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■ Abstract Dynamical modeling of biological systems is becoming increasingly
widespread as people attempt to grasp biological phenomena in their full complexity
and make sense of an accelerating stream of experimental data. We review a number of
recent modeling studies that focus on systems specifically involving gene expression
and regulation. These systems include bacterial metabolic operons and phase-variable
piliation, bacteriophages T7 andλ, and interacting networks of eukaryotic develop-
mental genes. A wide range of conceptual and mathematical representations of genetic
components and phenomena appears in these works. We discuss these representations in
depth and give an overview of the tools currently available for creating and exploring dy-
namical models. We argue that for modeling to realize its full potential as a mainstream
biological research technique the tools must become more general and flexible, and for-
mal, standardized representations of biological knowledge and data must be developed.

INTRODUCTION

The mathematical and computational modeling of biological systems is a subject
of increasingly intense interest (see Appendix: A Brief Guide to Recent Reviews).
The accelerating growth of biological knowledge, in concert with a growing ap-
preciation of the spatial and temporal complexity of events within cells, tissues,
organs, and populations, threatens to overwhelm people’s capacity to integrate,
understand, and reason about biology. The construction, analysis, and simulation
of formal models is a useful way to manage such problems. Metabolism, signal
transduction, genetic regulation, circadian rhythms, and various aspects of neu-
robiology are just a subset of phenomena that have been treated by modeling. In
this paper we explore some recent modeling studies on systems that specifically
include genetic components: genes and the concomitant phenomena involved in
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their expression and regulation. Our focus is restricted to studies where the models
are meant as a direct representation of the systems being investigated and, as much
as possible, are compared to experimental data. Particular systems include the bac-
teriophageλ lysis/lysogeny decision, the bacteriophage T7 complete life cycle, the
lac andtrp operons and the response to phosphate starvation inEscherichia coli,
and type-1 piliation inE. coli. There is a pronounced prokaryotic bias in this list,
which is largely a reflection of the state of the affairs. The details of eukaryotic
gene expression are still rather poorly understood, and so the few models that treat
them are rather simple and general. We do not review these in depth but do briefly
discuss the modeling approaches taken. We do examine models of networks of in-
teracting genes involved in several eukaryotic developmental processes; these are
interesting for treating complex phenomena without involving mechanistic detail.
After reviewing the scope of the various prokaryotic and eukaryotic models and
the biological questions they have been used to answer, we examine in detail how
the genetic components and phenomena addressed by the models are represented
conceptually and mathematically.

The detailed models we examine demonstrate the principal strength of model-
ing: It is a means to formulate all available knowledge about a system in as precise
a manner as possible. In so doing, it allows a number of complex questions to
be posed: (a) Is the available knowledge self-consistent? This question can often
be answered during the formulation of a model. Contradictory information about
the system needs to be resolved before a model can be completed. (b) Is the available
knowledge of a system’s components and their interactions sufficient to account for
all the system’s known behavior? If not, a model can often focus attention on areas
that would most benefit from further investigation. (c) What are the consequences
of various manipulations to the system (e.g., knocking out genes, modifying pro-
moters, modulating various biochemical reactions with pharmaceuticals, etc.)? A
model can provide predictions that are at the same level of detail as the model’s
formulation. A highly detailed mechanistic model can in principle predict a wide
range of quantities, from the detailed timecourses of protein and nucleic acid levels,
through the activation states of genes, all the way to a final phenotypic outcome.
To date, questions like these have most often been treated informally, using drawn
diagrams, conceptual thought, and logical argument. An excursion to the limits of
such faculties, however, may be had with a glance at, say, a chart of metabolism or
any of the maps at the Alliance for Cellular Signaling (http://www.afcs.org), or the
contemplation of the mechanistic bases of quantitative trait loci, mutations with
partial penetrance, “susceptibility” phenotypes, and mutants that are not gain/loss
of function but disturbances of control of function. Proper intellectual treatment of
such things will require increasingly complex hypotheses about how the systems
we study work, and the more complex a hypothesis, the more difficult it is to check
for internal consistency, to assess for explanatory power, and to reason from about
consequences using unaided human thought.

