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m Abstract Systems biology studies biological systems by systematically perturb-
ing them (biologically, genetically, or chemically); monitoring the gene, protein, and
informational pathway responses; integrating these data; and ultimately, formulating
mathematical models that describe the structure of the system and its response to in-
dividual perturbations. The emergence of systems biology is described, as are several
examples of specific systems approaches.

INTRODUCTION

Perhaps the most important consequence of the Human Genome Project is that
it is pushing scientists toward a new view of biology—what we call the systems
approach. Systems biology does not investigate individual genes or proteins one
at a time, as has been the highly successful mode of biology for the past 30
years. Rather, it investigates the behavior and relationships of all of the elements
in a particular biological system while it is functioning. These data can then be
integrated, graphically displayed, and ultimately modeled computationally. How
has the Human Genome Project moved us to this new view? It has done so by
catalyzing a new scientific approach to biology, termed discovery science; by
defining a genetic parts list of human and many model organisms; by strengthening
the view that biology is an informational science; by providing us with powerful
new high-throughputtools for systematically perturbing and monitoring biological
systems; and by stimulating the creation of new computational methods.

Discovery Science

The Human Genome Project was one of the first modern biological endeavors to
practice discovery science. The objective of discovery science is to define all of
the elements in a system and to create a database containing that information. For
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example, discovery approaches are providing the complete sequences of the 24
different human chromosomes and of the 20 distinct mouse chromosomes. The

transcriptomes and proteomes of individual cell types (e.g., quantitative measure-

ments of all of the mRNASs and protein species) also represent discovery projects.

Discovery science lies in contrast to hypothesis-driven science, which creates

hypotheses and attempts to distinguish among them experimentally. The integra-

tion of these two approaches, discovery and hypothesis-driven science, is one of
the mandates of systems biology.

Genomic Sequences in Humans and Model Organisms

The complete genomic sequences of human (78, 125), nematode (121), fly (2),
arabadopsis (81), yeast (58scherichia coli(19), and a host of microbes and
parasites are now available; others, including mouse, are in the pipeline. These
sequences offer a number of powerful opportunities.

GENETIC PARTS LIST Software and global experimental techniques are now be-
coming available to identify the gene locations, and even coding regions, embedded
inasequenced genome (110). Comparative analysis of these coding regions reveals
a lexicon of motifs and functional domains (essential to solving the protein-folding
and structure/function problems). Moreover, genomic sequence provides access
to the adjacent regulatory sequences—a vital component to solving the regulatory
code (34)—and opens access to polymorphisms, some of which are responsible
for differences in physiology and disease predisposition. Combined, these com-
ponents make up the elements in the periodic table of life. With these components
now in hand, the immediate challenge is to place them in the context of their
informational pathways and networks.

MODEL ORGANISMS ARE THE ROSETTA STONES FOR DECIPHERING BIOLOGICAL
SYSTEMS The genomic sequences of humans and model organisms have ele-
gantly confirmed a basic unity in the strategy of life. Informational pathways in
yeast are remarkably similar to those in fly, worm, and humans, and many or-
thologous genes can be identified across these species. Thus, it is feasible to use
genetically and biologically facile model organisms (yeast, fly, worm) to infer the
function of human genes and to place these genes in the context of their informa-
tional pathways. Alternatively, comparison of different model genomes offers the
possibility of comparing and contrasting the logic of life between organisms. Dif-
ferences in logic provide fundamental insights into the mechanisms of evolution,
development, and physiology.

Biology is an Informational Science

The Human Genome Project has propelled us toward the view that biological
systems are fundamentally composed of two types of information: genes, encod-
ing the molecular machines that execute the functions of life, and networks of
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regulatory interactions, specifying how genes are expressed. All of this informa-
tionis hierarchical in nature: DNA> mRNA — protein— protein interactions>
informational pathways> informational networks> cells— tissues or networks
of cells — an organism— populations— ecologies. Of course, other macro-
molecules and small molecules also participate in these information hierarchies,
but the process is driven by genes and interactions between genes and their en-
vironments. The central task of systems biologyajst¢ comprehensively gather
information from each of these distinct levels for individual biological systems and
(b) to integrate these data to generate predictive mathematical models of the system.
Biological information has several important features:

= |t operates on multiple hierarchical levels of organization.
= |tis processed in complex networks.

= These information networks are typically robust, such that many single per-
turbations will not greatly effect them.

= There are key nodes in the network where perturbations may have profound
effects; these offer powerful targets for the understanding and manipulation
of the system.

Perturbation of Biological Systems

The development of systems biology has been driven by a number of recent ad-
vances in our ability to perturb biological systems systematically. Three technolog-
ical trends have emerged in this respect. First, techniques for genetic manipulation
have become more high-throughput, automated, and standardized by several or-
ders of magnitude. Second, the availability of complete genomic sequences has
stimulated the development of several systematic mutagenesis projects to comple-
ment more traditional efforts involving random mutagenesis. Third, technologies
for disrupting genedn trans allow the application of genetic perturbations to a
wide range of eukaryotic organisms.

HIGH-THROUGHPUT GENETIC MANIPULATION A number of recent and ongoing
technological developments are making it possible to rapidly and systematically
manipulate genomic material. To illustrate these developments, consider some
of the tools available for the budding ye&accharomyce€xpanding yeast’s
already-formidable genetic toolkit is a series of plasmids that has greatly facili-
tated PCR-based gene replacement (83, 127). These versatile vectors render the
gene-insertion process simple, standardized, and applicable to any gene or genomic
region. First, forward and reverse PCR primers are synthesized~wiithbp of

DNA homologous to a gene of interest and anoth@0 bp designed to flank a
plasmid-encoded module. These primers are then used to PCR-amplify the module
from the plasmid template. PCR products are directly transformed into yeast cells,
and homologous recombination occurs with the desired gene at high efficiency. A
wide variety of readymade sequence modules are available to disrupt, replace, or
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modify essentially any genomic sequence using this technique. These include mod-
ules for gene knockouts, promoter fusions, protein fusions, and epitope tags, and
because the 20-bp sequences flanking the modules are standard, the same primers
can be used for multiple constructions involving several of these different module
types. In order to select for successful recombination events while minimizing the
formation of undesired recombinant types, modules usually include a marker gene
that is non-native to yeast.

The demands of manipulating many genes via many different constructs, then
observing the results of these manipulations in many strains simultaneously, are
driving the development of ever-more facile and standardized plasmid-construction
systems. For example, the GATEWAY recombinational-cloning system [Life Tech-
nologies (128)] allows for automated, high-throughput generation of an unlimited
array of constructs derived from genes of interest. This procedure exploits the
advantages of the bacteriophage lambda integration/excision reaction to transfer
genes or other sequences of interest to a virtually unlimited number of clones in
separate but identical in vitro reactions. PCR-based cloning into a single entry vec-
tor allows transfer of the gene to a variety of destination vectors without the need
forrestriction endonucleases. This procedure is efficient, standardized, precise, and
directional and involves minimal investment in clone isolation or confirmation.

SYSTEMATIC GENE MUTATIONS Presently, there is a transition in gene mutation
methods from the random generation of mutant alleles to a systematic approach in
which genes are specifically targeted for mutation. The systematic approach has
several distinct advantages. With random mutageneses, one employs a selection
process or a screen to visually identify mutants of interest. Typically, some genes
are identified multiple times, whereas others are not found. In contrast, with a
systematic approach, the response of all generated genotypes is documented and
the coverage of the genome is unambiguous.

