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m Abstract Anumber oftechnological innovations are yielding unprecedented data
on the networks of biochemical, genetic, and biophysical reactions that underlie cel-
lular behavior and failure. These networks are composed of hundreds to thousands
of chemical species and structures, interacting via nonlinear and possibly stochastic
physical processes. A central goal of modern biology is to optimally use the data on
these networks to understand how their design leads to the observed cellular behaviors
and failures. Ultimately, this knowledge should enable cellular engineers to redesign
cellular processes to meet industrial needs (such as optimal natural product synthesis),
aid in choosing the most effective targets for pharmaceuticals, and tailor treatment for
individual genotypes. The size and complexity of these networks and the inevitable
lack of complete data, however, makes reaching these goals extremely difficult. If it
proves possible to modularize these networks into functional subnetworks, then these
smaller networks may be amenable to direct analysis and might serve as regulatory
motifs. These motifs, recurring elements of control, may help to deduce the structure
and function of partially known networks and form the basis for fulfilling the goals
described above. A number of approaches to identifying and analyzing control motifs
in intracellular networks are reviewed.
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INTRODUCTION

One of the major challenges in the “postgenomic era” will be to deduce the behav-
ior of genetic and biochemical networks. In order to grapple with their size and
complexity, we need a conceptual framework to organize and analyze these sys-
tems. A challenge is that, unlike most physical systems, there are often too many
ambiguities in biological systems for direct analytical or numerical analysis. One
possible strategy is to use tools and concepts from the engineering sciences, con-
trol and systems theory in particular. Unlike in physical systems, we can invoke
teleological arguments in biology: Networks have evolved to perform a physi-
ological function. In this regard, engineered and biological systems share many
common properties. A significant degree of the complexity in biological networks,
however, cannot be attributed solely to the function itself, but rather to ensuring
that the network performs robustly despite uncertain environments (cf. (1)). Any
successful framework for analyzing biological networks, therefore, needs to ad-
dress how systems perform robustly in an uncertain and dynamic environment.
Furthermore, system failure, for both biological and engineered systems, can arise
either from explicit loss in function, leading to total failure, or from a breakdown

in the regulatory system, leading to more erratic failure observed in many genetic
diseases (e.g. (2)). Thus, one needs to focus on the regulatory properties of the
network.

In order to facilitate a functional and control approach for analyzing biological
networks, many researchers have recently advocated a modular approach (3-5).
A modular decomposition provides a convenient abstraction for deducing the be-
havior of complex networks (6, 7). A module is defined loosely as a subsystem
whose function is separable from the function of other modules. One of the central
challenges in biological control analysis will be determining the best ways to mod-
ularize a particular network or process. Consider, for example, gene expression
in prokaryotes. We can view gene expression as a module, because its function
is discernible from other physiological processes. Simultaneously, we can further
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Figure 1 A hierarchical decomposition of gene expression in prokaryotes.

decompose gene expression into a subset of separable functional modules (see
Figure 1), thus illustrating the hierarchical organization of a modular decomposi-
tion. Likewise, we can view abstract gene expression as a parameterizable module
thatis used in multiple networks. This module is instantiated frequently in different
pathways (e.glac and arginine biosynthesis). These instantiations may be more
or less similar to each other. For examgeg; and ara have similar regulatory
mechanisms. At each level of the modular hierarchy, different mathematical mod-
els and different data may apply. Modules are now defined rather haphazardly.
They may be defined as pathways such as glycolysis or the pentose phosphate
cycle, by a class of functions such as “signal transduction” or “metabolism,”
by stoichiometric structure such as a “moiety-conserved” cycle, or by structural
class such as “G-protein coupled signal transduction,” etc. There are also more
mathematical definitions of modules that define whether or not mass/energy flows
between modules or only information. These are complementary ways of decom-
posing networks and each proves useful in different situations. However, a more
formal approach for classifying subnetworks is in order.

Well characterized functional modules exist for a number of biological sys-
tems. We can begin to understand the principles governing intracellular regulation
by understanding the different regulatory mechanisms used by functional mod-
ules. By analyzing the regulatory mechanisms in different functional modules, we
may distill and catalogue recurring themes in regulation. We call these recurring
themes “regulatory motifs.” These motifs include both the biochemical mecha-
nisms and the network topology used in control. Examples of regulatory motifs
include autoregulation in gene expression and feedback inhibition in metabolism.
These motifs should facilitate our investigations by uncovering some of the design
principles involved in intracellular regulation. We may speculate, furthermore,
that conserved motifs may have been selected for by evolution (cf. (8)). We may
also begin to ask questions such as: what does this motif accomplish, why has this
motif evolved rather than other motifs, why is the network more complex than
it apparently needs to be, and how do different organisms instantiate a common
motif for a given physiological process? The goal is to develop insight into how
intracellular networks operate and are regulated.
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Implicitis the use of computer simulation and mathematical analysis to elucidate
the behavior of biological networks. The complexity of these networks and the
increasing availability of data have led to a resurgence of interest in applying
mathematical and engineering analysis to biological problems. From the dawn
of modern systems theory, researchers have recognized the potential of applying
engineering analysis to biology (9, 10). Whereas in the past, there were few data
and fewer characterized systems amenable to analysis, today we find ourselves with
the opposite problem. With the recent explosion in high-throughput technologies
such as high-density oligonucleotide arrays for exploring the genetic regulatory
architecture of the cell (cf. (11-14)) and the availability of extensive databases
cataloging genes, proteins, and metabolic pathways (cf. (15-18)), we are no longer
limited by the availability of experimental data. The challenge, rather, is to interpret
and integrate all of the data available. The volume and complexity of the data
necessitate computational and mathematical analysis (19). Whether these data are
sufficient to deduce the behavior and regulatory properties of cellular physiology
remains an open question.