It thus seems inevitable that computational models, together with formal repre-
sentations of knowledge and data to support them, will play a greater and greater
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role in mainstream biology. There are, however, formidable difficulties in creating
and, for the nonspecialist, evaluating a model. We briefly discuss these difficulties
in the final sections and suggest that the most useful thing to be done in overcoming
them is to dramatically improve the tools available to the biological community
for handling models and data.

THE MODELS

The first examples we review, thetrp and lac operons and thepho regulon in
E. coli, are important metabolic systems that have found extensive use as heterolo-
gous expression systems. Together they illustrate a number of important regulatory
mechanisms, and questions about their control have commercial significance. We
then review two bacteriophage systems, T7 andλ. The T7 model is the first “whole
genome, whole life-cycle” model of an organism, and it addresses certain issues
in genome organization and pharmaceutical strategies.λ, a temperate phage, has
a choice of fates on infecting its host. The models explore how this fate is de-
termined. Next are type-1 fimbriae, which play an important role in the patho-
genicity of certainE. coli strains and, being phase variable, contribute to the het-
erogeneity of clonalE. coli cultures. Modeling is used to explore how the phase
variation is regulated and the part it plays in infection. Finally we review some
models of interacting gene networks involved in eukaryotic development.

The trp Operon

Santillán & Mackey study thetrp operon ofE. coli (67). This operon codes for five
biosynthetic enzymes that convert chorismate to tryptophan. The biosynthesis of
tryptophan inE. coli is subject to three modes of control: end-product inhibition
by trp of the enzyme mediating the first step of the conversion, trp-dependent
repression of the operon, and transcriptional attenuation. The model used by
Santillán & Mackey is the first to treat all three of these modes. The authors
carry out simulations and compare their results with previously reported experi-
ments in which biosynthetic enzyme activity was followed after cultures ofE. coli
grown in rich medium to stationary phase were shifted to a minimal medium lack-
ing trp. Two mutants, one with generally lowered transcriptional efficiency and
one with enhanced transcriptional termination, are studied along with the wild
type. The simulation results give only a fair match to experimental values. One
qualitative feature, a transient overshoot of enzyme activity upon nutrient shift in
the wild type, seems to be missed entirely. Two significant points must be noted
here. First, the experimental results to be reproduced are widely spaced and appear
to be quite variable, making meaningful detailed comparison difficult. Second, all
of the parameters of the model, at least for describing the wild type, are estimated
by the authors from the biochemical literature. No fitting to the target results is
performed. This is not true for the mutants, however. Each mutant is modeled
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by changing a single parameter assumed to be the key for the mutant phenotype.
The new values are set by trial and error, presumably with reference to the mu-
tant experimental results. Hence, an informal kind of fitting is performed, and the
qualitative agreement of simulation with experiment does seem somewhat better
for the mutant cases.

The lac Operon

Expression of thelac operon inE. coli is induced by intracellular lactose, which,
after isomerization to allolactose, binds to the LacI repressor protein, disrupting its
interaction with the operator site in the promoter. The operon is also involved in the
global response to glucose. As glucose levels fall, cAMP builds up; the complex
of cAMP and catabolite activating protein (CAP) stimulate transcription fromlac
and other metabolic operons. Glucose also counteracts the derepressive effects of
lactose by interfering with its uptake into the cell.

Keasling and coworkers have produced two models of this operon (16, 84). The
earlier one (84), which treats all three regulatory phenomena, successfully repro-
duced general experimental observations: In a medium containing both glucose
and lactose, the glucose was consumed during an initial period of exponential
growth. This was followed by a period of slow (diauxic) growth before exponen-
tial growth was renewed through lactose consumption. The model allowed the
investigators to follow a large number of separate variables over time, including
mRNA levels for the LacI repressor and lactose utilization enzymes. Repression
and induction of the operon was clearly visible. However, no direct comparisons
to experimentally observed kinetic profiles were done.