For instance, one recent development is the completion of a collection of dele-
tions of essentially all yeast genes (109, 134). This collection allows the systematic
characterization of all yeast gene knockouts for phenotypes that one can assay in a
high-throughput screen. In addition, this mutant collection uniquely identifies each
deletion mutant genotype with a 20 base-pair “barcode” that can be used to quan-
tify the relative numbers of each genotype in a pooled population of mutant strains
(using a microarray of probes against the barcodes). Thus, one can quantitatively
assess the fitness of each deletion strain in a given condition in a single experiment.
With all single-gene deletion strains now available, ongoing and future research
is attempting to characterize phenotypes among genes in combination through the
use of double-deletion strains.

GENE DISRUPTION IN TRANS Many of the powerful genetic approaches available

to yeast and other model organisms are not practicable in higher eukaryotes. How-
ever, recent studies suggest that genes in these higher organisms may be perturbed
in transusing antisense inhibitors of MRNA translation or technologies based on
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RNA-mediated interference (RNAI). Gene disruptiontransis inducible, thus
allowing transient interrogation of practically any gene.

For example, modified oligonucleotides have proven very effective as anti-
sense inhibitors of MRNA translation (44, 91). The modifications (e.g., morpholino
groups or phosphoramidate linkages) render the oligonucleotides resistant to nu-
cleases, and the modified oligonucleotides can be delivered by transfection or
microinjection.

RNA-mediated interference (RNAI) is another recently discovered mechanism
to silence genes in organisms ranging from mice to trypanosomes [recently re-
viewed by Bass (14)]. The introduction of double-stranded RNA (dsRNA) cor-
responding to a particular mRNA results in the specific and rapid destruction of
that MRNA in cells. The current model (14) proposes that dsRNA is cleaved into
21-25 bp dsRNA molecules that then serve as a template for an RNA helicase that
exchanges the sense strand for the mRNA, which is followed by cleavage of the
MRNA. The cleavage destroys the mMRNA and regenerates the 21-25 bp dsRNA.
RNAI was discovered in the nematode wo@n elegang46); systematic inves-
tigations of gene function in worm development have used libraries of bacterial
clones (fed to the worms) expressing dsRNA (48, 55). These RNAI screens have
multiplied the numbers of genes with functional assignments.

Quantitative High-Throughput Biological Tools

Just as the Human Genome Project has led to improvements in our ability to sys-
tematically perturb cells, it has also provided us with new technologies for system-
atically characterizing their cellular response: DNA sequencers, microarrays, and
high-throughput proteomics. Because these tools can carry out global (or nearly
global) analyses, they become the methods of choice for rapid and comprehensive
assessment of biological system properties and dynamics. Typically, the devel-
opment of these tools goes through three distinct stagggroof-of-principle,

(b) development of a robust instrument, acjithe creation of an automated pro-
duction line. For example, the automated DNA sequencer was first demonstrated
in 1986 (112), made feasible by about 1990 (67), and has enjoyed widespread use
in genome sequencing centers since about 1999 (98). The current production-line
instrument includes 96 capillary sequencers with a front-end interface of auto-
mated sample preparation and a back-end process for tracking the data. A single
96-capillary sequencer can produse&00,000 base pairs of raw DNA sequence
data per day. From 1985 to the present, there has been a 2000-fold increase in
the throughput of sequencing, with corresponding increases in the quality of se-
guence information and simultaneous decreases in cost—all achieved by incre-
mental improvements in chemistry, engineering, and software. High-throughput
DNA sequencing production lines may analyze genomic DNA and cDNAs as
well as identify and type polymorphisms [either simple sequence repeats or sin-
gle nucleotide polymorphisms (SNPs)]. Powerful new applications of sequencing
technology are also emerging. For example, the biotechnology company Lynx
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Therapeutics, Inc. has developed a technique that allows up to 500,000 different
sequences to be determined simultaneously for 16 to 20 residues (22). Moreover,
this is a powerful discovery approach for determining complete transcriptomes in
individual cell types from organisms whose genome has been sequenced.

DNA arrays represent a second kind of powerful discovery tool. Two types of
arrays are in common use: cDNA microarrays (102) and oligonucleotide arrays
(47,66). cDNA microarrays consist of double-stranded cDNA or PCR products
spotted on a glass slide. If, indeed, the human genome only contains 30,000 to
40,000 genes (78, 125), this approach will easily allow interrogation of complete
human transcriptomes. Oligonucleotide arrays are synthesized (66) or spotted (58)
on glass slides at densities that can exceed 50,000 spots/slide. In principle, they
are more specific than the cDNA microarray and make it possible to distinguish
single-nucleotide differences. Using the oligonucleotide array, the mRNAs fromin-
dividual members of multigene families can be distinguished, alternatively spliced
genes can be characterized, alternative forms of SNPs can be identified and typed,
and whole stretches of DNA can be resequenced. Clearly, DNA array technology
is less mature than sequencing; although the technology is now robust, it is just
entering the production-line stage at some companies.

Proteomics, the characterization of the many proteins within a cell type, in-
volves analysis of different types of information corresponding to each protein
species: protein identity, abundance, processing, chemical modifications, interac-
tions, compartmentalization, turnover time, etc. Perhaps the major challenge of
proteomics is to deal with the enormous dynamic range of protein abundances
found in a single cell type—from 1 to $@opies or greater.

For organisms whose genome has been sequenced, mass spectrometry is an
especially powerful tool for identifying and quantifying large numbers of proteins
(42), identifying and typing SNPs, and analyzing protein modifications. For ex-
ample, Dr. Ruedi Aebersold and colleagues have recently developed a technique,
termed isotope coded affinity tags (ICAT), for measuring the relative expression
levels of proteins between two different cell populations (59). In brief, the ICAT
reagent is a molecule with three functions: a biotin tag, a linker sequence contain-
ing either eight deuterium atoms (heavy reagent) or eight hydrogen atoms (light
reagent), and a group reactive to cysteine residues. Proteins from the first cell popu-
lation are labeled with the heavy reagent, whereas those from the second cell popu-
lation are labeled with the light reagent. Equal quantities of each protein sample are
combined and digested with trypsin, and cysteine-labeled peptides are isolated with
an avidin column. Mass spectrometry is used to analyze the paired atomic masses
for each peptide (light vs. heavy peptides differ by eight mass units) and, after fur-
ther fragmentation, to determine their amino-acid sequences. Thus, peptides can
be quantitated (to an accuracy-©20%) and the corresponding genes identified.
Aebersold and colleagues have created an automated high-throughput production
line for this procedure, capable of analyzing 1000 proteins per day; they are cur-
rently developing a next-generation facility to analyze up to 1 million proteins
per day.
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Because of their ability to separate many different cells and cell types at high
speed, multiparameter cell sorters are another technology critical to systems biol-
ogy. Although microarray and proteomics experiments typically measure average
levels of MRNA or protein within a cell population, in reality these levels can vary
from cell to cell; this distribution of expression levels contains important informa-
tion about the underlying control mechanisms and regulatory network structure.
Dr. Ger van den Engh and colleagues have developed a new cell sorter capable of
separating 30,000 elements per second against 32 different parameters.

Computation for Systems Biology: Databases and Models

Biology is unique among the natural sciences in that it has a digital code at its
core. Together with colleagues in computer science, mathematics, and statistics,
biologists are developing the necessary tools to acquire, store, analyze, graphically
display, model, and distribute this information. An enormous challenge for the
future is how to integrate the different levels of information pertaining to genes,
MRNAs, proteins, and pathways.

