to simulate a PP gas-phase UNIPOL flowsheet. The flowsheet includes the fluidized bed reactor, the gas recycle/cooling loop, discharge and purge units as shown in Figure 9.1.

The fluidized bed reactor is modeled using the CSTR reactor in Aspen Plus with two phases; a gas phase and a polymer phase. The POLYNRTL thermodynamic model is used to relate the gas phase monomer, hydrogen, etc. composition to their concentrations in the polymer phase. The multisite Ziegler-Natta kinetic model is used to describe the polymerization reactions in the polymer phase. The kinetic model calculates the reaction rates for the components and polymer attributes at each site type. User-Property models are used to calculate polymer properties such as melt flow index (MFI), isotactic index (or atactic fraction) from the polymer attributes.

Figure 9.1 Unipol Process Flowsheet for Propylene Polymerization

Process Conditions

The process conditions are as listed in Table 9.2.

Table 9.2 Process Conditions

Components	
Titanium Tetrachloride (CAT)	Catalyst
Triethyl-Aluminium (COCAT)	Co-catalyst
Propylene (C3=)	Monomer
Propane (C3)	Inert
Polypropylene (PP)	Polymer
H2	Chain transfer agent
N2	Inert
Water (H2O)	Cooling water
Propylene Segment (C3-SEG)	Polymer segment
Component	Flow rate (Kg/Hr)
Catalyst	3.0
Co-catalyst	10.0
Propylene	17462.0
Propane	162.29
H2	1.38
N2	1.45
Operating Conditions	
Temperature	69 °C
Pressure drop	200 KPa
Total volume	90 m ³
Polymer Phase volume	60 m ³

The reactor feed also includes a large recycle stream with partially condensed propylene and other volatile components.

An Aspen Plus CSTR reactor model is used to represent the fluid-bed reactor. The reactor is considered to have two phases; a vapor phase and a polymer phase.

Physical Property Models and Data	The polymer Non-Random Two liquid activity coefficient model (POLYNRTL) is used as physical property method.
Reactors / Kinetics	The Ziegler-Natta kinetic scheme used in the model includes site activation by co- catalyst, chain initiation, propagation, chain transfer to hydrogen, monomer and co- catalyst, and spontaneous site deactivation. Four site types are used in this example to represent the broad molecular weight distributions that are typically observed for Ziegler- Natta polymers. The actual number of site types necessary to model a given catalyst- polymerization system is determined by deconvolution of the polymer molecular weight distribution curve obtained from a GPC analysis. The rate parameters used in the model are:

Reaction	Site ID	Comp. ID 1	Comp. ID 2	Pre-exp	Activation Energy
ACT-COCAT	1	CAT	COCAT	1.62E6	3.2E7
ACT-COCAT	2	CAT	COCAT	1.62E6	3.2E7
ACT-COCAT	3	CAT	COCAT	1.62E6	3.2E7
ACT-COCAT	4	CAT	COCAT	1.62E6	3.2E7
CHAIN-INI	1	"C3="		1.175E7	3.0E7
CHAIN-INI	2	"C3="		0.264E7	3.0E7
CHAIN-INI	3	"C3="		1.844E7	3.0E7
CHAIN-INI	4	"C3="		0.653E7	3.0E7
PROPAGATION	1	"C3="	"C3="	1.175E7	3.0E7
PROPAGATION	2	"C3="	"C3="	0.264E7	3.0E7
PROPAGATION	3	"C3="	"C3="	1.844E7	3.0E7
PROPAGATION	4	"C3="	"C3="	0.653E7	3.0E7
CHAT-MON	1	"C3="	"C3="	1.02E6	5.2E7
CHAT-MON	2	"C3="	"C3="	1.02E6	5.2E7
CHAT-MON	3	"C3="	"C3="	1.02E6	5.2E7
CHAT-MON	4	"C3="	"C3="	1.02E6	5.2E7
CHAT-COCAT	1	"C3="	COCAT	5.0E6	5.0E7
CHAT-COCAT	2	"C3="	COCAT	5.0E6	5.0E7
CHAT-COCAT	3	"C3="	COCAT	5.0E6	5.0E7
CHAT-COCAT	4	"C3="	COCAT	5.0E6	5.0E7
CHAT-H2	1	"C3="	H2	0.529E9	4.5E7
CHAT-H2	2	"C3="	H2	0.979E9	4.5E7
CHAT-H2	3	"C3="	H2	0.29E8	4.5E7
CHAT-H2	4	"C3="	H2	0.729E9	4.5E7
DEACT-SPON	1			4.214E-4	4.1E6
DEACT-SPON	2			4.214E-4	4.1E6
DEACT-SPON	3			4.214E-4	4.1E6
DEACT-SPON	4			4.214E-4	4.1E6

The units for the frequency factor and activation energy are in SI units.

Process Studies

Figure 9.2 gives a listing of the Aspen Plus input file for this example.

Figure 9.2 Input File TITLE 'Ziegler-Natta Gas-Phase Polymerization of Propylene' IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' TEMPERATURE=C & TIME=hr DELTA-T=C DEF-STREAMS CONVEN ALL SYS-OPTIONS TRACE=YES RUN-CONTROL MAX-TIME=10000.0 DESCRIPTION "Ziegler-Natta gas-Phase polymerization of propylene " DATABANKS PURE93 / POLYMER / SEGMENT / NOASPENPCD PROP-SOURCES PURE93 / POLYMER / SEGMENT COMPONENTS TICL4 TICL4 TICL4 / TEA C6H15AL TEA / СЗН6 СЗН6-2 СЗН6 / СЗН8 СЗН8 СЗН8 / PP PP PP / H2 H2 H2 / N2 N2 N2 / H2O H2O H2O / C3H6-R C3H6-R C3H6-R ; DEFINE FLOWSHEET INFORMATION ; ; FLOWSHEET BLOCK REACTOR IN=RFEED1 OUT=R1OUT BLOCK FMIX1 IN=CAT COCAT H2FEED C3FEED N2FEED CYCGAGB & OUT=RFEED1 BLOCK SEP1 IN=R1OUT OUT=VAP-A POWDER1 BLOCK EXC1 IN=H2O-IN VAP-B OUT=H2O-OUT CYCGAGB BLOCK COMP1 IN=VAP-A OUT=VAP-B BLOCK STRIP1 IN=POWDER1 OUT=GAS1 POWDER2 BLOCK STRIP2 IN=POWDER2 STRIP-N2 OUT=GAS2 PP-PROD ; THE PROPERTY CALCULATION METHOD (OPTION SET) SPECIFICATION FOLLOWS ; THE OPTION SET CHOSEN IS A MODIFIED VERSION OF THE ASPEN PLUS ; NRTL OPTION SET. THIS OPTION SET ACCOUNTS FOR THE BEHAVIOR OF ; POLYMERS IN THE COMPONENT SYSTEM. ; ;

```
Figure 9.2 Input File (cont.)
PROPERTIES POLYNRTL
PROP-DATA DHEVK
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
    PROP-LIST DHFVK
    PVAL C3H6-R -1.070370E+08
PROP-DATA PLXANT-1
    IN-UNITS SI
    PROP-LIST PLXANT
    PVAL TICL4 -50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
    PVAL TEA -50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1000.0
PROP-DATA NRTL-1
    IN-UNITS ENG
    PROP-LIST NRTL
    BPVAL C3H6-R C3H6 0.0 1360.0 .30 0.0 0.0 0.0 0.0 1000.0
    BPVAL C3H6 C3H6-R 0.0 0.0 .30 0.0 0.0 0.0 0.0 1000.0
    BPVAL C3H6-R H2 0.0 -3000.0 .30 0.0 0.0 0.0 0.0 1000.0
    BPVAL H2 C3H6-R 0.0 0.0 .30 0.0 0.0 0.0 0.0 1000.0
POLYMERS
    PARAM NSITES=4
    SEGMENTS C3H6-R REPEAT
    CATALYST TICL4 .00009230
    POLYMERS PP
    ATTRIBUTES PP SFRAC SFLOW DPN DPW PDI MWN MWW ZMOM FMOM &
        SMOM LDPN LZMOM LFMOM LSFLOW LSFRAC LEFLOW LEFRAC &
        LPFRAC SSFRAC SSFLOW SDPN SDPW SPDI SMWN SMWW SZMOM &
        SFMOM SSMOM SPFRAC LSDPN LSZMOM LSFMOM LSSFLOW LSSFRAC &
        LSEFLOW LSEFRAC LSPFRAC ATFLOW ATFRAC SATFLOW SATFRAC
    ATTRIBUTES TICL4 CPSFLOW CPSFRAC CVSFLOW CVSFRAC CDSFLOW &
        CDSFRAC
STREAM C3FEED
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
    SUBSTREAM MIXED TEMP=30.0 PRES=3000.0 MASS-FLOW=45000.0
    MASS-FRAC C3H6 .9980 / C3H8 .0020
STREAM CAT
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr'
                                                       &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
    SUBSTREAM MIXED TEMP=30.0 PRES=3000.0 MASS-FLOW=300.0 &
        NPHASE=1 PHASE=L
    MASS-FRAC TICL4 .010 / C3H6 .9880 / C3H8 .0020
    COMP-ATTR TICL4 CPSFLOW ( 0.0 )
    COMP-ATTR TICL4 CPSFRAC ( 1.0 )
    COMP-ATTR TICL4 CVSFLOW ( 0.0 0.0 0.0 0.0 )
    COMP-ATTR TICL4 CVSFRAC ( 0.0 0.0 0.0 0.0 )
    COMP-ATTR TICL4 CDSFLOW ( 0.0 )
    COMP-ATTR TICL4 CDSFRAC ( 0.0 )
```

```
STREAM COCAT
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
    SUBSTREAM MIXED TEMP=30.0 PRES=3000.0 MASS-FLOW=10.0 &
       NPHASE=1 PHASE=L
   MASS-FRAC TEA 1.0
STREAM CYCGAGB
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr'
                                                      8
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
   SUBSTREAM MIXED TEMP=59.0 PRES=3000.0
    MASS-FLOW C3H6 800300.0 / C3H8 15930.0 / H2 3998.70 / &
       N2 5098.0
STREAM H2FEED
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
   SUBSTREAM MIXED TEMP=30.0 PRES=3000.0 MASS-FLOW=4.0
   MASS-FRAC H2 1.0
STREAM H2O-IN
   IN-UNITS SI MASS-FLOW='kq/hr' MOLE-FLOW='kmol/hr'
                                                      δ
        PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
   SUBSTREAM MIXED TEMP=35.0 PRES=3000.0
   MASS-FLOW H20 847500.0
STREAM N2FEED
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr'
                                                      æ
       VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
    SUBSTREAM MIXED TEMP=30.0 PRES=3000.0 MASS-FLOW=100.0
   MASS-FRAC N2 1.0
STREAM RFEED1
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
    SUBSTREAM MIXED TEMP=65.0 PRES=3000.0
   MASS-FLOW TICL4 3.0 / TEA 10.0 / C3H6 817500.0 / C3H8 &
       16100.0 / H2 4000.0 / N2 5100.0
   COMP-ATTR TICL4 CPSFLOW ( 0.0 )
   COMP-ATTR TICL4 CPSFRAC ( 1.0 )
    COMP-ATTR TICL4 CVSFLOW ( 0.0 0.0 0.0 0.0 )
   COMP-ATTR TICL4 CVSFRAC ( 0.0 0.0 0.0 0.0 )
   COMP-ATTR TICL4 CDSFLOW ( 0.0 )
   COMP-ATTR TICL4 CDSFRAC ( 0.0 )
STREAM STRIP-N2
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
    SUBSTREAM MIXED TEMP=30.0 PRES=300.0 v
   MASS-FLOW N2 500.0
```

```
BLOCK FMIX1 MIXER
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
       PDROP=kPa
BLOCK SEP1 FLASH2
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
    PARAM PRES=0.0 DUTY=0.0
BLOCK STRIP1 FLASH2
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
    PARAM TEMP=65.0 PRES=500.0
BLOCK STRIP2 FLASH2
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
   PARAM TEMP=60.0 PRES=100.0
BLOCK EXC1 MHEATX
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
    COLD-SIDE IN=H2O-IN OUT=H2O-OUT TEMP=50.0 FREE-WATER=NO
   HOT-SIDE IN=VAP-B OUT=CYCGAGB FREE-WATER=NO
BLOCK REACTOR RCSTR
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
       PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
    USER-VECS NREAL=1
   PARAM VOL=90.0 TEMP=69.0 PRES=-200.0 NPHASE=2 PHASE=L &
       PHASE-VOL=60.0 MB-MAXIT=70 MB-TOL=.00010 &
       ALGORITHM=INTEGRATOR MAX-NSTEP=50
   MASS-FLOW MIXED PP 16000.0
   MASS-FLOW MIXED C3H6 801200.0
   MASS-FLOW MIXED TICL4 3.0
   COMP-ATTR MIXED TICL4 CPSFLOW ( 1.0000E-08 )
   COMP-ATTR MIXED TICL4 CPSFRAC ( .00010 )
   COMP-ATTR MIXED TICL4 CVSFLOW ( 1.0000E-08 1.0000E-07 &
       1.0000E-09 1.0000E-07 )
    COMP-ATTR MIXED TICL4 CVSFRAC ( .00010 .0010 .000010 &
        .00010 )
   COMP-ATTR MIXED TICL4 CDSFLOW ( .00010 )
    COMP-ATTR MIXED TICL4 CDSFRAC ( .50 )
   CONVERGENCE SOLVER=NEWTON
    BLOCK-OPTION TERM-LEVEL=7
   REACTIONS RXN-IDS=ZN-R1
BLOCK COMP1 COMPR
   IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
    PARAM TYPE=ISENTROPIC DELP=250.0
```

```
FORTRAN SETFEED
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr'
                                                       ŵ
        PRESSURE=kPa TEMPERATURE=C TIME=hr DELTA-T=C PDROP=kPa
    DEFINE RC3E MASS-FLOW STREAM=CYCGAGB SUBSTREAM=MIXED &
        COMPONENT=C3H6
    DEFINE RC3 MASS-FLOW STREAM=CYCGAGB SUBSTREAM=MIXED &
        COMPONENT=C3H8
    DEFINE RH2 MASS-FLOW STREAM=CYCGAGB SUBSTREAM=MIXED &
        COMPONENT=H2
    DEFINE RN2 MASS-FLOW STREAM=CYCGAGB SUBSTREAM=MIXED &
        COMPONENT=N2
    DEFINE FC3E MASS-FLOW STREAM=C3FEED SUBSTREAM=MIXED &
        COMPONENT=C3H6
    DEFINE FC3 MASS-FLOW STREAM=C3FEED SUBSTREAM=MIXED &
        COMPONENT=C3H8
    DEFINE FN2 MASS-FLOW STREAM=N2FEED SUBSTREAM=MIXED &
        COMPONENT=N2
    DEFINE FH2 MASS-FLOW STREAM=H2FEED SUBSTREAM=MIXED &
        COMPONENT=H2
    DEFINE FTC3 STREAM-VAR STREAM=C3FEED SUBSTREAM=MIXED &
        VARIABLE=TEMP
    DEFINE FPC3 STREAM-VAR STREAM=C3FEED SUBSTREAM=MIXED
                                                          &
        VARIABLE=PRES
    DEFINE FTH2 STREAM-VAR STREAM=H2FEED SUBSTREAM=MIXED &
        VARIABLE=TEMP
    DEFINE FPH2 STREAM-VAR STREAM=H2FEED SUBSTREAM=MIXED &
        VARTABLE=PRES
    DEFINE FTN2 STREAM-VAR STREAM=N2FEED SUBSTREAM=MIXED &
        VARIABLE=TEMP
    DEFINE FPN2 STREAM-VAR STREAM=N2FEED SUBSTREAM=MIXED &
        VARIABLE=PRES
F
        DC3E = 8.172E5
F
       DC3 = 1.61E4
F
       DH2 = 4.0E3
ਸ
       DN2 = 5.1E3
F
        FC3E = DC3E - RC3E
       FC3 = DC3 - RC3
F
       FH2 = DH2 - RH2
F
F
       FN2 = DN2 - RN2
       FTC3 = 30
F
F
       FPC3 = 3000
F
        FTH2 = 30
       FPH2 = 3000
F
F
        FTN2 = 30
\mathbf{F}
        FPN2 = 3000
    READ-VARS RC3E RC3 RH2 RN2
    WRITE-VARS FC3E FC3 FN2 FH2 FTC3 FPC3 FTH2 FPH2 FTN2 &
        FPN2
CONV-OPTIONS
    PARAM CHECKSEQ=NO
STREAM-REPOR NOMOLEFLOW MASSFLOW MASSFRAC
REACTIONS ZN-R1 ZIEGLER-NAT
    IN-UNITS SI MASS-FLOW='kg/hr' MOLE-FLOW='kmol/hr' &
        VOLUME-FLOW='cum/hr' PRESSURE=kPa TEMPERATURE=C TIME=hr &
        PDROP=kPa
```

```
DESCRIPTION "ZIEGLER-NATTA KINETIC SCHEME"
   PARAM
   SPECIES CATALYST=TICL4 COCATALYST=TEA MONOMER=C3H6 &
       HYDROGEN=H2 POLYMER=PP
   MON-RSEG C3H6 C3H6-R
   ACT-COCAT 1 TICL4 TEA 1620000.0 3.2000E+07 1.0
   ACT-COCAT 2 TICL4 TEA 1620000.0 3.2000E+07 1.0
   ACT-COCAT 3 TICL4 TEA 1620000.0 3.2000E+07 1.0
   ACT-COCAT 4 TICL4 TEA 1620000.0 3.2000E+07 1.0
   CHAIN-INI 1 C3H6 1.1750E+07 3.0000E+07 1.0
   CHAIN-INI 2 C3H6 2640000.0 3.0000E+07 1.0
   CHAIN-INI 3 C3H6 1.8440E+07 3.0000E+07 1.0
   CHAIN-INI 4 C3H6 6530000.0 3.0000E+07 1.0
   PROPAGATION 1 C3H6 C3H6 1.1750E+07 3.0000E+07 1.0
   PROPAGATION 2 C3H6 C3H6 2640000.0 3.0000E+07 1.0
   PROPAGATION 3 C3H6 C3H6 1.8440E+07 3.0000E+07 1.0
   PROPAGATION 4 C3H6 C3H6 6530000.0 3.0000E+07 1.0
   CHAT-MON 1 C3H6 C3H6 1020000.0 5.2000E+07 1.0
   CHAT-MON 2 C3H6 C3H6 1020000.0 5.2000E+07 1.0
   CHAT-MON 3 C3H6 C3H6 1020000.0 5.2000E+07 1.0
   CHAT-MON 4 C3H6 C3H6 1020000.0 5.2000E+07 1.0
   CHAT-COCAT 1 C3H6 TEA 5000000.0 5.0000E+07 1.0
   CHAT-COCAT 2 C3H6 TEA 5000000.0 5.0000E+07 1.0
   CHAT-COCAT 3 C3H6 TEA 5000000.0 5.0000E+07 1.0
   CHAT-COCAT 4 C3H6 TEA 5000000.0 5.0000E+07 1.0
   CHAT-H2 1 C3H6 H2 5.2900E+08 4.5000E+07 .50
   CHAT-H2 2 C3H6 H2 9.7900E+08 4.5000E+07 .50
   CHAT-H2 3 C3H6 H2 2.9000E+08 4.5000E+07 .50
   CHAT-H2 4 C3H6 H2 7.2900E+08 4.5000E+07 .50
   DEACT-SPON 1 .00042140 4100000.0 1.0
   DEACT-SPON 2 .00042140 4100000.0 1.0
   DEACT-SPON 3 .00042140 4100000.0 1.0
   DEACT-SPON 4 .00042140 4100000.0 1.0
   ATACT-PROP 1 C3H6 C3H6 500000. 30000000.
   ATACT-PROP 2 C3H6 C3H6 1200000. 30000000.
   ATACT-PROP 3 C3H6 C3H6 300000. 30000000.
   ATACT-PROP 4 C3H6 C3H6 700000. 30000000.
;
```