The otherlac operon model from this group (16) does not include the effects
of glucose or the metabolic consumption of the inducer. It thus more closely
represents the conditions of a heterologous expression system driven by an artificial
nonmetabolizable inducer [for instance, isopropylβ-D-1-thiogalactopyranoside
(IPTG)]. The autocatalytic nature of the operon is retained: Induction of the operon
leads to production of more of the inducer’s transporter enzyme (LacY). The model
also differs from the earlier one in explicitly treating the stochastic nature of gene
expression at the level of single cells. Simulations showed that individual cells
respond to inducer in an all-or-none manner, consistent with earlier experimental
studies on single cells. The graded dose response of a bulk culture to inducer
was reproduced when a large number of single-cell simulations were aggregated.
Further, the model reproduced the phenomenon of “maintenance induction,” that
is, maintaining high expression of the operon after shifting an induced culture to
a lower concentration of inducer.

The Pho Regulon

Another paper from the Keasling group (80) gives a model of part of the phosphate
starvation response ofE. coli. In this response, low extracellular phosphate con-
centration is signaled to a transcription factor (PhoB) that activates transcription
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of a number of other genes, including the genes for alkaline phosphatase and com-
ponents of the Pst phosphate transporter. The model is similar in character to the
earlier of the lac operon models. Simulations reproduced the sharp induction of
phosphate-responsive genes at a precisely defined phosphate concentration. The
model also allowed the authors to examine the role of phosphate transport on the
expression of the regulon under phosphate starvation. They found that changing
the parameters of the transport portion of the model did not significantly affect
expression. The model also predicts that expression of a heterologous protein from
a PhoB-dependent promoter will become less efficient as copy number increases,
being limited by the availability of PhoB.

Life Cycle of Bacteriophage T7

T7 is a lytic phage ofE. coli [see (58) for review]. Its 56 genes are divided into
three temporal classes, based on their ordered entry into the host cell. The genes
in Class I, the first to enter, are transcribed by the host RNA polymerase. Among
these genes is the viral RNA polymerase, gp1, which transcribes the viral genes
of Classes II and III. Transcription is regulated by differential promoter strengths,
by inhibition of host RNA polymerase by two viral enzymes, and by inhibition
of gp1 by viral lysozyme. Endy et al. (22) have constructed an elaborate model
spanning nearly the entire T7 genome and life cycle. The model explicitly treats
52 gene products. Of these, 15 play a direct role in viral processes treated by the
model. Simulations give the time evolution of all 52 gene products, illustrating
the shift from host to viral polymerase activity and allowing one-step growth
curves (the build-up of progeny phage in an infected cell over time) to be derived
for comparison with experiment. In a subsequent paper (24), the model is used
to explore the ramifications of the organization of the T7 genome. The authors
predict the effect on viral growth of relocating certain genes and construct the
rearranged viral strains in the laboratory. Agreement with experiment is only fair.
Although the problem may lie with the model, the experiments disrupt certain
genomic sequences thought to be inessential but whose role has not been clearly
established. The discrepancy between model and experiment may thus indicate
aspects of T7 biology in need of further investigation.

The model’s explicit representation of viral mRNA allows the use of antisense
RNA as an antiviral agent to be explored. In these simulations, targeting viral
structural genes slows viral growth but targeting certain others is predicted to ac-
celerate it. These are the genes whose products exert an inhibitory influence on the
host and viral polymerases. Targeting gp1 in fractional amounts is also predicted to
enhance viral growth, likely by slowing the expression of the inhibitory gene prod-
ucts. This aspect of the study is continued in another paper (23), where the sense-
antisense-mRNA binding constants are allowed to vary in order to simulate the
effect of the phage mutating under pharmaceutical pressure. In concordance with
the earlier result, simulations show that, for stoichiometric targeting of gp1, small
decreases in RNA binding affinity would lead to slower-growing virus. Thus, small
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mutations would be selected against, in principle slowing the emergence of resis-
tance. Studies like this, practical only through modeling and simulation, hold great
potential for drug-development applications.