THE INCREASING IMPORTANCE OF COMPUTER DATABASES Computer databases first

rose to prominence in molecular biology as central repositories for the plethora of
data generated by large-scale sequencing projects. Although databases of nucleic-
acid and amino-acid sequences are still the largest, most utilized, and best main-
tained, there has been a sudden explosion of interest in databases to store other
types of molecular data. Such interest is primarily in response to demands placed
by functional genomics and other emerging systems approaches. For instance,
the Database of Interacting Proteins (137), BIND (10), and MIPS (90a) contain
searchable indices of known protein-protein interactions; TRANSFAC (133) and
SCPD (142) catalog interactions between proteins and DNA (i.e., transcription-
factor interactions), and databases of metabolic pathways have also recently been
established [e.g., EcoCyc (73), KEGG (92), and WIT (106)]. A growing number

of databases are also under development for storing the now sizeable number of
MRNA-expression data sets (1,43, 63, 96, 116); companies, such as Affymetrix,
Rosetta, Spotfire, Informax, Incyte, Gene Logic, and Silicon Genetics, market
gene-expression databases commercially. A comprehensive review of recent de-
velopments in the molecular biology databases is available elsewhere (15).

This recent explosion, in both the variety and amount of information of interest,
poses two challenges to database users and developers alike. First, the informa-
tion must be maintained systematically in a format that is compatible with both
single queries and global searches. Often, the desired information is present in
the database but is not annotated consistently for all entries: For instance, an EST
sequence or expression profile may have been derived from cancer cells, but in
the absence of an enforced annotation style, this information may be recorded
using many different keywords (e.g., cancer, tumor, metastatic, carcinoma, etc.).
Alternately, the information recorded in the databases may be incomplete: For
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instance, a protein-interaction database may correctly document an interaction be-
tween two proteins but may fail to include related, highly informative data, such
as the strength of binding or the result of interaction on the functional activity of
each protein.

The second challenge, and perhaps the more difficult one, is keeping the databa-
ses updated against the ever-increasing body of biological knowledge. In this re-
gard, computer scientists working in the field of natural-language processing have
made promising advances in computer programs that can parse textual passages,
extract the key concepts, and catalog these concepts systematically (6, 18, 33, 38,
95,117, 122). Thusinthe near future, there is hope of updating biological databases
automatically with the thousands of relevant results published each month in the
primary biological literature, reducing the dependence on humans to perform this
tedious, error-prone, and time-consuming task.

Why are databases so important to the future of systems biology? Although
individual researchers may amass a great deal of knowledge about the genes,
molecular interactions, and other biological information underlying one particular
pathway, no single biologist can be familiar with the extremely large and complex
number of interactions in an entire cell. The databases track all of these, provided
that the analytical approaches are available to help the biologist to access, display,
and interpret the information. In the end, however, biology cannot be done solely
in silico. Biologists must employ their insights to bring coherence to the massive
data sets.

THE INCREASING IMPORTANCE OF GLOBAL ANALYSES Given the recent accumula-

tion of expression profiles, molecular interactions, and a variety of other global
datain the biological databases, the immediate task is to develop powerful analyses
and experimental strategies to integrate and analyze these data to make biological
discoveries. To date, methods to analyze patterns of gene expression have received
the most attention. In the most straightforward approach, gene-expression data
are used to identify genes involved in a particular biological process, by select-
ing genes with clear changes in expression over different biological conditions or
over time. Depending on the experiment, genes of interest have been implicated in
cancer (129), development (131), aging (79, 107), or a specific cellular response
(28, 29, 35,50, 71, 114). In most of these cases, expression levels of tens, hundreds,
or even thousands of genes changed over the conditions examined, often expanding
the known number of changes by an order of magnitude.

Genes with similar responses over multiple conditions are often clustered to-
gether to form functional groups or to reveal coordinated patterns of expression.
Several clustering methods have been proposed: Most are excellent and have asso-
ciated software packages that are publicly available (4, 23, 25, 36, 39,57, 62, 118).
Some analyses achieve more specific and/or accurate functional predictions by
integrating gene-expression clusters with complementary types of global data: for
example, searching for shared regulatory sequences in the promoters of co-
expressed genes (29,89,97,111,114,119). Identification of these regulatory
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sequences provides evidence thatthe associated genes are under the control of com
mon transcription factor(s). Alternatively, gene-expression data may be combined
with information on protein-protein interactions and protein phylogenetic profiles
(85) or augmented with the genomic location of each gene to find shared regulatory
elements (32). Finally, deciding whether an expression level changes significantly
can be a difficult problem and is also an active area of research (27,57, 65, 69, 84).
Methods for analyzing expression data, including gene-expression clustering
and its extensions, have been extensively reviewed elsewhere (21, 30, 64, 108,
141).

Where do we go from here? Although these analyses have certainly been infor-
mative, global data sets undoubtedly provide additional information that remains
untapped. Ultimately, it would be highly desirable to analyze expression levels
and other global measurements in a way that validates our current knowledge of a
cellular process and isolates discrepancies between expected and observed levels
To achieve this level of analysis, we believe that it will be necessary to compare
and incorporate global data with a well-defined model of the biological process of
interest.

THE INCREASING IMPORTANCE OF COMPUTER MODELS Conventionally, a biologi-

cal model begins in the mind of the individual researcher, as a proposed mechanism
to account for some experimental observations. Often, the researcher represents
their ideas by sketching a diagram using pen and paper. This diagram is a tremen-
dous aid in thinking clearly about the model, in predicting possible experimental
outcomes, and in conveying the model to others. Not surprisingly, diagrammatic
representations form the basis of the vast majority of models discussed in journal
articles, textbooks, and lectures.

Despite the useful simplicity of these conventional models, advances in systems
biology are prompting some biologists to forego “mental” models, or pen-and-
paper diagrams, for more sophisticated computer representations. Although the
notion of modeling a biological process computationally is almost as old as the
electronic computer itself [e.g., see biological models proposed by Turing (124)];
such models are gaining in importance for several reasons. First, itis now apparent
thatthe magnitude and complexity of interactions in a cell are simply too vast for an
unaided human mind to process and organize (132). Second, as DNA microarrays,
sequencers, and other large-scale technologies begin to generate vast amounts of
guantitative biological data, a paradigm shift is occurring in biology away from
a descriptive science and toward a predictive one (52, 77). Computer systems are
required to store, catalogue, and condense the rapidly accumulating mass of data,
and automated tools are needed that, by assimilating these data into a network
model, can predict network behaviors and outcomes that may be tested experi-
mentally. It is encouraging that recent computer simulations of partial or whole
genetic networks have demonstrated network behaviors, commonly called systems
properties or emergent properties, that were not apparent from examination of a
few isolated interactions alone (5, 16, 74).
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Computer modeling tools have already achieved widespread acceptance within
the engineering and physical sciences. For example, computer-aided design pack-
ages, such as SPICE, VHDL, or Prolog, are heavily used to simulate and test elec-
tronic circuitry (93). In contrast, a relative paucity of software and methods exists
for analyzing biological circuits. Several useful tools are available for simulating
small networks of chemical reactions [e.g., Gepasi (90) or the Chemical Reaction
Network Toolbox (45)], but larger-scale simulations are still emerging. For ex-
ample, ongoing projects, such as E-CELL (123) and the Virtual Cell (100, 101),
attempt to model all molecular interactions in the cell as an integrated, computa-
tional process. Other efforts, such as BioJake (99) and a collection of guidelines
set forth by Kohn (75), are working to define a standard graphical environment in
which biologists may interactively define and simulate genetic circuit models. A
widespread, standard notation (and/or software environment) is attractive because
systems biologists working on diverse systems and at different institutions would
be able to directly exchange their fully detailed models.