SELECTED SIMULATION RESULTS

Figure 9.3 shows the stream summary results for selected streams. The results include component mass flowrates, thermophysical information (temperature, pressure, enthalpy, etc.) and catalyst and polymer attributes. The polymer attributes are reported for the composite polymer and the polymer made at each site type. The polymer atactic fraction and melt flow ratio are reported at the end of the stream report.

Figure 9.3 Stream Summary Results

STREAM ID	C3FEED	CAT	COCAT	CYCGAGB	GAS1
FROM :				EXCl	STRIP1
TO :	FMIX1	FMIX1	FMIX1	FMIX1	
SUBSIREAM: MIXED				MIVED	
COMDONENTE: VC/HD	TIQUID	TIQUID	LIQUID	MIAED	VAPOR
TTOT 4	0 0	2 0000	0 0	0 0	0 0
	0.0	3.0000	10.0000	0.0	0.0
	1 7166,04	206 4000	10.0000	0.0	0.0
C3H0	161 6962	296.4000	0.0	0.0003+05	00/.J/29 E/ E100
	101.0003	0.6000	0.0	1.5936+04	54.5100
	0.0	0.0	0.0	0.0	
HZ N2	0.0	0.0	0.0	3998.0199	1 4005
NZ	0.0	0.0	0.0	5098.54/4	1.4005
H2U G2UC D	0.0	0.0	0.0	0.0	0.0
CSHO-R COMPONENTIAL MAGG EDAG	0.0	0.0	0.0	0.0	0.0
COMPONENTS: MASS FRAC	0 0	1 0000 00	0 0	0 0	0 0
	0.0	1.0000-02	0.0	0.0	0.0
ILA	0.0	0.0	1.0000	0.0	0.0
C3H6	0.9906	0.9880	0.0	0.9696	0.9407
	9.3313-03	2.0000-03	0.0	1.9318-02	5.//84-02
	0.0	0.0	0.0	0.0	0.0
HZ	0.0	0.0	0.0	4.8464-03	1.7231-06
NZ	0.0	0.0	0.0	6.1/95-03	1.4845-03
H2O	0.0	0.0	0.0	0.0	0.0
C3H6-R	0.0	0.0	0.0	0.0	0.0
TOTAL FLOW:	411 5004		0 5501 00	0 1 5 0 0 4	00 0700
KMOL/HR	411.5884	7.0730	8.7591-02	2.1539+04	22.3793
KG/HR	1./32/+04	300.0000	10.0000	8.2507+05	943.4940
CUM/SEC	9./5/3-03	1.6//1-04	3.3486-06	3.4582	3.3300-02
STATE VARIABLES:	20 0000	20.0000	20.0000		CE 0000
TEMP C	30.0000	30.0000	30.0000	59.05/9	65.0000
PRES N/SQM	3.0000+06	3.0000+06	3.0000+06	3.0500+06	5.0000+05
VFRAC	0.0	0.0	0.0	0.8696	1.0000
LFRAC	1.0000	1.0000	1.0000	0.1303	0.0
SFRAC	0.0	0.0	0.0	0.0	0.0
ENTHALPY:	F 0104.0C	4 0000.00	0.0700.00	1 4061.00	1 5151.05
J / KMOL	5.2134+06	4.283/+06	-2.3/00+08	1.4361+07	1.5151+0/
J / KG	1.2384+05	1.UIUU+05	-2.0/59+06	3./489+05	3.593/+05
WATT.	5.9605+05	8416.3929	-5/00.3105	8.5920+07	9.4184+04

ENTROPY:						
J/KMOL-K	-2.0850+05	-2.0672+05	-2.7926+05	-1.5641+05 -4083 1369	-1.5253+05	
DENSITY:	1992.7000	10/5:0005	2110.0125	1003.1309	5017.0505	
KMOL/CUM	11.7173	11.7152	7.2660	1.7300	0.1866	
KG/CUM AVG MW	493.2853	496.8980	829.5434	66.2720 38 3059	7.8703 42 1591	
COMPONENT ATTRIBUTE	ES:	12.1115	111.1000	50.5055	12.1991	
TICL4 CPSFLOW						
CPSFLOW		2.7690-04				
CPSFRAC		1.0000				
CVSFLOW						
SITE_1		0.0				
SITE_2 SITE_3		0.0				
SITE_4		0.0				
CVSFRAC		0 0				
SITE_1 SITE 2		0.0				
SITE_3		0.0				
SITE_4		0.0				
CDSFLOW		0.0				
CDSFRAC						
CDSFRAC		0.0				
STREAM ID	POWDER1	POWDER2	PP-PROD	R1OUT	RFEED1	
FROM :	SEP1	STRIP1	STRIP2	REACTOR	FMIX1	
TO :	STRIPI	STR1P2		SEPI	REACTOR	
SUBSTREAM: MIXED						
PHASE:	LIQUID	LIQUID	LIQUID	MIXED	MIXED	
TICL4	3.0000	3.0000	3.0000	3.0000	3.0000	
TEA	9.8999	9.9000	9.9000	9.8999	10.0000	
C3H6	1062.5824	175.0041	6.0973	8.0110+05	8.1750+05	
PP	1.6401+04	1.6401+04	1.6401+04	1.6401+04	0.0	
Н2	1.6258-03	7.1999-08	0.0	3998.6216	4000.0000	
N2	1.4525	5.1987-02	3.4925	5100.0000	5100.0000	
H20 C3H6-R	0.0	0.0	0.0	0.0	0.0	
COMPONENTS: MASS FR	RAC					
TICL4	1.7007-04	1.7968-04	1.8232-04	3.5599-06	3.5599-06	
C3H6	5.6122-04 6 0237-02	5.9293-04	6.0167-04 3 7056-04	1.1/48-05	1.1866-05	
СЗН8	9.1998-03	6.4544-03	1.8774-03	1.9106-02	1.9106-02	
PP	0.9297	0.9822	0.9967	1.9462-02	0.0	
HZ N2	9.2166-08 8.2346-05	4.3122-12	U.U 2 1226-04	4.7450-03	4./466-03 6 0519-03	
H2O	0.0	0.0	0.0	0.0	0.0	
C3H6-R	0.0	0.0	0.0	0.0	0.0	
$U'()'' \Delta T$. FT.()W.						
KMOL/HP	418 8360	396 4566	300 8000	2 1958+04	2 1958+04	
KMOL/HR KG/HR	418.8360 1.7640+04	396.4566 1.6697+04	390.8222 1.6454+04	2.1958+04 8.4271+05	2.1958+04 8.4271+05	