Bacteriophage λ

λ is a temperate bacteriophage ofE. coli [see (62) for review]. A crucial aspect
of its physiology is the selection between the lytic and the lysogenic pathway
after infection. Once established, lysogeny is maintained by the phage repressor
protein CI, which represses all the other viral genes while stably maintaining its
own expression. CI expression can be repressed, however, by the protein Cro.
The arena for the competition between these regulators is the OR operator, which
lies between two divergent promoters, PRM, which drives CI expression, and PR,
from which Cro is transcribed, and contains three binding sites. Both CI and Cro
can bind the three sites in sequence, but in opposite order. Downstream and in the
opposite direction of PR is the promoter PRE. Transcripts from this promoter include
an antisense Cro message along with a normal CI message. PRE transcription is
stimulated by the viral proteins CII and CIII. ThecII gene lies in the reading frame
of PR downstream ofcro, but cotranscription is hampered by a leaky terminator.
The terminator’s effect is counteracted in the presence of the viral antiterminator
protein N. ThecIII gene is similarly downstream of a leaky but more efficient
N-dependent terminator. CIII confers stability on CII, which is degraded five times
faster if CIII is absent. The establishment of lysogeny upon infection requires a
transient initial burst of CII expression. With sufficient CII early on, enough CI
can be expressed from PRE to activate its own autocatalytic expression from PRM

and thus secure its ascendancy. Otherwise, Cro will repress CI expression, and
lysis will ensue. Lysis can also be induced in a lysogenized phage by mechanisms
that activate the degradation of CI by the host protein RecA.

Early modeling of this system was carried out by Thomas (76) in an abstract
framework in which the presence and activity of a gene were treated as Boolean
variables (i.e., restricted to values of 0 or 1), and the regulation of the system was
encoded by logical functions (OR, AND, NOT, and their combinations). Although
such an approach can yield some insights in the absence of detailed biochemical
information [see also Huang & Ingber (36) and the discussion of theendo16
models below], the modifications required to accommodate increasing knowledge
(75) dilute the simplicity of the original approach. The introduction of multiple-
state logical values, semi-quantitative thresholds, and delay times complicates
analysis but falls short of the detailed predictive capability of a more physically
based approach.

Modeling efforts incorporating quantitative biochemical information began
with Ackers and coworkers (5). In this paper the authors presented a quantitative
equilibrium model for the cooperative action of the CI repressor on the activity
of the PRM and PR promoters. The model of promoter activity was enlarged by
Shea & Ackers (70) to include the effects of Cro. The authors also included the
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synthesis of the CI and Cro proteins, making the model fully dynamical. Although
experimental protein time courses were not available for comparison, the model
gave the expected behavior for stable maintenance of lysogeny as well as for the
induction of lysis when degradation of CI by the host protein RecA was included.
Reinitz & Vaisnys (66) extended the dynamical model further by adding degrada-
tion of Cro. These authors found an inconsistency between the concentration of
CI they measured and the level that would lead their model to exhibit two stable
steady states corresponding to lysis and lysogeny, respectively. This inconsistency
is likely a by-product of omitting the other proteins important for the decision.

The most extensive model in terms of explicitly represented viral genes is given
by McAdams & Shapiro (53). Along with CI and Cro, they include the other pro-
teins of the lysis/lysogeny switch, CII, CIII, and N. They also include genes that
become active after the fate of the phage is determined. The model is interest-
ing in that, where appropriate as shown by experimental knowledge, the detailed
biochemistry is replaced by logical calculations. Simulations track biomolecule
concentrations and cell fate over time and correctly predict the increased tendency
toward lysogeny under conditions of increasing multiplicity of infection (MOI).
[A model of essentially the same scope but formulated in the specialized mathe-
matical framework of hybrid Petri nets has subsequently appeared (48).]