The aim of this chapter is to review the current means by which intracellular
networks are analyzed. Our review is not comprehensive and highlights only a
fraction of the exciting work in this nascent field. For an alternative perspective,
the reader is directed to the review articles (3, 20—24). Our review is organized
as follows. In order to demonstrate what is meant by a regulatory motif, we first
present a series of regulatory models, each representing a functional module or
different physiological process. Each model describes a different example of a
regulatory motif from the perspective of a control or systems engineer. These
are all examples of “reverse engineering” wherein the function and structure of a
network is deduced from data. Forward engineering methods, wherein a network is
designed to meet certain specifications, also provides a route to understanding how
to implement control strategies in biological media. In all cases three questions are
addressed:a) What is the control process that the cell is expressibyPiOw is
this control implemented by the network of molecular interactions? enidgw
can the same control motif be instantiated using different molecular networks?
Indeed, we seek to focus on the regulatory properties instead of the functional
properties of the network. We conclude by offering our perspective on some of the
challenges to forward and reverse engineering biological systems.

MODELS OF CELLULAR REGULATION

Control and dynamic analyses of a number of central processes are outlined in
this section. Examples are chosen both because they are rather well-worked out
systems and because they are each representative of some canonical control task
that might be amenable to systems analysis. These examples are: (1) metabolism,
an example of continuous, deterministic control largely directed to maintenance
of homeostasis, (2) bacterial chemotactic signal transduction as an example of a
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signal detection, amplification, and tracking problem, (3) type-1 phase variation in
Escherichia coland the phagelysis/lysogeny decision as two examples of genetic
switches, (4) T7 growth dynamics as an example of a linear manufacture control
process, (5) the cell cycle as an example of a periodic scheduling process, and
(6) gene expression networks as an example of how different levels of abstrac-
tion can be used to analyze network dynamics. This is far from a complete list of
interesting control phenomena and their possible physical implementations. How-
ever, we hope they may serve as a starting point for others interested in biological
systems analysis.

Metabolism

Metabolism is analogous in many ways to a chemical plant or an oil refinery
(25). In both systems, there are a large number of products simultaneously being
decomposed and synthesized. Both processes are highly integrated and use energy
derived from certain reactions in order to drive other reactions. Also, the concept of
flux in metabolism is equivalent to flow rates in a chemical process. Both processes
use a complex series of nested and cascaded feedback loops to ensure proces:
flexibility and resiliency in the face of environmental changes and demands. In
metabolism, feedback inhibits the excessive buildup of intermediate metabolites
and maintains balanced growth. Similarly in chemical processes, feedback prevents
intermediate operations from overloading and maintains an optimal and balanced
distribution of products. In both systems, the dominant regulatory motif is negative
feedback by end-product inhibition. Furthermore, many of the questions we ask
in chemical process control can also be directed toward metabolic regulation.
Several common questions arise in chemical process analysisgZBy feedback

loops interact with other feedback loop&} Kow are feedback loops decoupled?

(c) How are feedback loops integrated? ad{l (Vhat are the effects of recycling
metabolites and enzymes?

Understanding the mechanisms involved in metabolic regulation has important
implications both in biotechnology and in medicine. For example, any rational
attempt to engineer metabolism, say to redirect metabolic flux for the production
of key metabolites or for enzyme-replacement gene therapy, requires at least an
elementary understanding of how metabolism is regulated (27, 28). Increasing
the expression of a single “rate-limiting” enzyme or inhibiting the flux through a
particular branch does not always yield the desired change in flux, as the network is
resilient to local changes (29, 30). Redirecting flux often requires a directed change
in the activity of many enzymes (cf. (31)). A goal in unraveling the mechanisms
in metabolic regulation is to understand the effect of an individual enzyme or
metabolite on the global properties of the integrated pathway.

Many of the reactions constituting metabolism have been characterized for a
number of organisms (cf. (32)), and kinetic models have been developed for many
different aspects of metabolic regulation (for a review see (23, 33—-35)). Examples
include the glycolysis/gluconeogenesis switch (36), red blood cell metabolism
(37-40), and metabolism Mycoplasma genitaliurd1). Still, little is known as
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to how these integrated pathways are regulated. The complexity of these pathways
has led to the development of numerous strategies for investigating the distribution
and the control of flux in metabolism.

The reactions constituting metabolism in a particular cell form a complex net-
work through which flux is distributed. One can characterize all possible distri-
butions by analyzing the mass-conversion stoichiometry of the overall reaction
network. This approach is known as flux balance analysis. The stoichiometry
defines geometrically a nonnegative convex cone characterizing the feasible path-
ways through the network. One can explore the geometry of this convex cone using
linear programming and speculate as to how flux is distributed for optimal growth
(e.g. (42)) and redistributed to maintain balanced growth when certain pathways
are eliminated (e.g. (43, 44)). This analysis, in some ways, resembles network flows
in systems engineering (45). However, the extent of this analysis is limited when
applied to the regulation of metabolism, as illustrated in the following example.

Consider the following branched pathway:

ol
~

D

The flux in this pathway is distributed between the pathwlys C andB — D.
If the productCis necessary for growth, then we expect flux through pathsvay
C. Ifwe eliminate pathwa — D, then all of the flux is directed through pathway
B — C. That is the extent of stoichiometric analysis, though how to maximize
flux for larger, more constrained systems is more complex. Nowhere is regulation
considered, even though it can profoundly affect the distribution and redirection of
flux (29). For example, suppose the metabditgositively regulates an enzyme in
pathwayA — B; then by eliminating pathwa3 — D one may actually reduce
the flux through pathwayd — C. Though trivial, this example demonstrates a
limitation of flux balance analysis. One also can use stoichiometry to decompose a
network into a set of elementary flux modes or extreme currents (cf. (46—49)). These
elementary modes define a unique set of independent routes through the metabolic
network. Inthe example above, the two elementary modes aseC andA — D.
Itis not self-evident what role elementary modes have in metabolic regulation. Are
these the “controllable” pathways of the network? Although stoichiometry alone
provides little insight into the regulatory mechanisms in metabolism, it plays an
important role in metabolic control analysis and the structural stability of reaction
networks (cf. (46, 50, 51)).