TEMP C 69.0000 65.0000 60.0000 69.0000 63.0000 69.0000 63.0000 69.0000 63.0000 69.0000 63.0000 69.0000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 69.00000 69.00000 60.000 60.000 60.000 60.000 60.000 60.000	STA	TE VARIABLES:						
PRES N/SQM 2.8000+06 5.0000+05 1.0000+05 2.8000+06 3.0000+07 3.1144+07 1.4184+07 1.41920+04 1.001+05 1.0000<	Г	TEMP C	69.0000	65.0000	60.0000	69.0000	58.2471	
VFRAC 0.0 0.0 0.0 0.0 0.9809 0.8453 LFRAC 0.00 0.00 0.00 0.0 0.0 0.0 SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 STRAL 0.0 0.0 0.0 0.0 0.0 0.0 STRAC 0.0 0.0 0.0 0.0 0.0 0.0 STRAC 0.00 0.0 0.0 0.0 0.0 0.0 STRAC 0.009408 -1.091408 -1.1087408 1.4184407 1.4184407 J/K0C -4.3234405 -4.3336405 -4.4323405 -1.5461405 -1.5734405 J/K0C/K0M 18.4655 19.5461 19.8989 1.3104 1.7372 K6/C0M 17.77.128 22.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTES: CPSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CPSFLOW 2.58237-04 3.2537-04 </td <td>F</td> <td>PRES N/SQM</td> <td>2.8000+06</td> <td>5.0000+05</td> <td>1.0000+05</td> <td>2.8000+06</td> <td>3.0000+06</td> <td></td>	F	PRES N/SQM	2.8000+06	5.0000+05	1.0000+05	2.8000+06	3.0000+06	
LFRAC 1.0000 1.0000 1.0075-02 0.1547 SFRAC 0.0 0.0 0.0 0.0 0.0 ENTHALPY: J/KMGL -1.0236+08 -1.0914+08 -1.1087+08 1.4184+07 1.4184+07 J/KG -2.4303+06 -2.5915+06 -2.6333+06 3.6958+05 3.6960+05 WATT -1.1909+07 -1.2019+07 -1.2036+07 8.6515+07 8.6519+07 ENTROPY: -4.2324+05 -4.3836+05 -4.4323+05 -1.55734+05 J/KOL-K -4.2324+05 -4.3836+05 -4.4323+05 -1.55734+05 J/KOL-K -4.2324+05 -4.3836+05 -4.4323+05 -1.55734+05 J/KOL-K -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: KMOL/CUM 18.4655 19.5461 19.8989 1.3104 1.7372 KG/CUM 777.7128 823.1797 837.7815 50.2934 66.6715 AVG MW 42.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTES: TICL4 CFSFLAW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CFSFRAC 2.05FLAW 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 SITE_1 3.5237-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW -1.5370-08 1.5370-03 0.0 SITE_4 1.0864-07 1.0864-07 1.0864-07 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.0 CUSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 SITE_4 3.9237-03 3.2937-04 2.3352+04 2.3352+04 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 4.07022 0.7022 0.7022 0.7022 0.7022	V	FRAC	0.0	0.0	0.0	0.9809	0.8453	
SFRAC 0.0 0.0 0.0 0.0 0.0 0.0 ENTIMALY: J/KMOL -1.0236+08 -1.0914+08 -1.1087+08 1.4184+07 1.4184+07 J/KG -2.4303+06 -2.595+05 3.696+05 3.696+05 WATT -1.1909+07 -1.2019+07 -1.2036+07 8.6515+07 8.6519+07 ENTROPY: J/KMOL-K -4.2324+05 -4.3836+05 -4.4323+05 -1.5461+05 -1.5734+05 J/KG-K -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: KG/CUM 18.4655 19.5461 19.8989 1.3104 1.7372 KG/CUM 18.4655 19.5461 19.8989 1.3104 1.7372 COMPONENT ATTRIBUTES: TTCL4 CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 9.0094-08 0.00 SITE_1 3.5823-07 3.5823-07 3.5823-07 3.58	I	FRAC	1.0000	1.0000	1.0000	1.9075-02	0.1547	
ENTIMALEY: J/KMCL - 1.0236+08 -1.0914+08 -1.1087+08 1.4184+07 1.4184+07 J/KG -2.4303+06 -2.5915+06 -2.6333+06 3.6958+05 3.6960+05 WATT -1.1090+07 -1.2019+07 -1.2036+07 8.6515+07 8.6519+07 ENTROPY: J/KMCL-K -4.2324+05 -4.3836+05 -4.4323+05 -1.5461+05 -1.5734+05 J/KG-K -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: KMOL/CUM 18.4655 19.5461 19.8969 1.3104 1.7372 KG/CUM 777.7128 823.1797 837.7815 50.2934 66.6715 AVG MW 42.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTES: TICL4 CPSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CPSFRAC 2000 CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_1 4.3910-08 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.5858-04 1.5858-04 3.2237-03 1.2937-03 0.0 SITE_1 1.5858-04 3.9235-04 3.9235-04 3.9235-04 0.0 CVSFRAC CDSFLOW 2035.7010 2.5509-05 5.5509-05 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 0.04869 0.4869 0.4869 0.4869 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 0.13483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 0.04869 0.4869 0.4869 0.4869 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 0.04869 0.4869 0.4869 0.0 SFLOW 0.03 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 DPW 2635.7010 2635.7010 2635.7010 0.0 PDI 0.00 PDI 0.00 PD	5	SFRAC	0.0	0.0	0.0	0.0	0.0	
J/KMOL -1.0236+08 -1.0914+08 -1.1087+08 1.4184+07 J.4184+07 -1.4184+07 -1.4184+07 -1.2019+07 -1.2036+07 8.6518+05 3.6960+05 WATT -1.1909+07 -1.2019+07 -1.2036+07 8.6515+07 8.6519+07 ENTROPY: -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: KG/CTM 777.7128 823.1797 837.7815 5.02934 66.6715 AVG W 42.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTE: TICL4 CPSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CPSFRAC CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CPSFRAC 3.5237-07 3.523-07 3.523-07 3.523-07 3.523-07 0.0 SITE_3 1.5370-08 1.5370-08 1.5370-08 1.5370-08 1.5370-08 1.5370-03 1.2937-03 1.02937-03 0.0 SITE_4 1.0864-07 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.0 CVSFLOW CSFLOW 1.3483-04 1.5858-04 1.5858-04 0.0 SITE_4 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW CSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW C3H6-R 1.0000 1.0000 1.0000 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW C3H6-R 1.0000 1.0000 1.0000 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW C3H6-R 1.0000 1.0000 1.0000 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW C3H6-R 1.0000 1.0000 1.0000 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDW 2635.7010 2635.7010 2635.7010 0.0 PDW 2635.7010 2635.7010 2635.7010 0.0 PDW 2200M 2.200M 2.2000M 2.200M 2.200M	ENI	HALPY:						
J/KG -2.4303406 -2.5915406 -2.6333406 3.6958405 3.6960405 WATT -1.1909+07 -1.2019407 -1.2036407 8.6515407 8.6519407 ENTROPY: -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 COMPONENT ATTRIBUTES: -1.577 KG/CUM 777.7128 823.1797 837.7815 50.2934 66.6715 AVG MW 42.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTES:	J	/KMOL	-1.0236+08	-1.0914+08	-1.1087+08	1.4184+07	1.4184+07	
WATT -1.1909+07 -1.2036+07 8.6515+07 8.6519+07 DYKMOL-K -4.2324+05 -4.3836+05 -1.5461+05 -1.5734+05 J/KC-K -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: 18.4655 19.5461 19.8989 1.3104 1.7372 KG/CUM 777.7128 823.1797 837.7815 50.2934 66.6715 AVG WW 42.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTES: TICLA CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSPEAC 2.0587AC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 SITE_1 4.3911-08 4.3911-08 4.3911-08 4.00 0.0 3.5523-07 3.5823-07 3.6823-07 0.0 SITE_1 1.5858-04 1.5858-04 1.5870-08 1.5370-08 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 1.2937-03 <td>J</td> <td>/KG</td> <td>-2.4303+06</td> <td>-2.5915+06</td> <td>-2.6333+06</td> <td>3.6958+05</td> <td>3.6960+05</td> <td></td>	J	/KG	-2.4303+06	-2.5915+06	-2.6333+06	3.6958+05	3.6960+05	
ENTROPY: J/KOL-K -4.2324+05 -4.3836+05 -4.4323+05 -1.5461+05 -1.5734+05 J/KG-K -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: KMOL/CUM 18.4655 19.5461 19.8989 1.3104 1.7372 KG/CUM 777.7128 823.1797 837.7815 50.2934 66.6715 AVG MW 42.1170 42.1146 42.1017 38.3766 38.3775 COMPONENT ATTRIBUTES: TICL4 CPSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW 5TTE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_1 3.5823-07 3.5823-07 3.5823-07 0.0 SITE_1 4.3910-08 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_1 1.5858-04 1.5870-08 1.5370-08 1.5370-08 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 3.5237-03 1.2937-03 1.2937-03 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 0 CDSFLOW 0 DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MMN 0.2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MMN 0.2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MMN 0.2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MMN 0.07022 0.7022 0.7022 0.7022 0.7022 FMOM 0.7022 0.7022 0.7022 0.7022 FMOM 0.7022 0.7022 0.7022 0.7022 FMOM 1.0072+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 849.3209 0.0	M	IATT	-1.1909+07	-1.2019+07	-1.2036+07	8.6515+07	8.6519+07	
J/KMOL-K -4.2324+05 -4.3336+05 -1.5461+05 -1.5734+05 J/KG-K -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: KMOL/CUM 18.4655 19.5461 19.8989 1.3104 1.7372 KG/CUM 777.7128 823.1797 837.7815 50.2934 66.6715 AVG WW 42.1170 42.1146 42.1017 38.3786 38.3775 CCMPONENT ATTRIBUTES: TICL4 CPSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW 51TE_1 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_2 3.5823-07 3.5823-07 3.5823-07 1.0864-07 1.0864-07 SITE_1 1.5570-08 1.5370-08 1.5370-08 0.0 SITE_2 1.5580-01 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.4869 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 SITE_4 1.0000 1.0000 1.0000 1.0000 0.0 SITE_4 3.9237-03 1.2937-03 0.0 SITE_4 1.0000 1.0000 1.0000 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.4869 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 DFW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 DFW 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 2MOM 0.7022 0.7022 0.7022 0.7022 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 2MOM 0.7022 0.7022 0.7022 0.7022 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 2MOM 0.7022 0.7022 0.7022 0.7022 MWN 1.1091+05 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 849.3209 0.0	ENI	ROPY:						
J/KG-K -1.0049+04 -1.0409+04 -1.0528+04 -4028.4587 -4099.7923 DENSITY: KMOL/CUM 18.4655 19.5461 19.8989 1.3104 1.7372 KG/CUM 77.7128 823.1797 837.7815 50.2934 66.6715 AVG MW 42.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTES: TICL4 CPSFLOW CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_2 3.5823-07 3.5823-07 3.5823-07 0.0 SITE_1 1.0864-07 1.0864-07 1.0864-07 0.0 CVSFRAC 3.2537-04 1.5870-08 1.5370-08 1.5370-08 0.15370-08 0.0 SITE_1 1.0864-07 1.0864-07 1.0864-07 0.0 CVSFRAC 3.5509-05 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 3.5209-05 5.5509-05 5.5509-05 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.0 SITE_4 3.9235-04 2.3325-04 3.9235-04 3.9235-04 0.0 CDSFLOW CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 PP SFRAC 0.4869 0.4869 0.4869 0.4869 0.0 CDSFLOW 0.0 CDSFL	J	/KMOL-K	-4.2324+05	-4.3836+05	-4.4323+05	-1.5461+05	-1.5734+05	
DENSITY: Image: Construct of the system of the	J	/KG-K	-1.0049+04	-1.0409+04	-1.0528+04	-4028.4587	-4099.7923	
KMOL/CUM 18.4655 19.3461 19.3989 1.104 1.372 AVG MW 42.1170 42.1146 42.1017 38.3786 38.3775 COMPONENT ATTRIBUTES: TICL4 CPSFLOW 2.7690-04 CPSFRAC CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 3.2537-04 SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0094-08 SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 0.0 SITE_1 1.5370-08 1.5370-08 1.5370-08 1.5370-08 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.8858-04 0.0 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 0.0 0.0 SITE_1 1.5858-04 1.5858-04 1.3483-04 0.0 0.0 0.0 SITE_1 1.5858-04 1.3483-04 1.3483-04 0.0 0.0	DEN	ISTTY:	10 4655	10 5461	10 0000	1 0104	1 5050	
KGYCUM ///.128 833.197 837.815 50.2934 60.6115 AVG NW 42.1170 42.1170 42.1017 38.3786 38.3775 COMPONENT ATRIBUTES: CPSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CPSFLOW CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.00 SITE_2 3.5823-07 3.5823-07 3.5823-07 0.0 0.0 SITE_1 1.5370-08 1.5370-08 1.5370-08 0.0 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 0.0 0.0 CDSFLOW 0.3483-04 1.3483-04 1.3483-04 0.0 0.0 CDSFRAC	K	MOL/CUM	18.4655	19.5461	19.8989	1.3104	1.7372	
AVG MW 42.1170 42.1146 42.1117 38.3786 38.3775 CCMPONENT ATTRIBUTES: TICL4 CESFLOW CPSFRAC CPSFRAC CPSFRAC CPSFRAC CPSFRAC CVSFLOW SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_2 3.5823-07 3.5823-07 3.5823-07 0.0 SITE_2 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_3 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC C3H6-R 1.0000 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN 554.9418 554.9418 554.9418 554.9418 0.0 DFW DPN 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MNN MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM MWN 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 849.3209 0.0	K	G/CUM	///./128	823.1/9/	837.7815	50.2934	66.6/15	
COMPONENT ATTRIBUTES: TICL4 CPSFLOW 9.0094-08 9.0094-08 9.0094-08 9.0094-08 2.7690-04 CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_1 1.5370-08 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_1 1.0864-07 1.0864-07 1.0864-07 0.0 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 0.0 SITE_1 1.383-04 1.5858-04 1.3483-04 0.0 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.0 0.0 CDSFRAC 0.4869<	AVG	F MW	42.11/0	42.1146	42.101/	38.3/86	38.3//5	
Hills CPSFLOW 9.0094-08 2.7690-04 CPSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.00 SITE_1 1.0864-07 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.5858-04 1.3483-04 1.3483-04 <	COM	IPONENT ATTRIBUTES	5.					
CPSFRAC CPSFRAC CPSFRAC CPSFRAC SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_2 3.5823-07 3.5823-07 3.5823-07 3.5823-07 0.0 SITE_3 1.5370-08 1.5370-08 1.5370-08 0.5371-08 0.0 SITE_4 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.0 CVSFRAC SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW CDSFLOW CDSFRAC CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.4869 0.4869 0.0 SFLOW CDSFRAC CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.4869 0.4869 0.0 SFLOW CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.4869 0.0 SFLOW CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 SFLOW CDSFRAC CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 SFLOW CDSFLOW CDSFLOW CDSFLOW CDSFLOW CDSFLOW CDSFLOW CDSFLOW CDSFLOW CDSFLOW 0.10000 1.0000 1.0000 0.0 SFLOW CDS	IIC	CDSFLOW	0 0001 00	0 0004 00	0 0004 00	0 0001 00	2 7600 04	
CDSFRAC 3.2537-04 3.2537-04 3.2537-04 3.2537-04 3.2537-04 1.0000 CVSFLOW SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_2 3.5823-07 3.5823-07 3.5823-07 3.5823-07 0.0 SITE_3 1.5370-08 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_4 1.0864-07 1.0864-07 1.0864-07 0.0 0.0 CVSFRAC SITE_1 1.5858-04 1.5858-04 1.5858-04 0.06 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.00 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 0.0 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.4869 0.00 SFLOW C3H6-R 389.		CPSFLOW	9.0094-08	9.0094-08	9.0094-08	9.0094-08	2.7090-04	
CVSFLOW SITE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 SITE_2 3.5823-07 3.5823-07 3.5823-07 0.0 SITE_3 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_4 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.0 CVSFRAC SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.4869 0.0 SITE_4 389.7143 389.7144 389.7144 389.7143 DPN 554.9418 554.9418 554.9418 554.9418 0.0 SITE_DN 554.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MWN MNN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		CPSFRAC	3 2537-04	3 2537-04	3 2537-04	3 2537_04	1 0000	
STTE_1 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 4.3911-08 0.0 STTE_2 3.5823-07 3.5823-07 3.5823-07 3.5823-07 0.0 STTE_3 1.5370-08 1.5370-08 1.5370-08 1.5370-08 0.0 STTE_4 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.064-07 CVSFRAC SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.0864-07 1.0864-07 1.0864-07 0.064-07 SITE_1 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.00 CDSFLOW CDSFLOW CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 CDFRAC 0.4869 0.4869 0.4869 0.4869 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143		CUSTICAC CUSTIOW	5.2557-04	3.2337-04	3.2337-04	3.2337-04	1.0000	
SITE_2 3.5823-07 3.5823-07 3.5823-07 3.5823-07 0.0 SITE_2 1.5370-08 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_4 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.0 CVSFRAC SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW CDSFLOW CDSFRAC CDSFRAC CDSFRAC CDSFRAC C3H6-R 1.0000 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7143 389.7143 DPN DPN 554.9418 554.9418 554.9418 554.9418 0.0 DPW DPN 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI PDI 4.7495 4.7495 4.7495 4.7495 0.0 MMN MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM MWW 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM MWN 0.7022 0.7022 0.7022 0.7022 FMOM MWN 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 849.3209 0.0		STTE 1	4 3911-08	4 3911-08	4 3911-08	4 3911-08	0 0	
Diff_B 3.15370-08 1.5370-08 1.5370-08 1.5370-08 1.5370-08 1.5370-08 0.0 SITE_3 1.0364-07 1.0864-07 1.0864-07 0.0 CVSFRAC SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.0 0.0 CDSFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN 554.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN <td></td> <td>SITE 2</td> <td>3 5823-07</td> <td>3 5823-07</td> <td>3 5823-07</td> <td>3 5823-07</td> <td>0.0</td> <td></td>		SITE 2	3 5823-07	3 5823-07	3 5823-07	3 5823-07	0.0	
DILL_S 1.0864-07 1.0864-07 1.0864-07 1.0864-07 0.0 CVSFRAC SITE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 SITE_2 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.0 C3H6-R 1.0000 1.0000 1.0000 0.0 DPN 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 0.0 <td></td> <td>SITE 3</td> <td>1 5370-08</td> <td>1 5370-08</td> <td>1 5370-08</td> <td>1 5370-08</td> <td>0.0</td> <td></td>		SITE 3	1 5370-08	1 5370-08	1 5370-08	1 5370-08	0.0	
CVSFRAC Incort of the incort of		SITE 4	1.0864-07	1.0864-07	1.0864-07	1.0864-07	0.0	
STTE_1 1.5858-04 1.5858-04 1.5858-04 1.5858-04 0.0 STTE_2 1.2937-03 1.2937-03 1.2937-03 0.00 STTE_3 5.5509-05 5.5509-05 5.5509-05 0.0 STTE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.00 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.00 CDSFRAC 0.4869 0.4869 0.4869 0.0 CDSFRAC 0.389.7143 389.7144 389.7144 389.7143 DPN 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 1.091+05 1.1091+05 1.1091+05 0.0 MWN 1.0191+05 1.0191+05 1.1091+05 0.0 MWN 1.02352+04 2.3352+04 2.3352+04 0.0 MWN 1.0191+05 1.1091+05 1.1091+05 0.0 MWN 0.7022 0.7022 0.7022 <		CVSFRAC	1.0001 07	1.0001 0,	1.0001 0,	1.0001 0,	0.0	
SITE_2 1.2937-03 1.2937-03 1.2937-03 1.2937-03 0.0 SITE_3 5.5509-05 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.4869 0.4869 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 0.0 CDSFLOW C3H6-R 1.0000 1.0000 1.0000 0.0 0.0 SFLOW C3H6-R 10000 1.0000 1.0000 0.0 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7143 389.7143 0.0 DPN 554.9418 554.9418 554.9418 0.0 0.0 DPW 2635.7010 2635.7010 2635.7010 0.0 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 0.0 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 0.1091+05 0.1091+05 ZMOM 0.7022 0.7022		SITE 1	1.5858-04	1.5858-04	1.5858-04	1.5858-04	0.0	
SITE_3 5.5509-05 5.5509-05 5.5509-05 5.5509-05 0.0 SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 0.0 0.0 CDSFLOW 0.4869 0.4869 0.4869 0.0 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.00 C3H6-R 1.0000 1.0000 1.0000 0.0 SFLOW 389.7143 389.7144 389.7143 389.7143 DPN 554.9418 554.9418 554.9418 0.0 DFW 0 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 0.352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 0.7022 0.7022 ZMOM 0.7022 0.7022 0.7022 0.7022 0.		SITE 2	1.2937-03	1.2937-03	1.2937-03	1.2937-03	0.0	
SITE_4 3.9235-04 3.9235-04 3.9235-04 3.9235-04 3.9235-04 0.0 CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.00 CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.00 SFRAC 0.00 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7143 389.7143 DPN 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06		SITE 3	5.5509-05	5.5509-05	5.5509-05	5.5509-05	0.0	
CDSFLOW CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 PP SFRAC C3H6-R 1.0000 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 389.7144 389.7143 DPN C3H6-R 389.7143 389.7144 389.7144 389.7143 30.0 DPN DPN 554.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 0.03 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 0.1021 MWN 2.3352+04 2.3352+04 2.3352+04 389.7143 389.7144 389.7143 MWN 1.091+05 1.1091+05 1.001+05 1.001+05 1.001+05 MOM 389.7143		SITE_4	3.9235-04	3.9235-04	3.9235-04	3.9235-04	0.0	
CDSFLOW 1.3483-04 1.3483-04 1.3483-04 1.3483-04 1.3483-04 0.0 CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 PP SFRAC C3H6-R 1.0000 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 389.7144 DPN C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN D54.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.06 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 0.102 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.0091+05 1.1091+05 1.1091+05 1.1091+05 1.001+05 ZMOM 0.7022 0.7022		CDSFLOW						
CDSFRAC CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 PP SFRAC 1.0000 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN C3H6-R 389.7143 389.7144 389.7143 389.7144 DPN C3H5.7010 2635.7010 2635.7010 2635.7010 2635.7010 DPW 2635.7010 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7143 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 SMOM SMOM 1.0272+06 1.0		CDSFLOW	1.3483-04	1.3483-04	1.3483-04	1.3483-04	0.0	
CDSFRAC 0.4869 0.4869 0.4869 0.4869 0.0 PP SFRAC 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN C3H6-R 389.7143 389.7144 389.7144 389.7143 389.7143 DPN 554.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 0.7022 0.7022 MWN 0.7022 0.7022 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 <td></td> <td>CDSFRAC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		CDSFRAC						
PP SFRAC C3H6-R 1.0000 1.0000 1.0000 0.0 SFLOW 389.7143 389.7144 389.7144 389.7143 DPN C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN C3H5-R 389.7143 389.7144 389.7143 389.7144 389.7143 DPN D54.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 MWW 1.1091+05 1.01091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7143 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06		CDSFRAC	0.4869	0.4869	0.4869	0.4869	0.0	
C3H6-R 1.0000 1.0000 1.0000 1.0000 0.0 SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN 554.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 0.352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 0.7022 0.7022 ZMOM 0.7022 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 0.0	PP	SFRAC						
SFLOW C3H6-R 389.7143 389.7144 389.7144 389.7143 389.7143 DPN DPN 554.9418 554.9418 554.9418 554.9418 0.0 DPW DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWW 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		C3H6-R	1.0000	1.0000	1.0000	1.0000	0.0	
C3H6-R 389.7143 389.7144 389.7144 389.7143 DPN 554.9418 554.9418 554.9418 554.9418 0.0 DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		SFLOW						
DPN 554.9418 554.9418 554.9418 554.9418 554.9418 0.0 DPW DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 7022 FMOM 389.7143 389.7144 389.7144 389.7143 389.7144 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		C3H6-R	389.7143	389.7144	389.7144	389.7143		
DPN 554.9418 554.9418 554.9418 554.9418 554.9418 0.0 DPW DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 0.7022 0.7022 MWW 0.7022 0.7022 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		DPN	FF4 0410	FF4 0410	FF4 0410	FF4 0410	0 0	
DPW 2635.7010 2635.7010 2635.7010 2635.7010 0.0 PDI 4.7495 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 1.1091+05 MWW 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		DPN	554.9418	554.9418	554.9418	554.9418	0.0	
DPW 2835.7010 2835.7010 2835.7010 2835.7010 2835.7010 2835.7010 0.0 PDI PDI 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		DPW	2625 7010	2625 7010	2625 7010	2625 7010	0 0	
PDI 4.7495 4.7495 4.7495 4.7495 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWW 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		DPW	2035.7010	2035.7010	2035.7010	2035.7010	0.0	
MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWN 0.0 MWW 0.1091+05 1.1091+05 1.1091+05 1.1091+05 MWW 0.7022 0.7022 0.7022 0.7022 0.7022 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		דתק	1 7/05	1 7/95	1 7/05	1 7/05	0 0	
MWN 2.3352+04 2.3352+04 2.3352+04 2.3352+04 0.0 MWW MWW 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0			4.7495	4.7495	4.7495	1.7195	0.0	
MWW 1.1091+05 1.1091+05 1.1091+05 1.1091+05 MWW 0.7022 0.7022 0.7022 0.7022 ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 0.0		MTATNT	2 3352+04	2 3352+04	2 3352+04	2 3352+04	0 0	
MWW 1.1091+05 1.1091+05 1.1091+05 1.1091+05 ZMOM ZMOM 0.7022 0.7022 0.7022 FMOM 89.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		MININ	2.3332104	2.3332104	2.3332104	2.3332104	0.0	
ZMOM ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM FMOM 389.7143 389.7144 389.7144 389.7143 SMOM SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN LDPN 849.3209 849.3209 849.3209 849.3209 0.0		MMW	1 1091+05	1 1091+05	1 1091+05	1 1091+05		
ZMOM 0.7022 0.7022 0.7022 0.7022 FMOM FMOM 389.7143 389.7144 389.7144 389.7143 SMOM SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		ZMOM	1.1001.00					
FMOM 389.7143 389.7144 389.7144 389.7143 SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209		ZMOM	0.7022	0.7022	0.7022	0.7022		
FMOM389.7143389.7144389.7144389.7143SMOMSMOM1.0272+061.0272+061.0272+061.0272+06LDPNLDPN849.3209849.3209849.3209849.32090.0		FMOM						
SMOM SMOM 1.0272+06 1.0272+06 1.0272+06 1.0272+06 LDPN 849.3209 849.3209 849.3209 849.3209 0.0		FMOM	389.7143	389.7144	389.7144	389.7143		
SMOM1.0272+061.0272+061.0272+061.0272+06LDPNLDPN849.3209849.3209849.3209849.32090.0		SMOM						
LDPN LDPN 849.3209 849.3209 849.3209 849.3209 0.0		SMOM	1.0272+06	1.0272+06	1.0272+06	1.0272+06		
LDPN 849.3209 849.3209 849.3209 849.3209 0.0		LDPN						
		LDPN	849.3209	849.3209	849.3209	849.3209	0.0	