Arkin et al. (7), in a demonstration of the principles explored by McAdams &
Arkin (49), give a model of the lysis/lysogeny switch based on a stochastic repre-
sentation of transcription, translation, and reactions between proteins (Figure 1).
The fraction of lysogens as a function of MOI predicted by their simulations closely
agrees with experimental measurements. The authors also make quantitative pre-
dictions of this function for mutants that have not yet been studied experimentally.
Further, the detailed time courses given by the simulations clearly illustrate how
identical cells in identical conditions infected with the same number of phage can
still meet different fates owing simply to chance.

Type 1 Fimbriae in E. coli

Fimbriae, or pili, are hair-like appendages extending from the bacterial cell. In
E. coli, type 1 fimbriae [reviewed in (14)] confer the ability to adhere to mannose-
containing surfaces. PathogenicE. coli strains exploit this property to adhere to
cell-surface receptors of epithelial tissues and ultimately invade the epithelial cells.
The fimbriae provoke an immune response, however, so an invading population
must strike a balance between piliated and unpiliated members and must control
the degree of piliation in response to changing conditions. Piliation is thus phase
variable. The members of a bacterial colony may change their piliation state ran-
domly. The structural genes required for type 1 fimbriae,fimACDFGH, lie in an
operon whose promoter is contained in an invertible region of DNA known as
the fim switch. When the invertible region is in the proper orientation (the switch
is on), the structuralfim genes are expressed and the cell becomes piliated. In
the inverted orientation (the switch is off), no promoter is available to drive Fim
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Figure 1 The bacteriophageλ lysis/lysogeny decision circuit, as modeled by Arkin
et al. (7). Shown are five genes (cI, cro, cII, cIII , and n) and their products, four
promoters (PRM, PR, PRE, and PL) with operator sites (OR1-3, OE1-2, and OL1-2), two
terminators (TR1 and TL1) and their efficiencies, and two N-utilization sites (NUTR

and NUTL). Arrows terminating on the operator regions set off by dashed boxes are
labeled with the binding species and its effect on transcription. Arrows lying over the
genes show the direction of transcription. The solid boxes contain nongenetic reactions
between the protein components of the system. Deg indicates a degradation reaction.
P1 is the host protease HflB. An additional protease for CII and CIII appears in the
model but is not shown here. See (7) for details.

expression. Inversion of the fim switch is accomplished by two recombinases,
FimE and FimB. FimE exhibits an orientational bias in its activity; it is much
more active in flipping the switch from on to off. FimB’s inversion activity is the
same regardless of switch orientation. In addition, expression of FimE depends on
the switch orientation. With the switch in the off position, FimE is not expressed.
There are also contributions to the behavior of the switch from global regulatory
factors. Integration host factor (IHF) is necessary for the switch to function at all;
it is thought to participate in bending the DNA into the proper shape for inversion
to occur. Leucine responsive protein (Lrp) enhances the switching rate at moder-
ate concentrations but tends to reduce it at higher concentrations unless leucine is
present. H-NS represses the expression of the two Fim recombinases and Lrp in a
temperature- and nutrient-dependent way.
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Wolf & Arkin (83) give a stochastic model of the fim switch, the only model
to our knowledge that treats DNA inversion. The model directly incorporates the
effects of IHF and Lrp on the behavior of the switch. The effects of H-NS are
handled indirectly through changes in concentrations of other proteins. The model
allows the probability of piliation to be calculated from concentrations of the re-
combinases and global regulators, leading directly to the piliation statistics of a
population. Switching behavior can be predicted under a wide range of tempera-
tures and nutritional states, as reflected in the activities of the global regulators.
The authors use the model to demonstrate the enhanced control properties of the
switch provided by the action of two recombinases where it might be thought that
one is sufficient. The model also shows how temperature tuning is accomplished
by Lrp, upregulating the degree of piliation at host body temperature and down-
regulating it at temperatures indicative of an inflammatory response. Finally, the
putative course of infection is followed, and the model predicts piliation behavior
well in line with expectations for adaptive response.