Metabolic control analysis (MCA) (52, 53) measures the quantitative effect of
an individual enzyme on the pathway flux and metabolite concentrations. The cen-
tral concept in MCA is the control coefficient, a first-order measure of the change
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in steady-state flux relative to a change in the reaction activity. There is also the
related concept of an elasticity coefficient, a first-order measure of how an iso-
lated enzyme or metabolite affects the reaction activity. The control coefficients
describe the global properties of enzymatic activity, whereas the elasticity coeffi-
cients describe the local properties of enzymatic activity. Two theoretical results
known as the summation and connectivity theorems relate the control coefficients
(global network properties) to the elasticity coefficients (local network properties),
thus allowing one to infer the effect of enzymatic activity on the overall pathway
solely from its isolated effect on each reaction. One limitation of MCA is that it
provides information only locally around a stationary regime, though strategies
exist that extend its range. There is a large body of research in MCA that we do
not attempt to survey. The reader is directed to the articles (54, 55) and the books
(56, 57) for an overview of MCA. Many of the concepts of MCA are similar to
classic control theory. By defining a transfer function for each reaction, analogous
to the elasticity coefficient in MCA, one can determine the closed-loop properties
of the system and, indirectly, the control coefficients. We note finally that the use
of isotope labeling and nuclear magnetic resonance (NMR) for quantifying flux in
vivo (cf. (58-61)) coupled with flux balance analysis and MCA offers tremendous
potential for analyzing the regulatory properties of metabolism outside of large
dynamic changes.

Signal Transduction: Bacterial Chemotaxis

Chemotaxis is the process by which cells move and respond to changes in their
environment (62) and, thus, is an example of signal transduction. From an engi-
neering perspective, chemotaxis is a biological example of guidance control and
signal amplification. Furthermore, microbial chemotaxis demonstrates how bac-
teria accommodate physical limitations associated with their size. In particular,
bacteria are unable to sense concentration gradients spatially owing to their small
size and can only sense temporal changes (63). Bacterial chemotaxis, therefore,
requires a rudimentary form of memory (64). Bacteria also sense gradients over a
wide range of concentrations, far in excess of what is expected from their limited
number of receptors. A related feature of chemotaxis is adaptation: Bacteria re-
spond only to changes in their environment rather than to the absolute state of their
environment (65). Bacteria are also incapable of precise motion. Motion, rather, is
analogous to a biased random walk. Bacteria control their motion by alternating
between runs, where the cell moves in a relatively straight direction, and tumbles,
where the cell randomly changes direction. Chemotaxis, therefore, possesses a
number of interesting control issues.

Figure 2 is a rough schematic of the basic intracellular network controlling
chemotaxis irk. coli (cf. (66—68)). Numerous models of chemotaxis have been
proposed over the years (69—75). One of the main difficulties in modeling chemo-
taxis is providing a mechanism for adaptation, namely, the restoration of prestim-
ulus behavior in the presence of attractant or repellent. The first two models to
achieve a mechanistic description of adaptation were proposed by Hauri & Ross
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Figure 2 The chemotaxis signal transduction pathway for aspartate response in
E. coli. When aspartate binds to the receptor, its activity decreases and the correspond-
ing rate of CheA autophosphorylation also decreases. Consequently, the rate CheY and
CheB phosphorylation decrease. Decreased levels of CheY-P increase the likelihood of
counter-clockwise rotation (run), as the binding of CheY-P to motor induces clockwise
rotation (tumble). Decreased levels of CheB-P cause an increase in receptor methyla-
tion, as CheB-P removes the methyl groups from the receptor. Activity increases with
the degree of receptor methylation and eventually returns to the prestimulus value, thus
yielding adaptation. In the full system, there are different stimulants and a plethora of
receptors. These signals must be integrated to steer the cell.
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(72) and Spiro and coworkers (73). To achieve adaptation, the parameters in both
models had to be finely tuned. Barkai & Leibler subsequently proposed a model,
which was later expanded by Morton-Firth and coworkers (75), where exact adap-
tation does not depend on the parameterization of the network, but rather appears to
be a robust property of the network. Using an elementary model of the methylation
dynamics, Barkai & Leibler demonstrate that adaptation holds over a wide range
of parameter values. In a subsequent paper (76), Leibler and coworkers experi-
mentally validated the central hypothesis of their model: that adaptation is a robust
property of the network. We note that although adaptation is a robust property of
the network, chemotaxis may not be. The response time varies widely as a func-
tion of the kinetic parameters and protein concentrations, thus suggesting that the
bacteria may be unable to find food sources or avoid repellents because they over-
run their target or because they simply respond too slowly. Further work is needed
to address this issue.

How does the network confer robustness? The model proposed by Barkai &
Leibler demonstrated the effect but did not put it in an engineering context. Yi
and coworkers (77) analyzed the chemotaxis network and demonstrated that it
possesses an integrator. Their analysis was motivated by the “internal model prin-
ciple” of control theory (78, 79), which states that a controller must contain a model
of any disturbance it rejects or signal it tracks. One interpretation is that in order to
adaptively respond to one’s environment, one has to anticipate all possible contin-
gencies (the internal model). For bacterial chemotaxis, a model in the form of an
integrator is necessary for adaptation, where the contingencies are different con-
centrations of attractant and repellent. Loosely speaking, the integrator is realized
by the degree of methylation. As more attractant is sensed, the receptor complex is
increasingly methylated. Likewise, if the bacterium senses less attractant, then the
receptor complex is demethylated. The degree of methylation, therefore, provides
a record of the past environment. Using this concept from control theory, receptor
methylation is the bacterium’s internal model of its environment. The bacterium
decides whether to run or tumble by comparing the relative degree of receptor
occupancy to the degree of receptor methylation: Are the current environmental
conditions more favorable than they were? If so continue running, else tumble. This
decision process demonstrates how bacteria are able to respond to gradients rather
than the absolute state of their environment. Robustness is conferred by the mecha-
nism of an integrator. The activity of the chemotaxis proteins (the parameters in the
model) affects the dynamics of adaption, not the steady-state behavior. Although
we expect that the dynamics have evolved for optimal chemotactic response, exact
adaptation is a general network property and not a result of the specific param-
eterization. Robustness has also been demonstrated in networks such as phage
A (80), circadian rhythms (81), and segment polarity developmeBDtasophila
(82). These examples suggest that many regulatory properties are conferred solely
by the network topology. We emphasize, however, that the network topology is
not defined by the stoichiometry, or mass conservation, alone, as stoichiometry
does not describe the regulatory properties of the network. Rather, the network is
characterized by both the stoichiometry and the regulatory architecture.
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Different species of bacteria employ different mechanisms for swimming such
asRhodobacter sphaeriodeshich has a single flagellurBjnorhizobium meliloti
which is lophotrichously flagellated (83), aMi/xococcus xanthysvhich uses an
unknown mechanism for gliding motility. One would expect, however, Baeil-
lius subtilis which employs the same mechanism for swimmindeasoli, also
possesses the same signal transduction pathway to mediate chemotaxis. Although
the underlying design principles are the same and the regulatory motif is similar,
the biochemical instantiation is differem. subtilispossesses homologues to the
E. coli proteins Tar (McpB), CheA, CheB, CheR, and CheY. There are also three
additional proteins not found i&. colithat are implicated iB. subtilischemotaxis:

CheV (84), CheC, and CheD (85, 86). There is no analogue to the phosphatase
Chez inB. subtilis though the receptor protein McpB contains a conserved region
of CheZ (JR Kirby, personal communication). There are at least four functional
differences between the chemotaxis pathwag.igubtilisandE. colithat suggest

a different control strategy: (1) phosphorylated CheY (CheY-P) induces counter-
clockwise rotation rather than clockwise rotatiomirsubtilis(87); (2) methylation

is selective and the total number of methylated sites remains constant at steady
state, whereas there is a net change in receptor methylation upon addition of at-
tractants or repellents iB. coli (88); (3) CheY-P facilitates selective methylation
(89); and (4) mutants lacking the receptor methylatioBirsubtilisbehave dif-
ferently from the correspondirig. coli mutants (89). As the complete mechanism

for chemotaxis irB. subtilisis currently unresolved, we can only speculate on the
underlying mechanism. However, from the work of Yi and coworkers (77),
we know adaptation requires an integratorBncoli, the integrator is realized
biochemically by the degree of methylation. WhereaB.isubtilis the integrator

is realized apparently by the number of methyl groups at one sité ({telative

to a second site (Gfd").

If we understand the design principles, then we may postulate the mechanism
with a limited number of experiments. In the case of chemotaxis, exact adaptation
requires an integrator. Indeed, if this sort of zero-offset control is observed, then
there is necessarily integral feedback. The chemotaxis pathwysubtilis and
in any other organism, must satisfy this constraint. When we study chemot&xis in
subtilis, one of the first questions we need to answer is how Bosabtilisrealize
an integrator. We can also assume that lthubtilisandE. coliemploy similar
regulatory motifs. As we have a model Bf coli chemotaxis, we can employ
comparative analysis to facilitate our investigations and direct future experiments.
This example illustrates the benefits of identifying necessary conditions in control
and ways in which new control laws are realized.

(Genetic) Switches: DNA Inversion and
Cross-Regulatory Feedback Loops

In response to their environment, cells are capable of existing in many different
physiological states. In many cases, different states are separated from each other



INTRACELLULAR REGULATORY NETWORKS 401

through the use of switches that allow cells to turn on and off different subsystems.
Some of these switches, such as those underlying metabolic pathway choice, are
reversible in that when the environmental stimulus is removed the cell returns to
its basal state. Other switches, such as those underlying cellular differentiation, are
irreversible or hysteretic such that the cell retains (at least for a while) the memory
that the stimulus had been seen in the past. Switches are implemented in a large
number of ways by cells; however, for most long-term changes switches involve
the action of genetic networks. Even genetic switches are realized by a number of
different control motifs. From an engineering perspective, switches are analogous
to hybrid controllers utilizing propositional logic. A typical example is a failsafe
mechanism that is triggered when either safety thresholds are violated or operating
conditions change (26). These systems are ubiquitous in most control applications.
Here we discuss two examples in order to show the different physical mechanisms
by which genetic switches may be implemented. The first switch is the type-1 pili
phase-variation switch i&. coli. This involves the mechanical rearrangement of
the genome and is conceptually like an electrical knife-switch. The second switch
is the A phage lysis/lysogeny switch, which is implemented by cross-repressive
feedback loops that look very much like an electronic latch. Both switches are
stochastic, underlining the single-molecule nature of the DNA medium in which
they are implemented.

The type-1 pili phase variation dim switch inE. coliillustrates the dynamic
nature of the genome. Tlien switch in pathogeni€&. coli controls the expression
of type-1 pili used for adherence to and invasion of host tissue and is thought
to be a virulence factor in urinary tract infections. Expressiorirofis phase
variable: Individual cells in the population alternate randomly between a piliated
and nonpiliated state. This heterogeneity is necessary to guarantee a sufficiently
large population of piliated cells for host tissue invasion, but not too large such that
the colony cannot effectively spread or is vulnerable to the host's immune response
to the pili antigen. Thdim switch is temperature and nutrient sensitive, yielding
apparently optimal heterogeneity for different environmental conditions (90). Pili
expression is controlled by the orientation of a 314bp invertible element containing
the promoter for the pili structural genfis A-fim H(91). A proposed regulatory
model for a minimal network, diagrammed in Figure 3, describes random phase
variation in type 1 pili expression (DM Wolf & AP Arkin, unpublished results).

The phage. switch controls the decision for lytic or lysogenic growth in re-
sponse to extracellular signals (93). Figure 4 diagrams the core genetic switch,
though the actual regulatory mechanism controlling the lysis/lysogeny decision is
far more complicated (94). The switch is comprised of three operator sites control-
ling the promoter$ g and Pr. The Cro and Cl dimers bind to the three operator
sites and control the activity of the two promoters. The switch is realized by the
two antagonistic feedback loops: The Cro dimer represses the expressibn of
and the CI dimer represses the expression ottbeThe switch is also stochas-
tic. Molecular fluctuations due to low protein concentrations leads to population
heterogeneity even with identical initial conditions (cf. (94, 95)).
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Figure 3 The genetic network controlling the expression of type-1 pitircoli. The
expression of the type-1 pili structure gene is controlled by the orientation of a 314bp
invertible element. The switch is inverted independently by two recombinases FimB
and FimE (92). Orientation is controlled by the expressiofiroE, which preferen-

tially inverts the switch to the off position, relative to the expressiofiroB, which
demonstrates no bias. The expressiofiimE andfimB is controlled by the protein
H-NS, whose expression is directed by a temperature sensitive repressor. The protein
LRP, in dimer form, can bind to one of three sites on the invertible element facilitating
inversion by bending the DNA segment. This effect is amplified when LRP binds with
leucine. The protein IHF plays a supporting role in inversion. In this model, temper-
ature and leucine concentration are the primary environmental controls through the
expression of H-NS and the formation of the LRP-leucine complex. The nutritional
content of the media also directs the expression of LRP.