TYPES OF COMPUTER MODELS A wide variety of cellular models have been pro-
posed, each of differing complexity and abstraction. For example, chemical kinetic
models attempt to represent a cellular process as a system of distinct chemical re-
actions. In this case, the network state is defined by the instantaneous quantity
(or concentration) of each molecular species of interest in the cell, and molecular
species may interact via one or more reactions. Often, each reaction is represented
by a differential equation relating the quantity of reactants to the quantity of postre-
action products, according to a reaction rate and other parameters. This system of
differential equations is usually too complex to be solved explicitly, but given an
initial network state, the quantity of each gene product or other molecular species
can be simulated to produce a state transition path or trajectory, i.e., the succession
of states adopted by the network over time. A variety of biological systems have
been modeled in this way, including the networks controlling bacterial chemotaxis
(5, 20), developmental patterning Drosophila(24, 86), and infection oE. coli

by lambda phage (88). Recently, it has been pointed out that transcription, transla-
tion, and other cellular processes may not behave deterministically but instead are
better modeled as random events (87). Models have been investigated that address
this concern by abandoning differential equations in favor of stochastic relations
to describe each chemical reaction (8, 53).

In contrast to models involving systems of chemical reactions, another popular
approach has been to model a genetic network as a simplified discrete circuit.
Much like a neural network, this approach represents the network as a graph with
nodes and arrows (i.e., directed edges), where a node represents the quantity or
level of a distinct molecular species and an edge directed from one node to another
represents the effect of the first node’s level on that of the second. Also required
is a function for each node, describing how all of the incoming effects should be
combined to determine its level. Typically, nodes may assume one of two discrete
levels, signifying whether the molecule is present or absent or whether a gene is
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turned on or off. Given a starting state of levels for all nodes, the next level of each
node may be determined directly from its function. In this way, the network state
over all nodes evolves over a series of discrete time steps, where the state of the
next step is computed from the current state.

Discrete circuit models have been investigated extensively (74, 113, 136), and
simulation software is available (135). Clearly, such models are greatly simplified
compared to a kinetic model. Proponents of discrete circuit models argue that they
preserve the essential features of the underlying biology while greatly reducing
network complexity and simulation time. A major criticism has been that they
require the model to update simultaneously for all nodes, whereas molecular in-
teractions within the cell are not synchronous. Also, a two-level representation of
molecular species may not always be sufficient to capture the underlying biological
behavior of the network.

CHOICE OF MODEL DETAIL Formulation of a model involves important choices
about which genes, gene products, and other molecular species should be included
in the network state. Genes may be regulated at the level of transcription or trans-
lation, and once translated, a protein may exist in one of several modified forms.
Through alternative splicing, a single gene may encode several distinct mMRNAs,
and nongenetic molecules, such as metabolites, may also affect the network. Fur-
thermore, some interactions are restricted to the nucleus, cell membrane, golgi
apparatus, or other organelles. A complete model would therefore have to include
molecular species, such as alternatively-spliced mRNA and modified protein prod-
ucts, and would have to restrict interactions between species located in different
cellular compartments.

Increasing levels of detail are not always desirable, however, and deciding
which information to include can be a difficult task. In general, one identifies the
types of properties or behaviors that the model should be able to predict (e.g.,
MRNA levels, protein activation states, or growth rates) and includes only the
components thatimpact these properties. The number of model parameters must be
compatible with the amount and type of available data: If only mRNA-expression
levels are measured, for instance, then detailed information about protein structures
or compartmentalization may overload the model with too many hidden variables.

INFERENCE OF MODELS FROM GLOBAL PATTERNS OF GENE EXPRESSION Several
methods have been proposed for inference of a genetic network from a measured
time series of mMRNA-expression profiles. These methods try to infer a discrete
circuit model by looking for statistical correlations between expression levels (7),
by training a neural network (130), or by information theoretic methods (80). Also
under development are methods for inferring models from steady-state expression
profiles, e.g., recorded over a battery of biological conditions or gene deletions
(3,70). In the future, several or all of these methods will almost certainly be
expanded to take advantage of other types of global data, such as protein-expression
levels, protein-modification states, or metabolite concentrations.
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A FRAMEWORK FOR SYSTEMS BIOLOGY

Ultimately, one wishes to understand the underlying interactions, molecular or
otherwise, that are responsible for the global changes observed in a system. In order
to most directly address this goal, we argue that it will be necessary to integrate
the various levels of global measurements together and with a mathematical model
of the biological system of interest. Although these model-driven approaches may
differ in the particulars of implementation, all follow a fundamental framework
involving several distinct steps (as shown in Figure 1):

1. Define all of the components of the systentUse these components, along
with prior biochemical and genetic knowledge, to formulate an initial model.
Ideally, a global approach is the most powerful (i.e., defining all genes in
the genome, all mMRNAs and proteins expressed in a particular condition,
or all protein-protein interactions occurring in the cell) because it does not
require any prior assumptions about system components. Constructing a
model by interrogating these components will ultimately accomplish two
objectives: §) to describe the structure of the interactions that govern the
systems behavior and)(to predict accurately relevant properties of the
system given specified perturbations. If prior knowledge about the system is
limited, the initial model may be rough and may involve purely hypothetical
interactions.

2. Systematically perturb and monitor components of the systenSpecific
perturbations may be genetic (e.g., gene deletions, gene overexpressions, or
undirected mutations) or environmental (e.g., changes in growth conditions,
temperature, or stimulation by hormones or drugs). The corresponding re-
sponse to each perturbation is measured using large-scale discovery tools
to capture changes at relevant levels of biological information (e.g., mMRNA
expression, protein expression, protein activation state, overall pathway func-
tion). Once observed, data from all levels are integrated with each other and
with the current model of the system. As in step 1, an approach in which
all components are systematically perturbed and globally monitored is the
most desirable.

3. Reconcile the experimentally observed responses with those predicted

by the model. Refine the model such that its predictions most closely
agree with experimental observations. Agreement between the observed and
predicted responses is evaluated qualitatively and/or quantitatively using a
goodness-of-fit measure. When predictions and observations disagree, alter-
native hypotheses are proposed to alleviate the discrepancies (maximize the
good-ness-of-fit), resulting in a refined model for each competing hypothe-
sis. If the initial model is largely incomplete or is altogether unavailable, the
observed responses may be used to directly infer the particular components
required for system function and, among these, the components most likely
to interact. If the model is relatively well defined, its predictions may already
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be in good qualitative agreement with the observations, differing only in the
extent of their predicted changes.

4. Design and perform new perturbation experiments to distinguish be-
tween multiple or competing model hypothesesEven for a moderate
number of observations, the proposed refinements may result in several dis-
tinct models whose predictions fit equally well with the observations. These
models are indistinguishable by the current data set, requiring new perturba-
tions and measurements to discriminate among them. New perturbations are
informative only if they elicit different systems responses between models,
with the most desirable perturbations resulting in model predictions that are
most dissimilar from one another. After choosing the set of new perturba-
tions, repeat steps 2 through 4, thereby expanding and refining the model
continually, over successive iterations. The idea is to bring the theoretical
predictions and experimental data into close apposition by repeated iterations
of this process so that the model predictions reflect biological reality.

Thus, systems biology requires that all of the elements of a system be studied (at
multiple levels of the information hierarchy and in the context of their responses to
perturbations), that these data be integrated and graphically displayed, and finally,
that these responses be modeled mathematically to predict the structure and behav-
ior of the informational pathway. Moreover, systems biology involves an iterative,
strategic interplay between discovery- and hypothesis-driven science. Global ob-
servations (discoveries) are matched against model predictions (hypotheses) in an
iterative manner, leading to the formation of new models, new predictions, and
new experiments to test them.