Eukaryotic Development

All the models we discuss in this section have a distinctively different character
from the above models. Developmental processes tend to be extremely compli-
cated, all the more so because many cells are involved and their relative locations
in space are important. Certain regulatory proteins are secreted and may diffuse
through developing tissues; others are confined to the interiors of individual cells
or nuclei or to the interfaces between cells. Moreover, the regulatory roles of many
proteins important in development have not been clearly elucidated, let alone the
mechanisms by which such functions are carried out. Thus, the principal focus of
modeling in this area has tended to be for explanatory purposes, to try, by fitting
a model to experimental data, to discover the rules governing regulation from the
fitted model parameters.

Reinitz and coworkers have used time-dependent gene-expression levels in-
ferred from micrographs of developingDrosophilaembryos to fit dynamic gene
network models. In one paper (65), the authors attempt to clarify the roles of four
gap genes in establishing the striped pattern ofevegene expression. In a subse-
quent paper (64), the authors examine the roles ofbicoid (bcd) andhunchback
(hb), maternally expressed genes, in forming the domain pattern of some gap genes.
After fitting to wild-type data, the model is used to predict the effect of changing
the copy number ofbcd. Predictions of how the location of a positional marker
changes as thebcd copy number is increased are in good qualitative agreement
with experiment. The model also allows investigation of the role of maternalhb
expression by simulating the effect of “turning off” this expression. The result is
a significant shift of thebcddose-response curve.

Marnellos et al. (46) use a simple model to study lateral inhibition by inter-
cellular Delta-Notch signaling [see (9) for a review] in development ofXenopus
embryonic epidermis. Fitting is done not to a specific dataset but to the more general
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experimental finding that, after differentiation, two thirds of the cells are epidermal
(high levels of Delta expression and low levels of Notch) and one-third are cili-
ated (high Notch, low Delta), more-or-less homogeneously dispersed among the
epidermal cells. The fitted model is then used to simulate two gene-injection ex-
periments, one of which produced a highly variable response in different embryos.
The model has a small number of parameters, and a large number of adequate fits
emerge in the study. The authors identify this variation with naturally occurring
genetic variability between different embryos. Simulations of the experiment us-
ing the various parameter sets give variable results, which the authors claimed as
good qualitative agreement. Significantly, the various fitted parameter sets all gave
a similar result in simulations of the other experiment. In an earlier paper (47), a
more abstract version of this approach, not using individual genes but aggregates
called proneural and epithelial, was applied toDrosophila neurogenesis. More
recently, a model for Delta-Notch signaling using a hybrid automaton approach
has been given by Ghosh & Tomlin (28).

Kyoda & Kitano (42) study the interaction of eight developmental genes in a
model of leg formation inDrosophila. The authors include known patterns of re-
pression and activation in a threshold-based treatment of regulation, along with one
hypothesized interaction, the repression ofdppby CI. The parameters of the model
are hand tuned to give good qualitative agreement with observed gene-expression
patterns and protein-localization patterns in theDrosophilaleg disc. Hence, the in-
troduced interaction is a prediction of the model. Results of simulations are further
used to support a particular view of proximal-distal axis formation over competing
views.

Yuh et al. have studied theendo16gene in sea urchin (85, 86). This gene is
differentially expressed in different embryonic tissues. Expression is regulated by
means of a long and complicated cis-regulatory region that has been conceptually
divided into modules. A series of reporter constructs were made combining various
modules and sites within modules, both mutated and unmutated, and expression
was followed over time. A procedural model summarizing a large number of exper-
imental findings was constructed (85). The model is essentially phenomenological.
It is devoid of biochemical detail, much of which is completely unknown. Instead,
it takes as input the presence or absence (deletion or mutational inactivation) of
various modules and sites, along with the time-dependent gene expression mea-
sured for other sites, and applies logical and arithmetic computations to reproduce
experimentally observed behavior. The model is extended in a subsequent paper
(86) to include more detailed experiments on module B and its interaction with
module A (Figure 2). It is notable that the model allows the authors to make quan-
titative predictions about the expected levels ofendo16expression in a number
of mutants not previously examined. This is a strong example of the integrative
function of modeling leading to predictive power. It will be interesting to see how
the computation implied by the model is actually implemented by biochemical
mechanisms. [Of note, a model along similar lines but covering much more of sea
urchin development (19) appeared as this paper was going to press.]
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von Dassow et al. (81) model theDrosophilasegment polarity network. Known
gene and intercellular interactions are collected into a model that attempts to repro-
duce the spatial expression patterns of segment polarity genes in rows of embry-
onic cells. Because specific data on the various interactions are sparse, the authors
carry out a search for suitable parameters. For the initially formulated model, para-
meter sets that led to the correct expression patterns were very rarely produced in
a random search. When additional interactions, not yet conclusively demonstrated
experimentally but plausible given current knowledge, were added, parameter sets
producing correct behavior became much more common. Further, varying individ-
ual parameter values within some range tended not to disrupt the model’s behavior
significantly. Thus, the model exhibited a degree of robustness to variation. On
the basis that such robustness is a principal characteristic of certain biological
networks, the hypothesized interactions that led to robustness are predictions of
the model.