One may compare tHan switch with the genetic switch controlling lysis and
lysogeny in phagé. Unlike thefim switch, the regulatory motif for the phage
switch uses two divergent promoters regulated by two antagonist feedback loops.
In particular, thefim switch is realized by physically inverting a DNA element,
whereas the phage switch is realized by crossed feedback. Both the divergent
promoters of phagé and the DNA inversion of type-1 pili phase variation are
common motifs. An example of another divergent promoter igtyepili phase
variation system. Another example of DNA inversion is flagellin phase varia-
tion in Salmonella typhimuriutrComparing and contrasting how control of these
switches differ for different tasks should elucidate design tradeoffs and evolution-
ary selections of these different implementations.

Why have these two systems evolved different control motifs to regulate an
environmentally sensitive developmental switch? One possible explanation is that
the fim switch is either on or off, whereas the phagewitch is fuzzy. Even
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Figure4 The genetic network implementing the core bistability in the phageitch

in E. coli. The three operator sit€3R1-3control the promoterBry andPg. The Cro

and CI dimers competitively bind to the three operator sites with different affinities.
The Cro dimer represses tRgy promoter by binding to the operator site OR3 and,
consequently, represses the synthesis of Cl. The Cl dimer activatégyipgomoter,
represses thieg promoter by cooperatively binding to the operator sites OR1 and OR2,
and consequently represses the synthesis of Cro. The net result is a pair of antagonistic
feedback loops that yield a bistability. Control of this bistability is located nearby in
the genome.

though there is a random element to five switch, the dynamics are relatively
slow: Recombination occurs in at most 30% of the cells per generation. One might
speculate that th&m motif is selected when concrete decisions are necessary,
whereas the phage motif is selected for when the sole objective is to bias the
fate. As many issues regarding the population dynamids. afoli piliation are
unresolved, the answer to this question is still open to debate.

T7 Growth Cycle

The life cycle of a virus is analogous to an assembly line. Numerous components
need to be assembled for the virus to replicate. Furthermore, the virus needs to
schedule each task in order to maximize growth rate, as certain components are
needed to assemble others. Scheduling problems arise also in most manufacturing
processes. The question one seeks to answer is how to schedule each task in ordel
to maximize efficiency.

Endy and coworkers (96) recently developed a detailed chemical-kinetic model
of the infection life cycle of bacteriophage T7 i coli that predicts the intra-
cellular dynamics of 57 phage gene products. T7 growth is partly regulated by
the timing of insertion of phage DNA into the host cell. The life cycle may be
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divided into three periods characterized by the expression of three different classes
of gene. The class | genes initiate infection, the class Il genes encode the phage
DNA replication machinery, and the class Il genes encode the phage particle and
packaging proteins. The ordering of the phage genome, therefore, regulates phage
replication. Furthermore, the transition to the second growth period is moderated
by the T7 RNA polymerase. Once the T7 polymerase, encoded by a class | gene, is
synthesized, it pulls the remainder of the genome into the host cell. Ordering of the
genome provides a weak checkpoint in the T7 life cycle ensuring optimal growth.
An analogous regulatory motif is used Balmonella typhimuriunm flagellar
biosynthesis, where there is an ordered expression of three classes of genes (97).
Unlike T7 though, the checkpoints are precise. Class Il genes are not expressed
until the genesin class | are functional. Likewise, Class Il genes are not expressed
until the genes in class Il are functional.

In a subsequent paper, Endy and coworkers (98) investigated the effects of
removing the scheduling enforced by the gene ordering on the genome by demons-
trating computationally and experimentally how growth is affected by shuffling
this order. Their model predicts that the natural ordering is nearly optimal, so long
as the gene encoding the phage polymerase (gpl) is kept within the vicinity of
the class | genes. Although their model occasionally predicted increased growth
rates for certain permutations of gp1, the corresponding experiments using mutant
phage appear to confirm the optimality of the natural ordering of the genome,
though there are questions regarding the viability of these mutants. Remarkably
though, a significant populatior=60%) of the mutants yield progeny, though
at a retarded growth rate, suggesting a degree of robustness in the organization
of the genome. These results are consistent with many scheduling problems for
manufacturing, where the solutions are not always unique and many suboptimal
solutions exist.

Having used their models to investigate control of phage life by its endogenous
network, Endy and coworkers used their kinetic model to investigate optimal an-
tiviral strategies using antisense RNA targeted toward different T7 gene products.
They were able to identify optimal targets for antisense strategies, thereby retard-
ing the growth rate of T7. Interestingly, certain gene targets yielded increased
growth as they exerted negative feedback on the phage RNA polymerase. In a sub-
sequent paper, Endy & Yin (99) addressed the question of drug resistance. They
demonstrated that certain gene targets, in particular the gene encoding the phage
polymerase, cannot evolve resistance without first being at a selective disadvan-
tage. In this sense, their drug target is robust. A novel feature of their analysis is
that they considered the regulatory mechanisms in T7 infection. One limitation of
their approach is that evolution does not proceed in a continuous fashion but rather
in discrete steps, thus challenging the robustness of their design. Regardless, we
believe their analysis is an important step toward the rational selection of targets for
drug design. This series of papers demonstrates how understanding the control
mechanisms of a particular biological system can also aid in design of external
control strategies (pharmaceutical interventions).
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Cell Cycle

Another control issue that arises when scheduling many periodic processes are
checkpoints: One needs to verify that each task is completed before the next
task begins or the next batch is processed. These problems arise in the batch
processing of specialty chemicals and pharmaceuticals and also in the design
of asynchronous electronic circuits. These control systems are designed to pre-
vent new tasks from beginning before the previous tasks are complete. The or-
dering of the genome in T7 enforces checkpoints between the three classes of
genes. Another example of the use of checkpoints is in the cell cycle. This prob-
lem is periodic and is an example of how regulatory failure may lead to disease
(100).