EXAMPLES OF SYSTEMS BIOLOGY

A large number of recent and ongoing efforts are putting this systems biology
framework into practice (as illustrated in Table 1). We now examine in detalil
four such studies, representing four distinct types of biological netwoaksa (
cis-regulatory network, lf) a transregulatory network,d) a signal-transduction
network, and ) a synthetic regulatory system engineered according to a prede-
termined network model.

Cis Gene Regulation in the Sea Urchin

Gene-regulatory networks are defined tilgns and cis logic (34). Trans logic
defines the interactions between protein transcription factors and the batteries
of genes they control (e.g., other transcription factors as well as genes in the
network periphery). Converselgis logic defines the precise relationships among
promoter elements (DNA sequences) whose states (i.e., bound vs. unbound by
transcription factors) are combined to produce the temporal and spatial patterns
of expression for a particular gene. Both of these types of regulatory networks
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TABLE 1 A sampling of systems-biology approaches

Model systems Organisms Approaches References
Viral infection of phage. Computer simulations via a mixed (8,87, 88)
E. coli model (discrete and continuous);
stochastic simulations
phage T7 Time-differential equations (42)
Bacterial chemotaxis E. coli Time-differential equations; (5,20,31,
stochastic simulations 138)
Embryo patterning or ~ Sea urchin Identificationoid-regulatory (9, 139)
development elements and interactions;
computational modeling of the
proposectis network
Drosophila Simulation via time-differential (24, 86, 126)
equations
Cross-talk between Mammals Simulation via time-differential (16,132)
signaling pathways equations
Sugar metabolism S. cerevisiae  Integrated physical-interaction (61,68,120)
network, Bayesian networks
Protein networks S. cerevisiae  Directed-graph models (68,94, 105)
General metabolism  E. coli Flux-balance analyses (37,103, 104)
Whole-cell model E. colj, Simulation via time-differential (100, 123)
neuron equations
Synthetic and E. colj, Synthesis of a multigene network (12, 40)
circadian oscillators  Drosophila in vivo using a computer model
Neurospora as blueprint
mice
Synthetic flip-flop E. coli o (51)
Cell cycle Mammals, Molecular-interaction maps; (49, 75)
yeast Bayesian networks

have input and output. For instance, network inputs may arise from exogenous
signals (e.g., sperm penetrating the egg, steroid hormones, etc.) or from signal-
transduction pathways. The output of the network, concentration of nuclear RNA,
exhibits many possible levels of posttranscriptional control (e.g., RNA processing,
alternative RNA splicing, protein processing, protein chemical modification, etc.).
The sea urchinis a powerful model for study@igandtransregulation because
its development is relatively simple (34) (the embryo has only 12 different cell
types); enormous numbers of eggs can be obtained in a single summer (30 billion);
the eggs can be fertilized synchronously and development stopped at any stage; and
many transcription factors can be readily isolated and characterized, and their genes
may be cloned using affinity chromatography, conventional protein chemistry,
protein microsequencing, DNA probe synthesis, or library screening (60). A great
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deal of developmental biology has been carried out on the sea urchin, and a modest
genome effort has defined the general features of its genome (26).

The sea urchirendol6gene has the most completely defingslregulatory
system to date (34, 139, 140). Strikingly, this system is highly analogous to a com-
puter or other electronic circuit; multiple inputs from a wide range of transcription
factors are integrated to send a signal to the RNA-synthesizing machine (the basal
transcription apparatus) as to whether and how much transcript to synthesize.
Endol6 is expressed in the endoderm of the embryo: It appears first in the vegetal
plate (which gives rise to endodermal and mesodermal cell types), emerges later
in the archenteron, and finally, intensifies in the midgut while diminishing in the
fore- and hindgut (Figure®. Thus, thecis-regulatory apparatus must turn on gene
expression in the appropriate cells, establish sharp boundaries of expression (ex-
pressed in endodermal but not mesodermal cells), and specify the cells of terminal
expression.

A 2.3 kb sequence of genomic DNA contains all of the control elements nec-
essary for normal endol16 expression patterns. FigBrdepicts the 34 binding
sites spread across this region, together with the 13 different transcription fac-
tors that bind them. The binding sites fall into seven regions of DNA sequence:
six functional regions (modules A-G) and the basal promoter region where the
transcriptional apparatus assembles. Each of these was defined by mutating one
or more binding sites, attaching the resulting sequence to a reporter construct,
placing this construct into transgenic sea urchins, then measuring the spatial and
temporal gene-expression output. For example, this approach revealed that the
module G is a positive booster, whereas the F and D modules are responsible for
repressing gene expression in the adjacent ectoderm. Module A is the sole means
of communication between the six functional regions and the basal transcription
apparatus, integrating the positive or negative inputs from the G, F, E, DC, and B
modules. In addition, module A mediates expression in the vegetal plate of the early
embryo.

From these studies, a logic model was constructed delineating all the operations
executed by these modules and their interactions (FigQyeThis model clearly
indicates that the output of module B runs through module A (which amplifiesit) on
the way to instructing the basal transcription apparatus. These interactions can be
boolean dotted line$, scalar thin solid lineg, or time-varying quantitativehgavy
solid lineg inputs (Figure £). The important point is that theis-control region
behaves as a series of integrated electronic circuits (modules), each combining
their environmental inputs (quantitatively changing levels of transcription factors)
to send signals through module A to set the overall circuit output. Moreover,
the model was derived according to the systems biology framework described
earlier, having been developed after many iterative cycles of perturbation and
gene-expression measurements.

The cis-regulatory regions of other genes and other organisms employ a very
similar logic, although they certainly differ in detail (34). Thus, the responses
of an organism, both developmental and physiological, are hardwired irtig-its
regulatory circuitry. Almost certainly, the central driver of evolution is not changes
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in individual genes, but rather changes in this circuitry. Clearly one of the major
challenges for biology in the twenty-first century will be coming to understand
the nature of thesis- and transregulatory networks that control an organism’s
development, physiological responses, and even its trajectory of evolution.

A Network Controlling Galactose Utilization in Yeast

As another example, we (T. Ideker & L. Hood) have recently used a systems ap-
proach to explore, expand, and refine the understanding of galactose utilization
(GAL) in yeast (68). Like the previous example of sea urchin development, aregu-
latory network model is used to predict changes in gene expression resulting from
a battery of directed perturbation experiments. Unlike the sea urchin example in
which the components of the network are tigregulatory sequences control-
ling a particular gene, the network controlling galactose utilization consists of a
large number of genes and gene products interactitrguns. Although thetrans
model includes less detail about the regulation of individual genes, it provides new
information on how groups of genes interact to control a cellular process.

As shown in Figure 3, the yeast galactose-utilization system employs at least
nine genes. Four encode the enzymes that catalyze the conversion of galactose
to glucose-6-phosphat&ALY 5, 7, and10), whereas a fifthGAL2) encodes a
transporter molecule that sets the state of the system. If galactose is present in the
yeast cell, the system is turned on; if galactose is absent, the system is turned off.
A number of transcription factors regulate this on/off switch, includs?y3 4,

80, and possibly\GALG.

GENETIC AND ENVIRONMENTAL PERTURBATION OF THE NETWORK We wished to
determine whether the molecular interactions in the galactose network were suf-
ficient to account for changes in gene expression resulting from extensive pertur-
bations to the GAL pathway. Toward this goal, we constructed nine genetically
perturbed yeast strains, each with a deletion of a different GAL gene (see above).
These strains, along with wild-type yeast (no genes deleted), were grown to steady
state in the presence-@al) or absence{gal) of 2% galactose. For each of these

20 perturbation conditions (10 strains 2 media types), we used a whole-yeast-
genome microarray to monitor changes in mRNA expression relative to wild type
(+gal).