REPRESENTATIONS OF GENETIC PHENOMENA

The construction of a quantitative model involves two principal considerations.
The first is the model’s conceptual structure. This lays out which molecular en-
tities appear as explicit participants, which aspects of their behavior are treated
by the model and which are neglected, and which entities or effects enter implicitly.
The second consideration is how the conceptual structure is to be represented math-
ematically: which types of mathematical objects stand for the molecular players
and which equations or algorithms are used to implement their behavior (Figure 3).
There is a fair degree of latitude between these aspects of a model but also quite
a lot of interplay. In this section we illustrate in detail how these aspects of model
building are dealt with in the examples described above, as well as in others.

Of the above examples, four in particular take very detailed views of their sub-
jects. These are the phageλ models by McAdams & Shapiro (M&S) (53) and by
Arkin, Ross, and McAdams (ARM) (7); the inducedlac operon model by Carrier
& Keasling (C&K) (16); and thetrp operon model by Santill´an & Mackey (S&M)
(67). Although these four works conceptualize gene expression in similar ways,
each is rendered by a different mathematical formulation. ARM and C&K use
stochastic algorithms, although the latter’s is ad hoc, intended to approximately
illustrate the effects of random fluctuations on gene expression in their system,
whereas the former’s is based on a rigorous derivation from microscopic physical
principles (Figure 3c). M&S and S&M both use continuous, deterministic mathe-
matics. But, as discussed below, S&M’s conceptual scheme, while including the
same level of process detail, does not include as many players as the M&S model,
and this leads to their use of differential-delay equations (Figure 3b) as opposed to
the straight differential equations employed by M&S. After following these four
works through the stages of gene expression at very high degrees of detail, we use
the remainder of this section to discuss some more abstract, simpler approaches.
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Transcriptional Initiation

The most elaborate quantitative treatment of transcriptional initiation was intro-
duced by Ackers and coworkers (5, 70) and is employed by ARM, along with others
discussed later. The approach begins by enumerating the possible configurations of
transcription factors and RNA polymerase (RNAP) bound to promoter and operator
sites. Each distinct configuration is associated with an initiation rate, which is al-
lowed to be zero if the configuration does not include a productively bound RNAP.
The overall rate of transcript initiation is then calculated as a weighted average of
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the “microscopic” initiation rates. The weight for each rate is simply the relative
abundance of each configuration at equilibrium, a fraction determined by a thermo-
dynamic calculation using the free energies of binding for each configuration. To
have a compact way to refer to this approach, we propose the acronym BEWARE:
binding equilibrium weighted average rate expression. BEWARE is a very ver-
satile approach. It allows any number of transcription factors to be included and
accommodates various effects they may have on initiation. For example, repres-
sors that function by preventing RNAP binding give noninitiating configurations.
Repressors that still allow RNAP binding but act to retard initiation in some way
give configurations with low microscopic initiation rates. Activators that increase
RNAP’s affinity for the promoter give configurations with more favorable binding
free energies than those with RNAP but without the activator and hence increase
the overall abundance of initiating configurations. Cooperative transcription-factor
binding, the effect this approach was originally used to investigate, is rendered with
a favorable free-energy term added to the contributions of individual binding.