The eukaryotic cell cycle is divided into four phases: 8ghase (DNA repli-
cation), theM phase (mitosis), and intervening phasesandG,. Being a free
oscillator, precise, ordered control of the cell cycle is needed for viability, thus
necessitating a series of checkpoints. Thg' S checkpoint ensures that the cell
has divided since the previous round of DNA replication, that the cell is large
enough to proceed with replication, and that the environmental conditions are
suitable for mitosis. Th&,/M checkpoint ensures that DNA replication is com-
plete and any DNA damage has been repaired. Any failures in checkpoint control
leads to cell cycle arrest. If the problem cannot be resolved, the cell undergoes
apoptosis, or programmed cell death. Any breakdown in these failsafe mecha-
nisms may lead to uncontrolled cell proliferation. Cancer, for example, is facil-
itated by a breakdown in cell cycle control. Understanding the mechanisms in-
volved in regulating the cell cycle can facilitate the rational development of cancer
therapies. We note that failsafe mechanisms analogous to cell cycle arrest and
apoptosis are present in most industrial processes. These failsafe mechanisms en-
sure that any breakdown in control leads to a safe and ordered shutdown of the
process.

Numerous regulatory models have been proposed for the cell cycle. Examples
include the interaction of cyclin and cdc2 (101, 102), Gg/S transition (103,
104),theG,/M transition (105), and the cell cycle in fission (106, 107) and budding
(108) yeast. A review of cell cycle modeling is given by Tyson (109). All of these
models aim to understand the molecular mechanisms that control the cell cycle.
Most models focus on the oscillatory dynamics in the cell cycle, though different
mechanisms are used to explain the oscillations. The basic regulatory motif in
the cell cycle involves the interaction of the cyclin dependent kinases (cdk’s) and
the associated cyclin proteins. Regulation is achieved through the formation of
cdk-cyclin complexes, selective phosphorylation, and proteolytic degradation of
the cyclins. Each mechanism is common to many regulatory schemes, though the
particular organization appears unique to the control of the eukaryotic cell cycle.
Although even in eukaryotes, this motif is more or less elaborate, Tyson is fond of
pointing out that the yeast cell cycle is almost a subset of the human cell cycle: It
is the “yeast within.”
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Gene Expression: Autoregulation and Networks

Gene regulation does not illustrate a unique regulatory motif or define a specific
control problem. Rather, it is ubiquitous in most facets of intracellular physiology.
We do not aim to review the different mechanisms involved in regulating gene
expression, but to illustrate how many aspects of this problem have been analyzed
using tools from dynamical systems theory and also control theory. The work that
we discuss is limited to autoregulation, where the gene expresses its own transcrip-
tion factor, and simple gene networks, where typically one gene product regulates
the expression of a second gene and vice versa. These problems demonstrate how
regulation can be analyzed at many different levels of abstraction.

At least three approaches have been used to analyze the dynamics of genetic
networks. One approach is to model the network using a Boolean logical network,
where a gene is assumed to be either on or off (110). The network dynamics are
realized by updating the logical state of each gene using a set of rules. For example,
gene A is on at the current timestep only if gene B is off at the preceding time
step. A second approach is to use differential equations to model gene activity
and expression. For a comparison of the two approaches, the reader is directed
to the survey article (20). The third approach is to model the gene network as
a stochastic process (95). Differential equations are typically used to describe
genetic networks as they are more detailed, though Boolean descriptions provide
a simplified description that is often useful when first analyzing the network.
Probabilistic descriptions are used to account for fluctuations in gene expression
leading to population heterogeneity.

The dynamical properties of Boolean and differential equation models can of-
ten be analyzed directly using tools derived from dynamical systems theory. These
studies characterize the dynamical properties of genetic networks. A typical result
states that systems with negative feedback possess either a unique steady state or
stable limit cycles, i.e. the system oscillates, and that a system with positive feed-
back may possess multiple steady states, i.e. the system acts as a genetic switch.
Numerous articles have been written on the subject, and we highlight only a few
related to differential equation models. These articles illustrate some of the results
and techniques used to analyze genetic networks. Tyson & Othmer (111) consid-
ered the dynamics of gene regulation in enzyme synthesis with either end-product
inhibition or induction. They analyzed, in a comprehensive manner, the dynamical
properties of this network. Keller (112, 113) investigated the dynamical properties
of a variety of control motifs using a genetic network with autoregulatory tran-
scription factors. Wolf & Eeckman (114) investigated the dynamical properties of
a genetic network using a simplified version of the model proposed by Shea &
Ackers (115) for the phage switch. Smolen and coworkers (116) investigated
the dynamical properties of an autoregulatory genetic network and considered
also the role of phosphorylation. In a separate paper (117), they considered the
effects of a time delay between expression and binding of the transcription factor.
Goldbeter (118) provides a comprehensive survey of the mechanisms underly-
ing oscillations in genetic networks. Omholt and coworkers (119) analyzed the
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dynamical properties of simple genetic networks and demonstrated how these
networks can give rise to the genetic phenomena of additivity, dominance, and
epistasis.

There are many different mechanisms for gene regulation. What factors have
contributed to their selection? Comprehensive studies addressing this question have
been done by Savageau and his colleagues in a series of articles spanning almost
thirty years. One particular factor that they advocate is the parametric sensitivity of
the network, one form of robustness (120). One may speculate that networks have
evolved robustness (cf. (8)). In a subsequent series of articles (cf. (121-123)), Sav-
ageau and coworkers investigated different control motifs and speculated on their
design principles. In one example (124), they considered kinetic proofreading in
t-RNA aminoacylation and addressed the tradeoffs associated with accuracy ver-
sus cost in energy. In a separate series of articles, Savageau presented his deman
theory for gene regulation (cf. (125-127)), which states that genes are regulated
using an activator (e.gnal operator) when function is in high demand while a
repressor (e.dac operator) is used when function is in low demand.

In almost all cases of full analysis, the systems analyzed are small and consist
of no more than two or three differential equations. Extending these results to
large systems may be difficult. Often one needs to resort to numerical simulation
to investigate the network behavior. This analysis may be time consuming as one
needs to search a high dimensional parameter space. Occasionally, it is possible to
reduce the complexity of the model (cf. (106)), but we suspect more often than not
that direct analysis is limited to small systems. Regardless of this limitation, these
problems present useful abstractions for analyzing gene expression in prokaryotes.
One future challenge is to identify gene regulatory motifs in eukaryotes where the
control mechanisms are far more complex (128, 129).