igure 0.0 Stream	n Summar,	y nesults	(cont.)		
I 7MOM					
LZMOM	1 4146 04	1 1116 01	1 1116 01	1 4146 04	
	1.4140-04	1.4140-04	1.4140-04	1.4140-04	
	0 1 2 0 1	0 1 2 0 1	0 1 2 0 1	0 1 2 0 1	
LEMOM	0.1201	0.1201	0.1201	0.1201	
CORE D	0 1 2 0 1	0 1 2 0 1	0 1 2 0 1	0 1 2 0 1	0 0
CSHU-K	0.1201	0.1201	0.1201	0.1201	0.0
DEFRAC	1 0000	1 0000	1 0000	1 0000	
CSHO-R	1.0000	1.0000	1.0000	1.0000	
COLLE D	1 4146 04	1 1116 01	1 1116 01	1 4146 04	
CSHO-R	1.4140-04	1.4140-04	1.4140-04	1.4140-04	
COLLEP RAC	1 0000	1 0000	1 0000	1 0000	
C3H6-R	1.0000	1.0000	1.0000	1.0000	
LPFRAC	2 0142 04	2 0142 04	2 0142 04	0 0140 04	
LPFRAC	2.0143-04	2.0143-04	2.0143-04	2.0143-04	
SSFRAC	1 0000	1 0000	1 0000	1 0000	
C3H6-R_1	1.0000	1.0000	1.0000	1.0000	0.0
C3H6-R_2	1.0000	1.0000	1.0000	1.0000	0.0
C3H6-R_3	1.0000	1.0000	1.0000	1.0000	
C3H6-R_4	1.0000	1.0000	1.0000	1.0000	0.0
SSFLOW					
C3H6-R_1	116.3391	116.3392	116.3392	116.3391	
C3H6-R_2	26.1425	26.1425	26.1425	26.1425	
C3H6-R_3	182.5757	182.5758	182.5758	182.5757	
C3H6-R_4	64.6568	64.6568	64.6568	64.6568	0.0
SDPN					
SITE_1	784.3242	784.3242	784.3242	784.3242	
SITE_2	97.4862	97.4862	97.4862	97.4862	0.0
SITE_3	2187.1345	2187.1345	2187.1345	2187.1345	
SITE_4	319.6289	319.6289	319.6289	319.6289	
SDPW					
SITE 1	1567.6485	1567.6485	1567.6485	1567.6485	
SITE 2	193,9724	193,9724	193.9724	193,9724	
STTE 3	4373 2690	4373 2690	4373 2690	4373 2690	
STTE 4	638.2578	638,2578	638,2578	638.2578	
SPDT	00012070	00012070	00012070	00012070	
SITE 1	1,9987	1,9987	1,9987	1,9987	0.0
SITE 2	1 9897	1 9897	1 9897	1 9897	0 0
SITE_2 SITE 3	1 9995	1 9995	1 9995	1 9995	0.0
SIII_3 SITE 4	1 9968	1 9968	1 9968	1 9968	0.0
	1.0000	1.0000	1.0000	1.0000	0.0
SHWIN STTF 1	3 3005+04	3 3005+04	3 3005+04	3 3005+04	
SII <u></u> I SII <u></u> I SIII	1102 2830	1102 2830	1102 2830	1102 2830	
SILE_Z	4102.2030	4102.2030	4102.2030	4102.2030	
SILE_S	9.2030+04	9.2030+04	9.2030+04	9.2030+04	
SIIE_4	1.3450+04	1.3450+04	1.3450+04	1.3450+04	
SMWW					
SITE_I	6.5968+04	6.5968+04	6.5968+04	6.5968+04	
SITE_2	8162.4853	8162.4853	8162.4853	8162.4853	
SITE_3	1.8403+05	1.8403+05	1.8403+05	1.8403+05	
SITE_4	2.6858+04	2.6858+04	2.6858+04	2.6858+04	
SZMOM					
SITE_1	0.1483	0.1483	0.1483	0.1483	
SITE_2	0.2681	0.2681	0.2681	0.2681	
SITE_3	8.3477-02	8.3477-02	8.3477-02	8.3477-02	
SITE_4	0.2022	0.2022	0.2022	0.2022	
SFMOM					
SITE_1	116.3391	116.3392	116.3392	116.3391	
SITE_2	26.1425	26.1425	26.1425	26.1425	