Nine hundred ninety-seven mRNAs (out ©6200) showed statistically sig-
nificant concentration changes during one or more of these perturbations. The
corresponding perturbed genes could be divided into 16 different clusters, where
the genes within a cluster behaved in a similar manner through all perturbations.
The striking observation was that the genes encoding various metabolic, cellular,
and synthetic pathways tended to fall in individual clusters—thus beginning to
reveal the network of interconnected informational pathways within the yeast cell.

CONSTRUCTION AND VISUAL DISPLAY OF THE NETWORK MODEL To reveal the
nature of these informational pathways, we constructed a model of the known
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molecular interactions connecting galactose utilization with other metabolic pro-
cesses in yeast. For this purpose, we compiled a list of 3026 previously observed
physical interactions, using all available entries from publicly available databases
of protein-protein (105) and protein-DNA interactions (133, 142). The interactions
in these databases came from several different sources relying on a variety of ex-
perimental approaches: Most were derived from biochemical association studies
reported in the literature or through large-scale experiments such as the two-hybrid
screen.

The interactions in these databases define a model of the molecular-interaction
network, shown in Figure 4, for two small regions. Each node in the network
represents a gene and is labeled with its corresponding gene name. An arrow
directed from one node to another signifies that the protein encoded by the first
gene can influence the transcription of the second by DNA binding (a protein
— DNA interaction), whereas an undirected line between two nodes signifies
that the proteins encoded by each gene can physically interact (a protein-protein
interaction).

Expression data from each perturbation can be visually superimposed on the
network. For example, Figureadshows the result of thgal4A deletion in the
presence of galactose. In the figure, the grayscale intensity of each node represents
the change in mRNA expression of its corresponding gene. When other types of
information are available, they too can be superimposed on the network display.
For example, we also measured changes in protein abundance for wild-type cells
grown in the presence vs. absence of galactose (68). Using a procedure based on
isotope coded affinity tags (ICAT) and tandem mass spectrometry (59), we detected
a total of 289 proteins and quantified their expression-level changes between these
two conditions. Strikingly, 30 proteins showed significant concentration changes,
~15 of which showed no changes at the mRNA level. The implication is clear—
these 15 proteins are regulated by posttranscriptional mechanisms—a compelling
argument for the need to integrate both mRNA- and protein-expression changes to
understand eukaryotic gene regulation. Figurédstrates the addition of protein-
abundance information to the visual display, focusing on the region of the network
corresponding to amino-acid biosynthesis. By comparing the mRNA- and protein-
expression responses displayed on each node, one can visually assess whether the
MRNA and protein data are correlated and quickly spot genes for which they are
remarkably discordant.

COMPARISON OF OBSERVED AND PREDICTED RESPONSES  In keeping with the sys-
tems-biology framework outlined previously, we wished to determine if the expres-
sion changes observed across the 20 perturbations were consistent with changes
as predicted by the molecular-interaction network. By itself, the network model
makes only very coarse predictions. For example, a protein-DNA interaction in-
volving protein A and gene B predicts that a change in expression of A could result

in a change in expression of B. If A is additionally involved in a protein-protein
interaction with C (C—A~B), then a change in expression of C could also elicit

a change at B, by first altering the activity of A. However, the network does not
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dictate whether these interactions activate or repress transcription or, in the case
that multiple interactions affect a gene, how these interactions should be combined
to produce an overall change in expression. Similarly, the network does not specify
whether a protein-protein interaction results in the formation of a functional protein
complex or if, instead, one protein transiently modifies the other. Because none
of these levels of information are encoded in the protein-DNA or protein-protein
databases, they are also absent from the network model and the graphical display.

Interestingly, much of this information is known outside of the databases: In
the case of the GAL genes, classic genetic and biochemical experiments have
determined that Gal4p is a strong transcriptional activator and that Gal80p can
bind to Gal4p to repress this function [see reviews by Johnston et al. (72) and Lohr
etal. (82)]. Thus, we have supplemented the model with these and other results from
the literature that address the effect of perturbing GAL genes on the expression
of other genes in the cell. For example, when such information is known, we can
indicate whether each relevant protein-DNA interaction serves to activate or re-
press gene expression. Likewise, we can indicate whether each protein-protein
interaction can alter the activity of either protein and whether this change is pos-
itive or negative. Once incorporated into the model, these added levels of detail
greatly increase its predictive power. Note that it is not necessary to integrate all
previous evidence into the model, just evidence that bears on gene expression.

Figure 5 compares the observed to the predicted expression responses of the
GAL genes, for each of the 20 perturbations. Although the observed response is
obviously more complex than the predicted one, the two responses agree in many
of their salient features. Not shown in the figure are the approximately 990 addi-
tional genes, outside of the core GAL pathway, whose mRNA expression levels
were affected in at least one perturbation. Interestingly, very little is known about
the molecular interactions that determine how the galactose-utilization pathway
may influence these other genes. The majority of these expression changes, there-
fore, are not yet addressed by the model and will call for the addition of new
interactions.

REFINING THE MODEL THROUGH ADDITIONAL PERTURBATIONS \We used discrepan-

cies between the predicted and observed expression responses to suggest possible
refinements to the model. For example, the current model predicts that in galactose,
perturbations to GAL enzymes (i.gallA, 7A, or 10A) should not affect expres-

sion levels of other GAL genes. Although this is largely truegallA, thegal7A
andgall0A deletions clearly affect expression levels@ALY, 2, 3, 7, 10, and

80 (see Figure 5). Because bajhl7A or gal10A deletions block the conversion

of galactose-1-phosphate (Gal-1-P), leading to increased levels of this and other
metabolites (76), one hypothesis is that one of these metabolites exerts control
over GAL-gene expression. To address this hypothesis, we examined expression
changes in gyallgallQA double deletion strain grown in galactose. Although
deletion of GAL10blocks the conversion of Gal-1-P, deletion®AL1 blocks a
preceding step in the galactose-utilization pathway such that Gal-1-P levels are
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greatly reduced. Thus, if metabolites are the cause of the change in GAL-gene
expression observed ingal10A mutant, these changes are predicted to disappear
in thegallAgall0A strain. In fact, when we measured the gene-expression profile
of this double deletion using a microarray, this is exactly what happened, lending
support for this revised model.

Thus, the systems approach to galactose utilization has given us new insights
into how the pathway is regulated (e.g., it has generated many new, testable hypo-
theses) and how it is interconnected with other informational pathways in the
yeast cell. Accordingly, this approach may be very powerful in elucidating the
network of informational pathways in other biological systems and, ultimately,
the interconnected networks of cells in metazoan organisms.

Bacterial Chemotaxis: A Robust Signal-Transduction Network

Bacterial chemotaxis, the process by which bacteria move toward or away from a
chemical source, has intrigued researchers for 120 years. The last few decades of
research (largely i&. coli) have focused on elucidating the molecular interactions
responsible for the chemotaxic response, resulting in a large body of genetic,
structural, physiological, and biochemical data [see recent reviews (17, 56)]. These
large data sets have led to a number of recent attempts to model the chemotaxis
network using systems approaches.

BEHAVIOR AND MOLECULAR BIOLOGY OF CHEMOTAXIS The physiology of the
chemotactic response has been relatively well characterized (17). The bacterium
moves in a chemical gradient by means of a biased random walk, alternating
episodes of swimming straight (running) and random reorientation (tumbling). To
run, the bacterium turns its flagellar motors counter-clockwise; a tumble ensues
whenthe motors are reversed. Asit moves, the bacterium senses gradients of chemi-
cal attractant (e.g., aspartate) or repellent (e.g., hydrogen peroxide) as changes in
concentration over time. Increasing attractant or decreasing repellent results in an
increase in the duration of runs in the desired direction.