FORWARD ENGINEERING: RATIONAL DESIGN
OF GENETIC NETWORKS

A complementary approach to the methods described in the above section is the
forward engineering approach. Rather than try to deduce the behavior of existing
genetic networks, the next challenge is to engineer genetic networks in vivo to
perform specific functions. The focus shifts then from deducing functional prop-
erties of naturally occurring genetic circuits toward engineering those properties
de novo. Rationally engineering genetic circuits, therefore, provides perhaps the
ultimate test of understanding (130). Engineered circuits also have potential ap-
plication in medicine (e.g. gene therapy). Furthermore, engineered networks are
interesting from a purely intellectual perspective.

In a series of papers described below, genetic networks have been engineered
to perform certain functions (131-133). There is a long history of engineering
genetic circuits, though the sophistication is increasing. In these examples, the
genetic networks were engineered using a series of repressible promoters, with
green fluorescent protein (GFP) used as a marker. We describe these networks inthe
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(a)

(b)

Figure 5 (a) An example of an autoregulatory feedback loop, where a protein re-
presses its own synthesib) A genetic switch realized by two antagonistic feedback
loops, where the first protein represses the synthesis of the second protein and the
second protein represses the synthesis of the first protgiain(oscillator realized by

three antagonistic feedback loops, where the first protein represses the synthesis of the
second protein, the second protein represses the synthesis of the third protein, and the
third protein represses the synthesis of the first protein.

order of their complexity. For information regarding the particulars of the designs,
thereaderis directed to the specific articles. Becskei & Serrano (131) constructed an
autoregulatory network using a single repressible promoter (see Figurérey
demonstrated that negative feedback attenuates fluctuations in gene expression.
Gardner and coworkers (132) constructed two different genetic toggle switches
using a network consisting of two repressible promoters (see FidyreTBeir
design is similar to the phageswitch, as it employs two antagonistic feedback
loops. Both of their designs exhibit bistability. In one design, the switch is turned
on by a pulse of isopropy$-D-thiogalactopyranoside (IPTG) and turned off by a
thermal pulse. In the second design, the switch is turned on by a pulse of IPTG and
turned off by a pulse of anhydrotetracycline. Elowitz & Leibler (133) constructed
an oscillator in vivo using a network consisting of three repressible promoters
(see Figure ). Their design employs three antagonistic feedback loops. At least
40% of the transformed cells using their design were found to exhibit oscillatory
behavior. The fact this number was not 100% indicates that the design was not
perfect. In all three cases, simple mathematical models were used to facilitate the
design. Deviations from model predictions can lead to new insights.



INTRACELLULAR REGULATORY NETWORKS 409

Forward engineering provides an alternate approach for elucidating the prop-
erties of biological networks by allowing us to directly tinker with their behav-
ior. These simple networks, or control modules, provide complete knowledge of
designed interactions and are fairly uncoupled from all other networks, though
inevitably there is some coupling as these modules are integrated in the overall
physiology of the cell. Most of the tools in systems and control theory are con-
structive rather than deductive, a natural consequence of being an engineering
science. Using the forward engineering approach, one can postulate parsimonious
biochemical and genetic circuits network using tools from systems and control
engineering with robust properties and then design these networks in vivo. By
designing and fabricating such networks and learning from our successes and fail-
ures, we can potentially identify design principles from scratch rather than trying to
reverse-engineer them from nature. This sort of speculation is often impossible us-
ing computational or mathematical analysis alone, as there are always differences
between predicted and observed results. We can further seek to design selective
pressures for these engineered networks and attempt to ascertain their evolution-
ary viability. These selective pressures will also aid in determining why certain
regulatory motifs are chosen instead of other motifs, even though their dynamic
behavior appears identical.

DISCUSSION

We have described some of the mechanisms used to regulate biological networks.
Throughout our discussion, we have attempted to illustrate the analogies to en-
gineered systems by describing different control motifs that commonly arise in
engineering. We believe the analogies are clear, though how these systems are
designed is not. As biologists, we are inevitably playing catch-up, but perhaps as
engineers we can begin to close the gap. Many researchers have adopted this en-
gineering perspective (cf. (134)) and have begun to enumerate design alternatives
and constraints in biological systems. The theme of this article is control and the
motifs used in regulation. We do not foresee a paradigm shift that will allow us to
suddenly decipher the complexities of biological networks, but rather the gradual
development of a set of design anecdotes or “rules of thumb.” For example, itis ex-
tremely difficult to decipher the function of an integrated circuit simply by looking
at the circuit diagram. Rather, one needs to understand the modular decomposition
of the circuit and the principle used to design it. The engineer does not design an
integrated system from scratch, but rather uses prefabricated functional compo-
nents or unit operations. Inevitably, as the design matures, the system becomes
more integrated and the functional boundaries of the components disappear. Still,
artifacts of the modular design remain.

We will learn some of these principles by reverse-engineering the behavior of
biological systems, whereas in other circumstances we will need to learn these
principles by trial and error through designing our own networks. Already many
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regulatory motifs have been identified. Furthermore, we are beginning to iden-

tify some of the components used in intracellular regulation. Enzymes can cer-

tainly act like switches or transistors either by allosteric changes in conformation

or covalent modification (135). Certain pathways such as the MAPK cascade

(136, 137) also act like switches. Other pathways such as two component phos-
phorelays (138) appear to act as filters or even amplifiers. By understanding the
properties of these functional components and how they integrate into different

regulatory motifs, we can begin to deduce network behavior as engineers. Many
hurdles still exist and we conclude by discussing just a few.

CHALLENGES AND OPPORTUNITIES

Modeling

How do we model biological systems when we do not understand the complete
mechanism? How do we conveniently abstract the problem? What level of detail is
necessary to understand a given phenomenon? How do we incorporate multiple
levels of resolution in our model? There is no unique answer to any of these ques-
tions. In these regards, modeling is still an art honed by many years of experience.
Regardless, we need to answer these questions and distill the critical problems
and issues. Only then can we advance the field of modeling in biology beyond a
collection of anecdotes.