<u> </u>			·				
s	SITE_3 SITE_4	182.5757 64.6568	182.5758 64.6568	182.5758 64.6568	182.5757 64.6568		
SSM S	IOM SITE_1 SITE_2	1.8238+05 5070 9390	1.8238+05 5070 9407	1.8238+05 5070 9407	1.8238+05 5070 9390		
	SITE_3 SITE_4	7.9845+05 4.1268+04	7.9845+05 4.1268+04	7.9845+05 4.1268+04	7.9845+05 4.1268+04		
SPF S	RAC SITE_1	0.2985	0.2985	0.2985	0.2985	0.0	
2 2 2	SITE_2 SITE_3 SITE_4	6.7081-02 0.4684 0.1659	6.7081-02 0.4684 0.1659	6.7081-02 0.4684 0.1659	6.7081-02 0.4684 0.1659	0.0 0.0	
LSD	PN SITE_1	784.3242	784.3242	784.3242	784.3242		
2	SITE_2 SITE_3	97.4862 2187.1345	97.4862 2187.1345	97.4862 2187.1345	97.4862 2187.1345		
SLSZ	ITE_4 MOM	319.6289	319.6289	319.6289	319.6289		
	SITE_1 SITE_2	3.5452-05	3.5452-05	3.5452-05	3.5452-05	0.0	
S	SITE_4 MOM	3.5387-05	3.5387-05	3.5387-05	3.5387-05	0.0	
5	SITE_1 SITE_2	2.7806-02 3.4254-03	2.7806-02 3.4255-03	2.7806-02 3.4255-03	2.7806-02 3.4254-03		
5	SITE_3 SITE_4	7.7601-02 1.1311-02	7.7601-02 1.1311-02	7.7601-02 1.1311-02	7.7601-02 1.1311-02		
C C	13H6-R_1	2.7806-02	2.7806-02	2.7806-02	2.7806-02		
C	3H6-R_3 3H6-R_4	7.7601-02 1.1311-02	7.7601-02 1.1311-02	7.7601-02 1.1311-02	7.7601-02 1.1311-02		
LSS C	FRAC 3H6-R_1	1.0000	1.0000	1.0000	1.0000		
	3H6-R_2 3H6-R_3	1.0000	1.0000	1.0000	1.0000 1.0000 1.0000		
LSE	FLOW 3H6-R_1	3.5452-05	3.5452-05	3.5452-05	3.5452-05		
	3H6-R_2 3H6-R_3	3.5138-05 3.5481-05	3.5138-05 3.5481-05	3.5138-05 3.5481-05	3.5138-05 3.5481-05		
CLSE	SH6-R_4	3.5387-05	3.5387-05	3.5387-05	3.5387-05	0.0	
	3H6-R_1 3H6-R_2	1.0000	1.0000	1.0000	1.0000	0.0	
C	3H6-R_4 FRAC	1.0000	1.0000	1.0000	1.0000	0.0	
2	SITE_1 SITE_2	2.3901-04 1.3103-04	2.3901-04 1.3103-04	2.3901-04 1.3103-04	2.3901-04 1.3103-04		
S S مىت	STE_3 STE_4	4.2503-04 1.7494-04	4.2503-04 1.7494-04	4.2503-04 1.7494-04	4.2503-04 1.7494-04		
ATF A ATF	TFLOW RAC	26.5837	26.5837	26.5837	26.5837	0.0	
A	TFRAC FLOW	6.8213-02	6.8213-02	6.8213-02	6.8213-02	0.0	
S	ITE_1	4.9442	4.9442	4.9442	4.9442	0.0	

igure 9.3 Stream	n Summar	y Results	s (cont.)		
SITE_2	11.7610	11.7611	11.7611	11.7610	0.0
SITE_3	2.9689	2.9689	2.9689	2.9689	
SITE_4	6.9093	6.9093	6.9093	6.9093	
SATFRAC					
SITE_1	4.2499-02	4.2499-02	4.2499-02	4.2499-02	
SITE_2	0.4498	0.4498	0.4498	0.4498	
SITE_3	1.6262-02	1.6262-02	1.6262-02	1.6262-02	
SITE_4	0.1068	0.1068	0.1068	0.1068	
STREAM ID	STRIP-N2	VAP-A	VAP-B		
FROM :		SEP1	COMP1		
TO :	STRIP2	COMP1	EXC1		
SUBSTREAM: MIXED					
PHASE:	VAPOR	VAPOR	VAPOR		
COMPONENTS: KG/HR					
TICL4	0.0	0.0	0.0		
TEA	0.0	0.0	0.0		
СЗНб	0.0	8.0003+05	8.0003+05		
С3Н8	0.0	1.5938+04	1.5938+04		
PP	0.0	0.0	0.0		
H2	0.0	3998.6199	3998.6199		
N2	500.0000	5098.5474	5098.5474		
H2O	0.0	0.0	0.0		
C3H6-R	0.0	0.0	0.0		
COMPONENTS: MASS FRA	AC 0	0 0	0 0		
TICL4	0.0	0.0	0.0		
TEA	0.0	0.0	0.0		
C3H0	0.0	1 0210 02	1 0210 02		
	0.0	1.9310-02	1.9318-02		
гг H2	0.0	4 8464-03	4 8464-03		
N2	1 0000	6 1795-03	6 1795-03		
H2O	0.0	0.1755 05	0.1/20 03		
C3H6-R	0.0	0.0	0.0		
TOTAL FLOW:	0.0	0.0	0.0		
KMOL/HR	17.8485	2.1539+04	2.1539+04		
KG/HR	500.0000	8.2507+05	8.2507+05		
CUM/SEC	4.1613-02	4.6481	4.2866		
STATE VARIABLES:					
TEMP C	30.0000	69.0000	74.7964		
PRES N/SQM	3.0000+05	2.8000+06	3.0500+06		
VFRAC	1.0000	1.0000	1.0000		
LFRAC	0.0	0.0	0.0		
SFRAC	0.0	0.0	0.0		
ENTHALPY:					
J/KMOL	1.2715+05	1.6450+07	1.6709+07		
J/KG	4538.8119	4.2945+05	4.3619+05		
WATT	630.3905	9.8423+07	9.9968+07		
ENTROPY:					
J/KMOL-K	-8592.8427	-1.4938+05	-1.4918+05		
J/KG-K	-306.7395	-3899.7360	-3894.3041		
DENSITY:					
KMOL/CUM	0.1191	1.2872	1.3957		
KG/CUM	3.3376	49.3073	53.4653		
ATTC: MIN	28 0134	38 3059	38 3059		

REFERENCES

Choi, K-Y, and W. H. Ray, "Recent Developments in Transition Metal Catalyzed Olefin Polymerization - A Survey. II. Propylene Polymerization," *JMS-Rev. Macromol. Chem. Phys.* **C25**(1) (1985).

Debling, J. A., et. al, "Dynamic Modeling of Product Grade Transitions for Olefin Polymerization Processes," *AIChE J.*, **40**, No. 3 (1994).

Hutchinson, R. A., Modeling of Particle Growth in Heterogeneous Catalysed Olefin Polymerization, Ph.D. thesis, University of Wisconsin - Madison (1990).

Kissin, Y. V., Isospecific Polymerization of Olefins with Heterogeneous Ziegler-Natta Catalysts, Springer-Verlag, New York (1985).

Soares, J. B. P, and A. E. Hamielec, "Deconvolution of Chain-length Distributions of Linear Polymers Made by Multiple-site-type Catalysts," *Polymer*, **36**, No. 11 (1995).

STEADY-STATE APPLICATION Polypropylene Gas-Phase Process

1 POLYETHYLENE TEREPHTHALATE

SEMI-BATCH / BATCH PROCESS

SUMMARY

Minimizing batch cycle time and producing consistent product are the major concerns for batch mode processes. It is often difficult to achieve both objectives because of the uncertainties in a complex polymerization process. This application illustrates the use of Polymers Plus and Aspen Custom Modeler (ACM) to simulate a semi-batch/batch polymerization of ethylene terephthalate (PET). The model is capable of predicting several PET properties of interest, thus you can adjust the process accordingly to produce consistent product with the minimum batch cycle time.

ABOUT THIS PROCESS

PET is typically polymerized from an esterification reaction between terephthalatic acid (TPA) and ethylene glycol (EG). Water produced during the reaction has to be removed in order to achieve high conversion. A batch process consists of a reactor connected by a column for separating unreacted EG from water. The EG recovered in the bottom of the column is recycled to the reactor and the water is discharged from the system from the top tray of the column. A batch starts with the reactor partially filled with the preceding batch product. The TPA and EG paste is continuously fed into the reactor. The feed stops at a given time and the process continues until a predetermined conversion is reached.