As shown in Figure 6, the molecular biology of the chemotaxis system is also
known in considerable detail. Five transmembrane attractant receptors, known as
methyl-accepting chemotaxis proteins (MCPs), have multiple methylation sites
whose modification state governs signal transduction via a phospho-relay sys-
tem. This signaling network modulates the output of flagellar motors. It also
adapts the sensitivity of the network to changing concentrations of attractant or
repellent.

MODELING “ROBUSTNESS” AS A SYSTEMS PROPERTY  The molecular interactions re-
sponsible for chemotaxis have been studied quantitatively. For instance, Spiro et
al. (115) modeled the transitions of the various chemotactic signaling molecules
among different states of ligand occupancy, phosphorylation, and methylation.
Using the equations of mass-action kinetics, they succeeded in recapitulating the
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Figure 6 The bacterial chemotaxis system. Transmembrane attractant receptors, known as
methyl-accepting chemotaxis proteins (MCPs), form a signaling complex with CheW and

a kinase, CheA, that autophosphorylates and transfers phosphates to a response regulator,
CheY. Phospho-CheY interacts with flagellar motor proteins to induce clockwise rotation
(tumbling). The CheZ protein promotes CheY dephosphorylation. CheA transfers phos-
phates also to the CheB MCP methylesterase. The activated phospho-CheB demethylates
MCPs; this demethylation diminishes the kinase activity of the MCP-CheW-CheA complex
as part of the adaptation mechanism. CheR is a constitutive MCP methyltransferase. In the
presence of increasing attractant, CheA autophosphorylation is inhibited, counterclockwise
flagellar rotation (running) is extended, and subsequent MCP methylation allows adaptation
to the higher attractant concentrations. When moving through decreasing attractant, CheA
autophosphorylation is stimulated. This, in turn, promotes phospho-CheY induced tumbling
and then adaptation through demethylation of MCPs. Figure from Spiro et al. (115).

response of these molecules to attractant gradients, step increases, and saturation.
In doing so, Spiro et al. moved beyond the study of isolated components toward

a quantitative and integrative reproduction of many interactions simultaneously.
This complex web of interactions makes it possible to observe, model, and predict
system properties (i.e., properties that are observed behaviorally but are not readily
understood by studying any individual component of the system).

One interesting systems property of the chemotaxis network is its robustness
of adaptation to different attractant concentrations (5, 11, 138). In this context,
robustness means that the output of the system is insensitive to particular choices
of its inputs or biochemical parameters (e.g., enzyme levels and rate constants).
In particular, robust adaptation means that the system output responds to changes
in the input, without depending on the overall input magnitude. TBusglicells
respond to changes in attractant concentration (system input) by changing their
tumbling frequency (output). However, owing to robust adaptation, a homogenous
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solution of attractant will always result in the same tumbling frequency, regardless
of the attractant concentration.

PRECISION OF ADAPTATION Modeling work of Barkai & Leibler (11) demons-
trated that the robust adaptation of chemotaxis is a result of the structure of the
underlying molecular signaling network. Assuming a simple two-state model in
which the MCP-CheW-CheA protein complex is either active or inactive, they
were able to capture a wide variety of behaviors that had been previously observed
by experiment. In addition, they were able to make several striking predictions
regarding the properties of adaptation. They defined the precision of adaptation
of the chemotaxis network to mean its ratio of steady-state output before vs. after
a change in input. The network model predicted that this ratio was always equal
to one, thus indicating that precision of adaptation is a robust property; that is,
the tumbling frequency is only transiently affected by an increase in the level of
attractant and will eventually return to its initial steady-state value. In fact, one can
change rate constants over several orders of magnitude and still maintain precise
adaptation, regardless of whether Michaelis-Menten or cooperative kinetics are
used for the model simulations. Interestingly, many other properties of chemo-
taxis were predicted to be nonrobust; for example, neither the adaptation time (the
interval between the input change and the re-establishment of steady-state out-
put) nor the tumbling frequency (which depends on enzyme levels) were robust
properties under the model.

Inarelated study, Alon et al. tested these predictions directly, by varying enzyme
concentrations over two orders of magnitude and observing the respdaseotif
to the addition of saturating attractant (5). They observed steady-state tumbling
frequency, adaptation time, and precision of adaptation. As predicted by the model,
tumbling frequency and adaptation time were highly sensitive to changes in enzyme
level, whereas precision of adaptation remained relatively constant (within the
bounds of experimental error).

Returning to the model, the key structural feature responsible for this robust
behavior appears to be a feedback-control loop involving modification of the MCP-
CheW-CheA protein complex. Because the modification rate depends on the ac-
tivity of the protein complex and not on the concentrations of its various modified
forms, system activity tends to return to an initial steady state following a change
in input.

Forward Engineering of Biological Networks

All of the examples discussed thus far have involved constructing a mechanistic
model of a naturally occurring biological system. However, the systems-biology
framework outlined above can equally be used to construct a synthetic system ac-
cording to a predetermined model, with one key difference: In the former scenario,
one alters the model to best fit the biological system (i.e., reverse engineering),
whereas in the latter scenario, one alters the biological system to fit the model (i.e.,
forward engineering).
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Although the idea of engineering biological systems to have desired properties
or particular functions is not new, a series of ongoing research projects are putting
these ideas into practice. Spearheading these efforts is work by Elowitz et al. (40),
who constructed a gene-regulatory systeriircoli that functions as a synthetic
oscillator, and work by Gardner et al. (51), who demonstrated a genetic toggle
switch based on similar principles.

The basic network configuration of Elowitz et al. involves three transcrip-
tional repressor proteins organized into a negative-feedback loop (Figure 7). To
explore the potential oscillatory behavior of this configuration, the group con-
structed quantitative models (both kinetic and stochastic) describing the change in
protein concentration over time for each of the three genes in the system. These
models involved a number of biochemical parameters, including the overall rate
of translation, the rates of MRNA and protein degradation, and the dependence
of transcription rate on the concentration of the corresponding protein repres-
sor. In simulations, a high protein-degradation rate (relative to mRNA degra-
dation) tended to produce the desired oscillatory behavior. These simulations
prompted the group to insert a carboxy-terminal tag at trend@ of each of the
three repressor genes: These tags increased the degradation rate of each protein
by targeting them for destruction by cellular proteases. In this way, parameters
of the biological system were adjusted to match the desired parameters of the
model.

To explore the behavior of the network in viv, coli cells were transformed
with two plasmids: one encoding the three repressor proteins and another con-
taining green-fluorescent protein (GFP) under the transcriptional control of one of
the repressors. By monitoring levels of fluorescence over time, the group showed
that, as desired, individual cells exhibited oscillations with an average period of
150 minutes (three times that of the typical cell cycle, although there was some
difficulty in synchronizing oscillations over an entige coli population).

Research efforts such as these in which novel biological networks are designed
from a model will eventually converge and couple with efforts to study existing
biological systems. In this scenario, one would not only possess predictive models
but would also have the power to use these models to re-engineer cells. A range of
potential modifications could be rigorously evaluated through model simulations
then later verified directly in the biological system. This dualistic approach is one
of the “holy grails” of biology and medicine in which a predictive model of a
complex disease pathway is used to design and test cellular modifications that can,
ultimately, ameliorate the disease response.

SUMMARY

In conclusion, what are the most striking challenges arising from systems biology?

= The inclusion of nongenetic molecules, small and large, into the systems pic-
ture. The cell contains thousands of distinct metabolic substrates and other
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small and large molecules, a variety of which exert influence on gene ex-
pression (through direct interactions with proteins or DNA) and on allosteric
enzymes. Methods to systematically measure levels of such molecules would
be of enormous benefit.