Another challenge in modeling biological systems is that even if we understand
the mechanism, the parameters are rarely known. This problem plagues most mod-
eling efforts with the exception of a few well characterized systems such as phage
A, the T7 growth cycle, and bacterial chemotaxis. Nevertheless, the modeling effort
can answer important questions regarding the validity of the proposed mechanism.
If we cannot find a plausible set of parameters that reproduces the behavior of the
network, then the postulated mechanism is either incorrect orincomplete. This line
of reasoning is employed in many cell cycle models. Another excellent example is
a model of segment polarity developmenbirosophilaproposed by Dassow and
coworkers (82). Their initial model was unable to produce asymmetric patterns,
suggesting that their mechanism was incomplete. After revising their model by
postulating new mechanisms, they were able to produce asymmetric patterns over
a wide range of parameters, suggesting further that asymmetric patterning is a
robust feature of network topology.

How do we directly couple modeling with experimentation? New measure-
ment techniques are required to quantify intracellular protein concentrations and
provide reliable estimates of gene expression. Statistical tools are needed to faci-
litate the modeling effort and direct experimentation. In particular, we require
tools to infer regulatory mechanism from time-series data (cf. (139—-141)) and also
methods to design experiments for deducing the regulatory properties of interest.
Given the vast array of biological databases, we require modeling environments
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that provide convenient interfaces to access these databases. Some examples to.
ward this goal include the Virtual Cell project (142) and the E-cell project (41).

Our knowledge of any system often comes in awide variety of forms and at many
different levels of granularity. How, for example, do we integrate macroscopic and
microscopic information? Most simulation tools require that we operate at the
highest level of resolution, a strategy that is neither optimal nor always feasible.
Furthermore, what do we do when we understand the mechanisms for only part of
the system and can, at best, represent the other parts using only phenomenological
or qualitative descriptions? Given the complexity of biological systems and the
need to operate at many different scales—from individual molecular events, such
as transcription, to concentration dependent events, such as intercellular signalling,
and macroscopic phenomena, such as motion—we need to be able to use hybrid,
or mixed, models that will integrate knowledge at different scales and levels of
detail. Many questions remain unanswered, from how to solve these systems to
even how to formulate the model.

Determinism versus Randomness

If the goal is only to understand the average behavior of a genetic network, then
often one does need to account for stochastic fluctuations. If we seek, however,
to describe population heterogeneity, then we need to account for stochastic fluc-
tuations associated with random noise due to low molecular concentrations. As
we have already mentioned, random noise accounts for populations heterogeneity
in both E. coli piliation and phage. lysis/lysogeny. One can attribute these vari-
ations to fluctuations in gene expression (95, 143). Likewise, random variations
are also implicated in a wide variety of swimming behaviors observed in bacteria
(144, 145).

Although probabilistic descriptions provide accurate representations of the dy-
namics at low concentrations, they are far more difficult to analyze than determin-
istic systems. Stochastic systems do not possess steady states but rather stationan
distributions describing the likelihood of a given concentration. Enumerating the
stationary distributions and characterizing their stability is far more difficult than
in deterministic systems, as the differential equations are replaced by the chemical
master equation (146, 147). Even calculating a stationary distribution is difficult.
Often one is only able to calculate a single realization of a stochastic system, akin
to drawing a single card rather than determining the odds of drawing an ace. One
can still calculate the distribution using Monte Carlo strategies, but these do not
allow us to determine the stability properties of the distributions or systematically
identify possible bifurcations. In deterministic systems there is no difference be-
tween a realization and a distribution as the same series of events happen for a
given initial condition.

Given the need for probabilistic descriptions and also the difficulty associated
with analyzing stochastic systems, is it possible to identify when a probabilis-
tic description is necessary? We desire simulation tools that will adapt to our
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demands. As probabilistic descriptions are not always necessary to answer the
guestions being asked, an adaptive framework or algorithm that can recognize the
need for a probabilistic description, incorporate both deterministic and stochastic
descriptions, and switch between the two would substantially improve our ability
to simulate and analyze biological systems.

Biophysical Constraints

Most models of biological networks assume that the intracellular proteins are ho-
mogeneously distributed. The actual intracellular environment, however, is hetero-
geneously distributed, and effects due to compartmentalization (148), molecular
crowding (149, 150), enzyme complexes (151-154), and diffusion (117, 155) may
play a significantrole in intracellular regulation. Consequently, we cannot limit our
analysis to the biochemistry; we need to take into account and understand the role of
biophysical constraints. One example is receptor clustering (156). In bacterial che-
motaxis, the receptors are polarly localized in the cell (157). What is remarkable
aboutreceptor clustering is thatit was first hypothesized that the receptors should be
uniformly distributed on surface of the cell (63). Receptor clustering has since been
hypothesized to play a role in the sensitivity of the chemotaxis pathway (158—160).
A challenge in considering biophysical constraints is that the analysis is far
more complicated. In particular, we need to account for spatio-temporal behavior,
such as calcium waves, and complicated geometries. Sometimes it is possible to
approximate the problem using compartment models or time delays. However,
compartment models ignore surface geometry such as membrane folds leading to
a nonuniform distribution of the surface proteins. One caveat with time delays is
that they are difficult to solve numerically and are known to introduce instability
in feedback loops. One needs to ensure that these effects are not due to numerical
instabilities nor are artifacts of a fixed time delay.

The Path Forward

Aswe beginto investigate increasingly more complex systems, itis unlikely thatwe
will be able to continue using an undirected, reductionist approach. To date many
regulatory models have been obtained by breaking the system into its elementary
pieces and then trying to reassemble the pieces back together. We are now being
confronted with so many pieces that we will unlikely be able to reassemble the
system without multiple levels of abstraction. An alternate approach is to attack
the problem from the perspective of evolution and tinker with known modules
or regulatory motifs (161). Our aim in this review is to point out some of the
design principles and motifs used to regulate genetic and biochemical networks.
As our knowledge expands, we hope to assemble a catalog, or rather a toolbox, of
functional modules and regulatory motifs for the modeler to tinker with. Ultimately,
what separates biology from the physical sciences is evolution. We cannot forget
that biological systems are the product of an evolutionary process; thus comparing
convergently and divergently evolved motifs should provide information on the
selection for and fitness criterion of cellular function.
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