Because of its flexible operation, the batch polymerization of PET is used extensively by manufacturers. This flexibility, however, provides a challenge for producing a consistent quality of PET from batch to batch. Dynamic simulation offers an alternative to predict critical properties of PET, which are often difficult, costly, and time-consuming to obtain from measurements. This application demonstrates the use of a dynamic model to predict the state of process and the product properties thereby ensuring consistent product qualities. Based on the prediction, the batch process can be terminated when the desired product properties are achieved to avoid unnecessary processing time shortening the batch cycle time. This application also studies the effects of the recycle ratio on the throughput.

PROCESS DEFINITION

The esterification reactor is attached with a component splitter simulating the EG recovery column and associated temperature and level controllers. The reactor temperature is controlled by manipulating the flow rate of heating fluid (Dowtherm). The operating temperature in the component splitter is controlled by adjusting the reflux ratio.
Process Conditions

The flowsheet of a batch PET process is depicted in Figure 1.1. The batch process starts with the reactor partially filled with the PET from the preceding batch. A TPA/EG paste is fed into the reactor for a certain period, then the process is switched to batch mode and continues until the desired conversion 93.4% is achieved. The reactor temperature is operated at 260°C. There are two feeds to the reactor, the TPA/EG paste slurry and the reflux from the recovery column. The temperature of the slurry feed is 40°C.

Figure 1.1 Batch PET Process Flowsheet

Physical
Property Model
and DataPolymers Plus provides all the polymer properties and polymer phase equilibrium. All
non-polymer properties are provided by Properties Plus.

Reactors / Kinetics The esterification reactor is modeled with a CSTR2P in the Aspen Custom Modeler Polymer library. The model is modified to include a solid TPA phase. The TPA diffuses into the liquid phase. The vapor and liquid phases are assumed in equilibrium in the reactor. The model assumes that the reactions only occur in the liquid phase. It contains a thermal inertia term to take into account the energy required for changing the temperature of reactor.

The reaction kinetics are step-growth condensation reactions described in the Aspen Plus input file (*.inp). The basic reaction is an acid reacting with an alcohol producing an ester and water.

Process Studies

The batch PET process is simulated with the developed model. The effects of the recycle ratio is studied as an operating variable in the light of increase in production rate. The recycle ratio is defined as the ratio of initial mass PET to the total mass PET in the end of batch. The production rate is roughly evaluated as the ratio of the net PET produced, i.e., the difference between the total mass PET in the end of batch and the initial mass PET in the reactor, to the batch time required to produce the consistent PET. The batch is terminated as soon as these properties become consistent. The batch cycle time is determined through the comparison of the PET properties in the end of the current batch with those of the preceding batch.

SELECTED SIMULATION RESULTS

Table 1.1 and Table 1.2 list the simulation results of the two selected recycle ratios. You may extend this application to find the optimal recycle ratio.

		•		
Recycle ratio = 0.3511	Acid value (MMOL/KG)	OH value (MMOL/KG)	Conversion (%)	PET mass (KG)
Initial PET properties	626.5	2856.7	93.4	2595
Final PET properties	622.2	3217.9	93.4	7393
Net production per batch (KG/Batch)				4798
Batch cycle time (HR)				8.47
Equivalent production rate (KG/HR)				566

 Table 1.1 Simulation Results with the Recycle Ratio of 0.3511

Table 1.2 Simulation Results with the Recycle Ratio of 0.4891

Recycle ratio = 0.4891	Acid value (MMOL/KG)	OH value (MMOL/KG)	Conversion (%)	PET mass (KG)
Initial PET properties	626.5	2856.7	93.4	3461
Final PET properties	622.7	3147.3	93.4	7077
Net production per batch (KG/Batch)				3616
Batch cycle time (HR)				7.11
Equivalent production rate (KG/HR)				508

These tables' results show that in the end of each batch, the qualities of PET in terms of acid and alcohol values and conversion are consistent with those in the beginning of the batch. As expected, the batch cycle time is prolonged as the recycle ratio is decreased. They also show that although the absolute batch cycle time with the recycle ratio of 0.3511 is longer than that of 0.4891, the production rate is increased by using the cycle ratio of 0.3511.

Figure 1.2 displays the reactor's operating conditions. The slurry feed containing TPA/EG paste stops at 2.67 hours. The pressure of the reactor constantly increases from the beginning of batch and starts to drop at 2.67 hours because of the consumption of EG. The temperature of the reactor is maintained at 260°C.

Figure 1.2 Reactor Operating Conditions

The predicted properties of PET are plotted in Figure 1.3. The acid value and alcohol value increase as the TPA and EG are fed into the reactor, then they decrease after the feed stops and as the batch continues. The plot shows that the process should stop at 8.47 hours because the conversion is identical to the initial value and the acid and alcohol values are close to their initial values as well. Consequently, the consistent batches are reproduced.

Figure 1.3 PET Properties

The water generated during the polymerization is flashed and accumulated in the water tank as seen in Figure 1.4.

Figure 1.4 Water Flashed to the Accumulator

REFERENCES

Gupta, S. K, and A. Kumar, Reaction Engineering of Step-Growth Polymerization, Plenum, New York (1987).

Margolis, J. M., Ed., Polyethylene Terephthalate, Engineering Thermoplastics - Properties and Applications, Marcel Dekker, New York (1985).

2 POLYETHYLENE TEREPHTHALATE

CONTINUOUS PROCESS

SUMMARY

Fast and stable response of a polymerization process to disturbances is essential, otherwise a significant amount of off-spec product may be produced. A better control scheme may improve and stabilize the process response, which, in turn, reduces off-spec product caused by unstable processes. The PET continuous process application demonstrates the use of dynamic modeling to improve operation stability of a continuous polyethylene terephthalate (PET) reactor system with Aspen Custom Modeler and Polymers Plus. The developed PET model is generic and can be readily implemented into a user's application.

ABOUT THIS PROCESS

Typically, PET is produced from esterification of acid and glycol, e.g., condensation of terephthalic acid (TPA) and ethylene glycol (EG). The polymerization occurs in a series of three or four agitated reactors followed by future polymerization in extrusion reactors. The degree of polymerization is very sensitive to the water content and the glycol-acid ratio in the reactor. During reaction, EG in vapor phase needs to be recovered to minimize loss. Meanwhile, the water generated from the polymerization must be removed from the reactor to allow the forward reaction to proceed. A column attached with the reactor is used to recover EG and remove water.

Typically, the esterification reactor residence time is large (approximately two hours) in order to achieve a high conversion. The column residence time, however, is comparatively small. These two systems are highly coupled because the reaction rate defines the water production rate which affects the reactor duty and the boilup rate. The boilup rate, in turn, has influences on the reflux duty and reflux inventory control of the column.

PROCESS DEFINITION

The model of PET process includes an esterification reactor (CSTR), mixer, and ethylene glycol (EG) recovery column. It also includes a flow ratio controller to maintain the EG to TPA ratio. The model flowsheet is plotted in Figure 2.1. The feeds of the MIXER include TPA, EG, and a catalyst stream. The ratio controller is placed to maintain the EG to TPA ratio. The fourth feed of the MIXER is the bottom stream from the recovery column DYNCOL. The reactor simulated as a CSTR is operated under the constant level, temperature, and pressure with the controllers. The vapor output of the reactor is fed to DYNCOL which separates EG from water. The recovered EG is recycled to the MIXER. A reflux drum level control is associated with DYNCOL. A temperature controller is used to maintain the temperature of DYNCOL through manipulating the reflux ratio.

Figure 2.1 PET Primary Esterification System Flowsheet

Process Conditions

Table 2.1 lists the components considered in the model.

Table 2.1 Process Conditions

Components	Name	Databank	Description
Terephthalate acid	ТРА	PURE10	Monomer
Ethylene glycol	EG	PURE10	Monomer
PET	PET	POLYPCD	Polymer
TPA segment	R-TPA	SEGPCD	Repeat segment
	E-TPA	SEGPCD	End segment
EG segment	R-EG	SEGPCD	Repeat segment
	E-EG	SEGPCD	End segment
SBAC3	SBAC3	PURE10	Catalyst
Water	H2O	PURE10	Product of polymerization
Feed	Flow Rate, Kg/Hr †	Temperature, °C	Pressure, Bar
TPA*	t < 0.25 7128.0	25	1
	t < .5 7128+4000*(t - 0.25)		
	t > 0.5 8128.0		
EG	Molar EG/TPA = 1.15	25	1
SBAC3	4.0	25	1

† t = *time in hour*

* A ramp increase in TPA flow rate is imposed as a disturbance to the process

Physical Property Models and Data

The polymer Non-Random Two Liquid activity coefficient model (POLYNRTL) is used as the physical property method to calculate properties.

Reactor / Kinetics	The reactor is simulated with a CSTR2P model from the Aspen Custom Modeler Polymer model library. The model accommodates two phases, gas and liquid, with variable liquid holdup. It contains mass and energy balances and moment balances for calculating PET polymer attributes. The equilibrium is assumed between the gas phase and liquid phase. Polymers Plus provides the thermal properties including partition coefficients and the reaction rates based on the condensation polymerization kinetics. The molar ratio of EG to TPA is set at 1.15 with the ratio controller.
Process Studies	This application examines the temperature control strategy to improve the process stability. Two cases are studied. First, a controller is used to control the temperature at the top tray of the recovery column. Second, the temperature at the bottom tray of the EG recovery column is controlled.

SELECTED SIMULATION RESULTS

In the case of temperature control on the top tray, the top tray temperature of the recovery column is quickly settled around its setpoint of 139.56°C after the TPA flow rate increase as shown in Figure 2.2. The bottom tray temperature, however, slowly approaches its new steady state value. This results in the slow PET reactor responses as displayed in Figure 2.3. As shown initially there is a quick transition in the acid value and the number average MW. These values then move slowly to their new steady states. In fact, the steady-states are not achieved in 10 hours. The problem with this control is that it gives tight control on the EG concentration in the water distillation stream, but loses control on the composition of the EG return stream from the bottom tray to the reactor.

In the case of temperature control on the bottom tray, the bottom tray temperature is controlled at the value prior to the TPA flow rate change and the top tray temperature gradually approaches to its new steady state as plotted in Figure 2.4. As the result, the responses of the esterification reactor displayed in Figure 2.5 show that the system moves to the steady state in less than 5 hours for the same feed disturbance. Since the bottom tray temperature is controlled at the desired value, it ensures that the temperature and composition of reflux to the reactor is relatively constant, although the distillate composition is not constant. This reduces the disturbances to the reactor. In addition, the simulation demonstrates that the amount of deviation in the distillate composition does not vary substantially. The cost of this deviation is far less than that of slow transient behavior of the reactor. This application demonstrates the advantages by using a dynamic model which provides a viable tool to optimize the operation of a polymerization process.

Figure 2.2 Temperatures in the Recovery Column in the Top Tray Temperature Control Case

Figure 2.3 Responses of Esterification Reactor in the Top Tray Temperature Control Case

Figure 2.4 Temperatures of the Recovery Column in the Bottom Tray Temperature Control Case

Figure 2.5 Responses of Esterification Reactor in the Bottom Tray Temperature Control Case

REFERENCES

Gupta, S. K, and A. Kumar, <u>Reaction Engineering of Step-Growth Polymerization</u>, Plenum, New York (1987).

Margolis, J. M., Ed., <u>Polyethylene Terephthalate, Engineering Thermoplastics - Properties</u> and <u>Applications</u>, Marcel Dekker, New York (1985).

DYNAMIC BULK POLYMERIZATION PROCESS

SUMMARY

Constantly changing demands require flexible operation of polymerization processes. The bulk polystyrene dynamic process application demonstrates the dynamic simulation with Polymers Plus and Aspen Custom Modeler for rating the cooling/heating system to respond to the changes in the throughput of bulk polymerization of styrene. The developed model is generic and can be readily customized for other applications.

ABOUT THIS PROCESS

Styrene is polymerized through stepwise addition of monomer units. The polymerization is usually initiated by thermal means and/or peroxide initiators to form free-radicals which initiate chain growth. The reaction is highly exothermic approximating 160.2 kcal/Kg of styrene polymerized (Boundy, 1952). Typically, the continuous polymerization of styrene consists of one or more CSTRs followed by a reactor designed for handling viscous solutions. These reactors are usually equipped with coils for heat addition or removal or through direct vapor cooling. The highly exothermic polymerization reactions render the heating/cooling systems of reactors vulnerable to changes in states of the polystyrene process. Rating the existing heating/cooling systems or other utilities is essential to ensure a feasible change in process, e.g., increase in throughput.

PROCESS DEFINITION

The polymerization of styrene in this application consists of three reactors in series, two liquid CSTR's followed by one liquid PFR, one HEATER for devolatilization, and two FLASH units for purifying the products. The flowsheet of this process is plotted in Figure 3.1.

Figure 3.1 Bulk Polystyrene Aspen Custom Modeler Dynamic Model Flowsheet

Process Conditions

Eight components including one segment component are considered and listed in Table 3.1.