Further development of theoretical frameworks and tools for integrating the
various levels of biological information, displaying them graphically, and,
finally, mathematical modeling and simulation of biological systems.

Systematic and detailed annotations of information in the public databases.
As the databases become more advanced, so will our models of cellular
processes. For instance, rather than simply provide a list of interactions,
physical-interaction databases should specify if, and how, each interaction
affects cell state.

Education of cross-disciplinary scientists. Cross-disciplinary scientists should
have a deep understanding of biology (their contributions will be proportional
to their understanding). We believe that the solution to this problemis to teach
biology as an informational science. This approach is conceptual, hierarchi-
cal, economical, and in the future mainstream of education in biology.

The integration of technology, biology, and computation. Integration (also
see points discussed below) presents one of the most striking challenges for
systems biology, both for academia and industry.

In addition to these general challenges, the development and practice of systems
biology involves a number of requirements that will pose particular difficulties for
academic institutions. Among these requirements are:

high-throughput facilities for global technologies, such as DNA sequencing,
DNA arrays, genotyping, proteomics, and protein interactions;

integration of different levels of biological information generated at each of

these facilities;

the integration of excellent biology with a strong computational infrastructure

and analytic tools;

the formation of teams of biologists, technologists, and computational scien-
tists to attack the iterative challenges of systems biology;

the integration of discovery- and hypothesis-driven science; and

the development of diverse partnerships with academia and industry. Acad-
emia will provide new systems for exploration; industry will provide new
technologies and resources to take on demanding problems.

These six challenges pose difficulties for most academic institutions—if they
are to provide their biologists the opportunities to practice systems biology. Most
academic institutions do not have the diverse scientific talent, funds, or space to
initiate a self-sustaining systems biology effort. Although these resources may be
available through industrial partnerships, it is difficult for academic laboratories
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to form such partnerships, particularly when intellectual property is involved. Ow-
ing to severe salary constrains, recruiting scientists from high-demand fields, such
as bioinformatics, proteomics, and engineering, can be equally problematic. Within
an academic institution, individual departments often provide barriers for cross-
disciplinary science—in geographical isolation, in the training of students, and
in the constraints of what is expected from faculty (research projects, teaching,
etc.). Finally, the demands of tenure force young faculty to carry out safe projects
independently—at potentially the most creative phase of their careers—and pe-
nalize them for research performed as part of a team. Of course, some academic
institutions may circumvent many of these limitations by the creation of spe-
cial centers. In other cases, independent, nonprofit research institutes, such as
our Institute for Systems Biology, can be fashioned to take advantage of these
opportunities.

Regardless of these initial hurdles, it is clear that systems biology will neces-
sarily be a leading academic and industrial thrust in the years to come. Its impact
on medicine, agriculture, biological energy production, and many other areas will
make biotechnology a powerful driving force as we move into the century of
biology.

Visit the Annual Reviews home page at www.AnnualReviews.org
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Design new perturbation(s) to maximize information gain
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pathway of interest expression profiles
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Figure 1 Overview of the systems biology approach, involving pathway verification and
refinement through systematic, successive perturbations. The pathway of interest is per-
turbed genetically by gene deletion or overexpression and/or biologically by modulation
of metabolite levels, temperature, or other pathway components. Gene expression profiles
measured in response to each perturbation, obtained using microarrays or related technolo-
gies, are compared to those predicted by a model of the pathway mechanism. Perturbations
are initially selected to target known pathway components and are thereafter chosen to
distinguish between alternative models that are consistent with the present set of observa-
tions. All aspects of the process are amenable to automation (laboratory or computational),
including model refinement and choice of perturbations.

Figure 2 (see figure on next page)ds-regulatory network at the sea urcléndol6yene.
(A1-A6) A developmental time course ehdol16n situ expression patterns in sea urchin.
The gene is expressed early in the vegetal plate,(although not in the early blastula

(A2) nor at ingression of skeletogenic cells3). After gastrulationendol6expression is
observed throughout the archenteréd). Subsequently, expression is shut down in the
foregut, the secondary mesenchyrA&), and the hindgutA6) but remains in the midgut.

(B) A map of protein-DNA interactions in the 2300lgmdo16 cisregulatory sequences.
Different colors represent different proteins. Repeated sites are marked with symbols be-
low the line. Distinct modules with identifiable roles @mdol6expression patterns are
indicated and annotatedC§ Control logic model for modules A and B. Binding sites are
indicated above the line. Below the line, circles indicate logical operations. Effects exerted
by module A are indicated in red; those of module B are in blue. Interactions that can be
modeled as boolean inputs are indicated as dashed lines, scalars as thin solid lines, and
time-dependent quantitative inputs as heavy lines. Outputs indicated with an arrowhead
exert positive effects; perpendicular bars represent negative effects. As an example, CY
and CBL1 interact synergistically to promote the output of the module B spatial-temporal
control element U1. Originals reprinted with permission from Davidson (34). Copyright
2001 Academic Press.
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Figure 3 The galactose system. Yeast metabolize galactose through a series of steps
involving theGAL2transporter and enzymes produceddl 1, 7, 10, and5. These genes

are transcriptionally regulated by a mechanism consisting primariyAif4, 80, and3.
GALG6produces another regulatory factor thought to repress the GAL enzymes in a manner
similar to GAL8Q Dotted interactions denote model refinements supported by our systems
approach. Reprinted with permission from Ideker et al. (68). Copyright 2001 American

Association for the Advancement of Science.
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Figure 4 Sample regions of the integrated physical-interaction network, corresponding
to (a) galactose utilization and) amino-acid biosynthesis. Each node represents a gene, a
yellow arrow directed from one node to another represents a protein-DNA interaction, and a
blue line between nodes represents a protein-protein interaction. The intensity of each node
indicates the change in mRNA expression of the corresponding gene, with medium-gray
representing no change and darker or lighter shades representing an increase or decrease ir
expression, respectively (node diameter also scales with the magnitude of change). Nodes for
which protein data are also available (pametontain two distinct regions: an outer circle,

or ring, representing the change in mRNA expression and an inner circle representing the
change in protein expression. To signify that the expression leGAb#thas been perturbed

by external means (pana), it is highlighted with a red border. Reprinted with permission
from Ideker et al. (68). Copyright 2001 American Association for the Advancement of
Science.
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Figure 5 Matrix of observed vs. predicted gene-expression responses. DNA microarrays were
used to measure the mMRNA-expression responses of yeast cells undergoing steady-state growth
in the presence of each of 20 perturbations to the galactose-utilization pathway. Each spot in the
matrix represents the quantitative change in expression observed for a GAlrg@géar{ one of

the perturbationscplumng, according to the intensity scale shown at upper right. Superimposed

on each spot are the corresponding (qualitative) predictions of the network model as shown in
Figure 3, with the symbolg- vs. — indicating a predicted increase vs. decrease in expression,
respectively. Unannotated spots represent genes for which no expression change is predicted.

Reprinted with permission from Ideker et al. (68). Copyright 2001 American Association for the
Advancement of Science.
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Figure 7 A synthetic, three-protein oscillatory network. The “repressilator” plasmid
encodes three synthetic proteins, each fused to a heterologous promoter such that one
protein represses the transcription of the next in a closed negative-feedback loop (TetR
represses cl, cl represses Lacl, and Lacl represses TetR). A reporter plasmid is used to
track oscillations in TetR concentration: it contains the TetR-binding sequence upstr-
eam of the gene encoding for green fluorescent protein. Reprinted with permission from
Elowitz & Leibler (40). Copyright 2001 Nature.