Table 3.1 Process Conditions

Components	Name	Databa	ank			Descrip	tion
Styrene	STY	PURE	COMP			Monome	er
Polystrene	PS	POLY	CD			Comono	omer
Styrene segment	STY-SEG	SEGPO	CD			Repeat	segment
Di-tert-butyl peroxide	ТВР	PURE	COMP			Initiator	
Coinitiator	CINI	PURE	COMP			Coinitiat	or
Ethylbenzene	EB	PURE	COMP			Chain tr	ansfer agent
Dodecyl mercaptan	DDM	PURE	COMP			Chain tr	ansfer agent
Water	H2O	PURE	COMP			Stripping	g agent
Feed	FEED_1						
Temperature (°C)	25						
Pressure (atm)	1						
Mass flow rate (Kg/Hr)	If t<0.5 then 7000 else 75	500 endif					
Mass fraction of styrene	0.9797						
Mass fraction of polystyrene	0.0						
Mass fraction of coinitiator	0.0						
Mass fraction of	1.94e-2						
etnyibenzene	6.5e-4						
Mass fraction of DDM	2.5e-4						
Mass fraction of TBP							
Operating Conditions							
Block	Temperature (°C)	Pressure (atm	I)	Size			Level Setpoint (m)
CSTR-1	120	1		20	m ³		2
CSTR-2	160	1		20	m ³		2
PLUG-1	160-200	1		80 m ler	gth by		
				0.40 m c	liameter		
DV-H1	220	1					
FLASH-1	220	1					
FLASH-2	220	1					

Physical Property Models and Data

The polymer Non-Random Two Liquid activity coefficient model (POLYNRTL) is used as the physical property method to calculate properties. Note that the heat of polymerization is used with available data and is therefore considered more accurate than property model predictions.

Process Studies

The developed polystyrene model is employed to evaluate the required heating/cooling rates of the first two reactors, CSTR-1 and CSTR-2. The required heating/cooling rates are based on the values for maintaining the reactor temperature constant.

SELECTED SIMULATION RESULTS

The monomer feed to the CSTR 1 reactor is increased from 7000 to 7500 Kg/Hour as displayed in Figure 3.2. The conversions in CSTRs 1 and 2 are slightly decreased due to the decrease in the resident times. However, the decrease is less than 1% in both reactors.

Figure 3.2 Dynamics of Reactor

The heating and cooling rate required for these two CSTRs, however, is significantly changed in order to maintain the constant operating conditions. For instance, when the inlet flow rate is 7000 kg/hr, CSTR 1 requires the heating rate to be 0.48 GJ/hr. The 7500 kg/hr flow rate needs about 0.56 GJ/hr to maintain the temperature of CSTR 1 at the desired value. This change is about 16.7% increase from the previous heating rate required by the temperature controller of this reactor is up to 0.60 GJ/hr, which requires a 25.0% higher rate than its original steady-state heating rate.

The second CSTR needs a cooling system. Figure 3.3 demonstrates that increase in the throughput from 7000 to 7500 Kg/hr. Here the cooling rate required by this reactor is changed from 0.67 to 0.72 GJ/s, which is about a 7.5% increase in the cooling rate.

Figure 3.3 Utility Requirement

REFERENCES

Boundy, R. H., R. F. Boyer, and S. M. Stoesser, eds., <u>Styrene - Its Polymers, Copolymers,</u> and <u>Derivatives</u>, Reinhold, New York (1952).

DYNAMIC PROCESS

SUMMARY

A generic dynamic model is developed from Polymers Plus and Aspen Custom Modeler to simulate both linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) processes. The model can be applied to study these processes in various ways. To illustrate its applications, an example for optimizing grade transition is used. Certainly, the model can be readily extended to other applications. Changing grade is often required in polymer manufacturing processes to meet customer's demands. The transition disturbs the states of a polymerization process and may produce a large amount of off-spec product during transition period. This application illustrates the use of the developed dynamic model to evaluate alternative operating policies to minimize the transition period.

ABOUT THIS PROCESS

Polyethylene is the largest volume thermal plastic produced and used in the world. The polymerization is carried in a reactor containing gas ethylene monomer and comonomer with Ziegler-Natta solid catalyst particles under high temperature and pressure conditions. Ziegler-Natta catalysts are highly reactive and contain multiple sites and site types. Each site type has different reactivity and produces a polymer with distinct molecular weight. Polyethylene's end-use properties can be predictably varied by changing the density, average molecular weight correlated by melt index, and molecular weight distribution through manipulation of operating variables. For instance, different end-use properties of polyethylene can usually be achieved in terms of melt index and correlated density by adjusting the concentrations of monomer, comonomer, and chain transfer agent in the reactor.

PROCESS DEFINITION

The process flowsheet shown in Figure 4.1 consists of a two-phase CSTR, mixer, purge, heat exchanger, range splitter, and PID controllers for the temperature, level, and pressure. In the reactor, the polymerization reaction in the gas phase is assumed to be negligible, thus the reaction occurs only in the polymer phase. The Ziegler-Natta model in Polymers Plus is used to simulate important features of this type of reactions including site activation, chain initiation, chain propagation, chain transfer, site deactivation, site inhibition, branching reactions, etc. The dynamic behavior and control systems are developed with Aspen Custom Modeler models and the control loops are of a typical UNIPOL process.

Figure 4.1 Polyethylene Process Flowsheet

Process Conditions

The reactor is fed by catalysts, a mixture of monomer and comonomer, ethylene and butene. N2 is used as inert diluent and H2 as chain transfer agent. The recycle gas containing 61.6% volume of nitrogen has a constant volumetric flow. In the reactor, the phase equilibrium and ideal mixing are assumed. The polymer product is removed and the gas product is cooled with cooling water and recycled. The process conditions are summarized in Table 4.1.

Components	Name	Databank	Description
Ethylene	E2	PURE10	Monomer
Butene	Butene	PURE10	Comonomer
HDPE	HDPE	POLYPCD	Polymer
Ethylene segement	E-SEG	SEGPCD	Repeat segment
Butene segment	B-SEG	SEGPCD	Repeat segment
TiCl4	CAT	PURE10	Catalyst
C6H15AI	CCAT	PURE10	Co-catalyst
H2	H2	PURE10	Chain transfer
N2	N2	PURE10	Inert diluent
WATER	WATER	PURE10	Cooling agent
Feed	Flow Rate (kg/hr)	Temperature (°C)	Pressure (Bar)
GFEED: E2	1407.740	40	30
BUTENE	140.0		
H2	0.00650		
N2	2251.2		
CFEED: CAT	0.50	40	30
CCAT	0.50		
Unit Operations	Temperature (°C)	Pressure (Bar)	
REACTOR	90	30	
MIXER	40	30	

Table 4.1 Process Conditions

Physical Property Models and Data

The polymer Non-Random Two Liquid activity coefficient model (POLYNRTL) is used as the physical property method to calculate the properties required in the simulation.

Reactor / Kinetics

The reactor is modeled with a CSTR2P in the Aspen Custom Modeler Polymer model library. The model accommodates two phase, gas and liquid, with variable liquid holdup. It contains mass, energy, and moment balances and other equations for calculating the properties of polyethylene polymer such as melt index, density, number degree of polymerization, etc. The equilibrium is assumed between gas phase and liquid phase. Polymers Plus provides the thermal properties including partition coefficients. The reaction rates are also provided by the Polymers Plus reaction section. The reactions are based on one site of Ziegler-Natta polymerization kinetics which are listed as follows:

Reaction	k ₀	E _a (J/kmol)	Order
ACT-COCAT 1 CAT CCAT	9.03E5	8000.0	1.0
CHAIN-INI 1 E2	4.49E7	7000.0	1.0
CHAIN-INI 1 BUTENE	5.96E5	7000.0	1.0
PROPAGATION 1 E2 E2	4.49E7	7000.0	1.0
PROPAGATION 1 E2 BUTENE	1.50E6	7000.0	1.0
PROPAGATION 1 BUTENE E2	4.49E6	7000.0	1.0
PROPAGATION 1 BUTENE BUTENE	5.96E5	7000.0	1.0
CHAT-MON 1 E2 E2	1.5E3	7200.0	1.0
CHAT-MON 1 E2 BUTENE	1.5E3	7200.0	1.0
CHAT-MON 1 BUTENE E2	1.5E3	7200.0	1.0
CHAT-MON 1 BUTENE BUTENE	1.5E3	7200.0	1.0
CHAT-H2 1 E2 H2	5.6E7	8000.0	1.0
CHAT-H2 1 BUTENE H2	5.6E7	8000.0	1.0
DEACT-SPON 1	1.6E-6	1000.0	1.0

Process Studies

The developed model is highly versatile allowing examination of many aspects of the polyethylene process. Devising an operating policy for grade transition to minimize off-spec product during grade transition is provided as an example to illustrate the applications of the model. The following two tables specify the desired polymer properties and the required operating variables identified with the Polymers Plus steady state simulation.

Property	Grade 1	Grade 2
Melt Index	0.281	1.594
Density (kg / m ³)	932.8	901.1
MWN	80,154	48,665

Definition of grades in terms of melt index and density:

Required concentrations in the reactor:

Concentration	Grade 1	Grade 2
Butene	18.8E-3	52.3E-3
H ₂	2.133E-3	2.253E-3
Ethylene	0.3634	0.2874

In the beginning of the process, the Grade 1 polymer is produced. At a given time, the process is switched from the state for producing the Grade1 product to the state for producing the Grade 2 polymer. The first policy is implemented as an intuitive approach. The setpoints of three concentration controllers, Y3C1 for ethylene monomer, Y4C1 for butene comonomer, and Y5C1 for H2, are directly switched from the values for producing the Grade 1 to those for producing the Grade 2. The second is an overshooting policy. It assigns the setpoint of Y3C1 slightly lower than the value for producing Grade 2 and assigns the setpoints of Y4C1 and Y5C1 slightly larger than their values for producing Grade 2 for the predetermined periods. These three setpoints of the controllers, then, are switched to their states for producing Grade 2.

SELECTED SIMULATION RESULTS

Figure 4.2 shows the profiles of the three manipulated concentrations and Figure 4.3 displays the transient responses of the polymer properties under operating policy 1. The system takes more than 21 hours to achieve the steady state of Grade 2 from that of Grade 1 for both melt index and density.

Figure 4.2 Concentration Profiles with Operating Policy 1

Figure 4.3 Responses of Reactor with Operating Policy 1

Figure 4.4 shows the concentration profiles of ethylene, butene, and H2. The dynamics of polymer properties are plotted in Figure 4.5. Policy 2 achieves the steady state of grade 2 in 16 hours which is 5 hours less than that with policy 1.

Figure 4.4 Concentration Profiles with Operating Policy 2

Figure 4.5 Responses of Reactor with Operating Policy 2

REFERENCES

Debling, J. A., G. C. Han, F. Kuijpers, J. Verburg, J. Zacca, and W. H. Ray, "Dynamic Modeling of Product Grade Transition for Olefin Polymerization Processes," *AIChE J.*, **40**, No. 3, 506 (1994).

Scarola, L. S., "Basic Properties and Applications of LLDPE Produced by the Unipol Process," *Aplichem 1985*, Bratislava, Czechoslovakia, June 1985.

Xie, T., K.B. McAuley, J. C. C. Hsu, and D. W. Bacon, "Gas Phase Ethylene Polymerization: Production Processes, Polymer Properties, and Reactor Modeling," *Ind. Eng. Chem. Res.*, **33**, 449 (1994).

5 POLYVINYL CHLORIDE

DYNAMIC POLYMERIZATION PROCESS

SUMMARY

The polyvinyl chloride application simulates a typical batch suspension polymerization of vinyl chloride with Aspen Custom Modeler and Polymers Plus. The model simulates a fourphase batch reactor of polyvinyl chloride (PVC). The simulation shows the dynamic behavior of the polymerization process such as phase change and monomer distribution among the phases which will help you to gain a better understanding of this process. The simulation estimates several attributes of polymer including number and weight average molecular weight, number and weight of degree of polymerization, and polydispersity in both monomer and polymer phases. The PVC model may be used to train operators or it can serve as a state estimator of a PVC process. The model may also be applied for debottlenecking and optimizing the batch time for an existing PVC process to increase the throughput. The model can also be used to minimize the extent of initiator required and what cocktail of initiators to use to improve the overall productivity and profitability.

ABOUT THIS PROCESS

Polyvinyl chloride (PVC) is one of the oldest polymers and the second largest in volume thermoplastic manufactured in the world. Approximately 75% of the world's PVC is produced by the suspension polymerization process (Kiparissides, et al., 1997). In suspension polymerization liquid vinyl chloride monomer (VCM) containing oil soluble initiators are dispersed in the continuous aqueous phase by a combination of stirring and suspending agents. Reactor is heated to the desired temperature and reaction occurs in the monomer droplets. As soon as a small amount of polymer is formed, a separate polymer

phase is present because of very low solubility of PVC in VCM. As long as a monomer phase is present, the polymer phase is saturated with the monomer. Reaction takes place in both the monomer and polymer phases. The heat of polymerization is transformed from monomer droplets to aqueous phase and then to the reactor walls which are cooled by the cooling water. Reactor pressure is determined by the vapor pressure of monomer and it remains constant as long as a monomer phase is present. As soon as the monomer phase disappears, reactor pressure drops and batch operation is stopped after a certain predetermined pressure drop is reached.

Reactor model RBatch in Aspen Plus can be used to simulate a batch reactor. The RBatch model considers only one liquid and one vapor phase. Whereas the suspension PVC process has three liquid phases (monomer, polymer and water phases) and one vapor phase. Any model for a suspension PVC process should consider all four phases, and polymerization reactions in the monomer and polymer phases. Therefore the present model is developed in Aspen Customer Modeler considering all the important features of the PVC suspension polymerization process.

PROCESS DEFINITION

An Aspen Custom Modeler model is developed to simulate the suspension PVC process and considers four phases in the reactor: monomer, polymer, aqueous and vapor phases. Polymerization reactions are considered in the monomer phase and polymer phase. Polymerization reactions in the aqueous phase and vapor phase are assumed to be negligible.

Process Conditions

Table 5.1 shows the components considered in the simulation. Additional components can be readily added into the model.

Components	Name	Databank	Description
Vinyl chloride	VCM	PURE10	Monomer
Poly(vinyl chloride)	PVC	POLYPCD	Polymer component
Vinyl chloride segment	VCM-SEG	SEGPCD	Vinyl chloride segment
Dilauroyl peroxide	DLP	PURE10	Initiator 1
Diethylperoxydicarbonate	DEPC	PURE10	Initiator 2
Water	H2O	PURE10	Aqueous phase

Table 5.1 Process Conditions

The initial conditions of reactor are 60° C and 10 bar. The volume of reactor is 15 m³ with the initial 3.5 m³ of VCM and 7.0 m³ of water.

Physical Property Models and Data

The polymer Non-Random Two Liquid activity coefficient model (POLYNRTL) is used as the physical property method to calculate properties.

Reactor

The reactor model is developed from a DynPLUS three phase flash vessel, with the consideration of separate polymerization reactions in the monomer and polymer phases. At the start of the batch when there is no polymer phase, reaction occurs only in the monomer phase. The polymer produced forms a separate polymer phase. VCM, H2O, initiators and other species dissolve in the polymer phase according to the supplied partition coefficients. The phase equilibrium assumes no PVC is dissolved in the monomer and aqueous phases, and PVC generated in the monomer phase adds to the polymer phase. At the critical conversion where the monomer phase disappears, the polymer is produced only in the polymer phase. The total mass of polymer produced in each phase and the moments of molecular weight distribution in each phase are recorded for estimating the polymer properties. Reactor pressure determined by the vapor pressure of monomer remains constant until the monomer phase disappears.

Rigorous three phase flash calculations are performed for the vapor, monomer, and aqueous phases, and a partition coefficient is used to calculate the concentrations in the polymer phase. Thus the flash is performed excluding the polymer phase. NRTL parameters between polymer segments and other species are not required in this model. The model may have one feed and one vapor product stream used to attach a condenser system for accommodating a recycle. In addition, the temperature controller of the reactor may be replaced by an alternative heat removal system, e.g., heat exchanger.

Kinetics

The free radical kinetic scheme used in the model includes initiator decomposition, chain initiation, chain propagation, chain transfer to monomer, and chain termination. Gel effect, known as Trommsdorff effect, is applied to the termination reaction in the polymer phase. Except the termination rate constant and the gel effect, same rate parameters are used for the polymerization reactions in the monomer and polymer phases.

The units for the frequency factor are in SI units. The following gel-effect correlation was used in the model for the termination reaction:

$$GF = \left(\frac{A}{1 - a_9 X_p} \exp\left[-\left(BX_p + CX_p^2 + DX_p^3\right)\right]\right)^{a_{10}}$$

The effective rate coefficient for the termination reaction will be $k_{eff} = k_t * GF$.

The rate parameters and gel-effect parameters are from the article by Xie, Hamielec, Wood and Woods (Xie et al 1991).

	Frequency Factor	Activation Energy (J/KMol)	Activ	vation Volume (m ³)	
INIT-DEC DLP	1.44E15	1.274E8	0.0		
INIT-DEC DEHPC	7.45E15	1.245E8	0.0		
CHAIN-INI VCM	5.0E7	2.76E7	0.0		
PROPAGATION VCM VCM	5.0E7	2.76E7	0.0		
CHAT-MON VCM VCM	2.89E8	5.0618E7	0.0		
TERM-COMB VCM VCM	1.19E13	2.422E7	0.0	(Monomer Phase)	
TERM-COMB VCM VCM	5.0E13	2.422E7	0.0	(Polymer Phase)	
GEL-EFFECT TERMINATION 2 MAX-PARAMS=10 GE-PARAMS=1 0 2.57 & 0.00505 9.56 -0.0176 -3.03 .00785 0 2					
SELECTED SIMULATION RESULTS

As shown in Figure 5.1, PVC is only generated in the monomer phase at the beginning of the batch. After 1 hour, PVC generated in the polymer phase exceeds that generated in the monomer phase. Before the monomer phase completely disappears at two hours, the volume of monomer phase continuously decreases due to the consumption of monomers. At 65% conversion (2 hours), the monomer phase disappears. The pressure drops from 10 to 1 bar in an additional three hours when the conversion finally reaches 98%. A total off 3,600 Kg of polymer is generated by the end of the batch.

Figure 5.1 PVC Summary Results

Figure 5.2 displays VCM distribution in four phases. Initially, 3125 Kg (50 kmol) of VCM in the monomer phase is gradually reduced to zero while the VCM in the polymer phase increases as the volume of polymer phase increases and the polymerization proceeds to a 2 hour processing time. After the critical conversion where the monomer phase completely disappears, the VCM in the polymer phase is consumed causing the volume of polymer phase to shrink and reducing the pressure (less VCM in the vapor phase).

Figure 5.2 VCM Distribution in Four Phases (Kmol)

Figure 5.3 and Figure 5.4 show the attributes of polymer including number average molecular weight, number and weight of degree of polymerization, and polydispersity for monomer and polymer phases, respectively. Note that the properties of PVC produced in the monomer phase are unchanged after two hours because no PVC is produced in this phase.

Figure 5.3 PVC Properties in Monomer Phase

Figure 5.4 PVC Properties in Polymer Phase

Figure 5.5 demonstrates an application for debottlenecking a batch PVC process. It shows that the required cooling rate is constantly increased and reaches the maximum just before the VCM phase completely disappears at the critical conversion, therefore, the bottleneck of this process in terms of cooling rate is located. In order to increase production capacity, one must rate the existing cooling system that can accommodate the increase.

Figure 5.5 Utility Requirement

REFERENCES

Kiparissides, C., G. Daskalakis, D. S. Achilias, and E. Sidiropoulou, "Dynamic Simulation of Industrial Polyvinyl Chloride Batch Suspension Polymerization Reactors," *Ind. Eng. Chem. Res.*, **36**, 1253-1267 (1997).

Xie, T. Y., A. E. Hamielec, P. E. Wood, and D. R. Woods, "Experimental Investigation of Vinyl Chloride Polymerization at High Conversion: Mechanism, Kinetics, and Modeling," *Polymer*, **32**, 538 (1991).

6 EXPANDABLE POLYSTYRENE

BATCH POLYMERIZATION PROCESS

SUMMARY

The batch polymerization process illustrates the use of Polymers Plus and Aspen Custom Modeler to model the expandable polystyrene process. The batch reactor model considers two liquid phases and one vapor phase.

ABOUT THIS PROCESS

Manufacture of expandable polystyrene (EPS) involves two stages. During the first stage, polymerization of styrene is carried out in a stirred batch reactor at temperatures between 80 and 90°C using water as the dispersed phase. The volume ratio of water to monomer is in the range of 0.4 to 0.6. Monomer styrene is suspended in the form of droplets in the water phase and polymerization occurs in these droplets until the mixture reaches its glass transition temperature. The mean particle size is determined by the droplet coalescence and the droplet breakage caused by the agitation system. The particle growth is controlled by the aid of suspending agents which are usually inorganic powders such as tricalcium phosphate.

In the second stage, also known as the impregnation stage, a blowing agent, such as npentane, is loaded into the reactor and the agent diffuses into the beads. The residual monomer is polymerized using an initiator of half-life higher than the one used in the polymerization process. The batch reactor is operated at elevated pressures during the impregnation stage. A main manufacturing objective is to minimize the long batch times necessary to carry the polymerization to completion. Polymerization at higher temperatures as a means to increase productivity is not successful due to lower molecular weight of the polymer and the enhanced particle coalescence due to higher temperature. Addition of blowing agent influences the polymerization rate. The objective of plant engineers is to optimize the time of addition of the blowing agent and the extent of initiator needed to improve the overall productivity.

The reactor model RBatch in Aspen Plus can be used to simulate a batch reactor. But the RBatch model assumes only one liquid and one vapor phase. Whereas the EPS process involves two liquid phases (monomer and water) and one vapor phase. RBatch can be used if the following is assumed:

- Each drop in the reactor acts like a mini batch reactor
- There is no interaction between the two liquid phases
- The reactor is operated isothermally

The RBatch model can provide information about monomer conversion and the polymer molecular weight. To consider interactions between the two liquid phases and to address reactor controllability issues a dynamic model is necessary. This example uses Aspen Custom Modeler.

PROCESS DEFINITION

A dynamic model is developed to simulate the EPS process. The model considers two liquid phases and one vapor phase, and polymerization reactions are assumed to occur in the monomer phase. However the model can be extended to consider reactions in both the liquid phases. Phase equilibrium determines the concentration of all the components in all the three phases.

Process Conditions

The process conditions for the expandable polystyrene model are as listed in Table 6.1.

Components Benzoyl peroxide (BPO) Initiator Co-initiator (CINI) Dummy component for thermal initiation Ethyl benzene (EB) Chain transfer agent Dodecylmercaptan (DDM) Inhibitor Water Aqueous Phase Pentane Blowing agent Tricalcium phosphate (TCP) Suspending agent Polystyrene (PS) Polymer Styrene Segment (E-STY) Polymer segment

Table 6.1 Process Conditions

Physical Property Models and Data

The polymer Non-Random Two liquid activity coefficient model (POLYNRTL) is used as the physical property method.

Reactors / Kinetics

The free radical kinetic scheme used in the model includes chemical and thermal initiation (third order with respect to monomer), propagation, chain transfer, termination and gel effect applied to the termination reaction. The rate parameters used in the model are:

	Frequency factor	Activation Energy (J/KMol)	Activation Volume (m ³)	
INIT-DEC BPO	3.816E12	1.1396E8	0.0 EFFIC=.60 NRADS=2	
INIT-SP	2.19E5STY CINI	1.1480E+08	0.0	
CHAIN-INI STY	1.02133E7	2.9570E+07	0.0	
PROPAGATION STY STY	1.02133E7	2.9570E+07	0.0	
CHAT-MON STY STY	1.021E+07	5.6280E+07	0.0	
TERM-COMB STY STY	1.2583E9	7017000.0	0.0	
INIT-SP-EFF STY COEFFA=0.0 COEFFB=3.0 COEFFC=0.0				
GEL-EFFECT TERMINATION 2 MAX-PARAMS=10 GE-PARAMS=1 0 2.57 & 0.00505 9.56 -0.0176 -3.03 .00785 0 2				

The units for the frequency factor are in SI units. A co-initiator which is required for thermal initiation is included in the list of components. The feed rate of co-initiator is set to zero so that it will not influence the thermal initiation rate. The following gel-effect correlation was used in the model for the termination reaction.

$$GF = \left(\frac{A}{1 - a_9 X_p} \exp\left[-\left(BX_p + CX_p^2 + DX_p^3\right)\right]\right)^{a_{10}}$$

The effective rate coefficient for the termination reaction is $k_{eff} = k_t * GF$

The rate parameters and gel-effect parameters are from the reference Hui and Hamielec (Hui and Hamielec, 1972).

Dynamic Model

The dynamic model is based on the library model CSTR2P and is modified to consider two liquid phases and one vapor phase. Input and output flow rate in the reactor model were set to zero to simulate a batch reactor. The reactor conditions are:

Initial charge:

Styrene	100 Kg
Initiator	0.3 Kg
Water	150 Kg

Reactor temperature is maintained isothermally at 900°C by the controller and the jacket temperature is fixed at 200°C. The phase equilibrium constants obtained from the Aspen Plus model are specified in the model. We assume K values for BPO, CINI, EB, DDM, pentane are the same as those for styrene. K values for TCP are same as those for water. Polystyrene is assumed to negligible in the aqueous phase.

	Organic phase (K1)	Aqueous phase (K2)
Benzoyl peroxide (BPO)	0.177	1086.0
Co-initiator (CINI)	0.177	1086.0
Styrene (STY)	0.177	1086.0
Polystyrene (PS)	0.177	10860.0
Ethyl benzene (EB)	0.177	1086.0
Dodecylmercaptan (DDM)	0.177	1086.0
Water	53.6	0.7
Pentane	0.177	1086.0
Tricalcium phosphate (TCP)	53.6	0.7

Reactor heat transfer coefficient and heat transfer area are assumed to be 2.0×10^{-3} kW/m²/h and $0.2 \text{ m}^2/\text{m}^3$. These variables can vary depending on the heat transfer medium and the reactor geometry.

SELECTED SIMULATION RESULTS

Figure 6.1 shows a plot of conversion as a function of time and Figure 6.2 shows the number and weight average molecular weight for the batch polymerization process.

Figure 6.1 Monomer Conversion

Figure 6.2 Number and Weight Average Molecular Weights vs. Time

REFERENCES

Hui, A. W and A. E. Hamielec, "Thermal polymerizations of styrene at high conversion and temperatures. An experimental study," *J. Appl. Polym. Sci.*, **16**, 749-769 (1972).

Marco A. V., A. E. Hamielec and P. E. Wood, "Bulk and suspension polymerization of styrene in the presence of n-pentane. An evaluation of monofunctional and bifunctional initiation," *J. Appl. Polym. Sci.*, **50**, 327-343 (1993).

COMMENTS

Name	
Title	
Company	
Address	
Telephone	
	What did you like most about this Case Book?
	What did you like least about this Case Book?

What improvements or changes would you like in this Case Book?

What specific topics would you like included in this Case Book?

If you found any errors in this Case Book, list the error and page number:

Additional comments:

Forward this form to:

Aspen Technology, Inc. Attn: Polymer Technology Coordinator Ten Canal Park Cambridge, Massachusetts 02141 USA Telefax: +1-617/949-1030