ARM incorporate BEWARE into their stochastic model of phageλ by treating
the output as the instantaneous probability of an initiation event. However, the
mathematical validity of this treatment has not been rigorously established. C&K
use a similar but somewhat simpler approach. Initiation is equated with the bind-
ing of RNAP to the promoter, and this binding is a random event. Its probability
increases with increasing inducer concentration. Overall, this approach is con-
ceptually similar to BEWARE but cannot be rigorously derived from equilibrium
considerations.

S&M also equate initiation with binding of RNAP to a free promoter site, but
they let this binding be competitively inhibited by repressor. The term describing
this inhibition is derived by using a stationary-state assumption that is justified by
experimental measurements of repressor-binding kinetics. M&S also treat initia-
tion events explicitly but take a hybrid approach. For some of the promoters in their

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3 Mathematical representations of some genetic processes. (a) Equation giv-
ing the rate of production oflacZYAmRNA in the model by Wong et al. (84). The
quantities set off by angle brackets are equilibrium binding fractions of the DNA sites
that interact with RNA polymerase holoenzyme, catabolite regulatory protein-cAMP
complex, and the LacI repressor, respectively. Note that the three interactions are im-
plicitly independent under this representation. (b) Equation from thetrp operon model
by Santillán & Mackey (67). This equation treats the production, ribosome occlusion,
clearance, and degradation of mRNA. Two delay times appear:τm is the time required
to produce a full transcript once transcription has initiated.τρ is the time required for a
translating ribosome to clear the RBS (but not to complete translation).T is the (time-
dependent) tryptophan concentration. Note that the rate constants are not explicitly
labeled. (c) A general form of the chemical master equation, the basis of the stochastic
simulations by Arkin, Ross, and McAdams (7). TheW terms give the probability of
transitions per unit time.
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λmodel initiation is determined in a way similar to BEWARE, but for others a sim-
pler calculation approximating the function of a Boolean logic gate is performed.
A positive output from this calculation means that initiation has occurred.

One of the few specifically eukaryotic models of transcription, a model by Wang
et al. of the synergetic activation of Epstein-Barr virus genes by the viral protein
ZEBRA (82), is a BEWARE-type model. Equilibrium is assumed between
ZEBRA, the promoter, and the transcriptional machinery, with cooperative inter-
actions between ZEBRA and the general transcription factors. Another eukaryotic
example, an equilibrium model for the cooperative binding of regulatory proteins
to nucleosomes to expose transcriptional units, has been given by Polach & Widom
(61).

Promoter Clearance and Transcriptional Elongation

In the models by ARM, M&S, and C&K, elongation is completely explicit. These
models track the position of the elongation complex within the coding region.
The elongation complex moves at a constant rate in the M&S model. In the ARM
model, the advance of the elongation complex over each consecutive nucleotide
is a stochastic step with an exponential waiting time distribution, the stochastic
equivalent of a constant-rate process. Elongation in the C&K model also has a
stochastic character, but it appears through a random choice of elongation rates
associated with different initiation events. This raises the possibility that a faster-
moving elongation complex might overrun a slower one. The model explicitly
prevents this from happening. The ARM model carries out a similar surveillance.

Because RNAP that has not moved clear of the promoter is thought to prevent
any further transcriptional initiation, there is potentially a strong coupling between
elongation and initiation. Both the C&K and the ARM models treat promoter
clearance explicitly, requiring that an initiating RNAP move at least the length of its
footprint before allowing any possibility of subsequent initiation. In S&M’s model,
there are no notions of an elongation complex or its position, but there is the notion
of a free promoter. Time delays are used to represent the occlusion of the promoter
after initiation and the time necessary to complete the transcript (Figure 3b).

The elongation phase of transcription is also where various control mechanisms
such as termination, antitermination, transcriptional attenuation, and convergent
transcription come into play. Termination and antitermination play crucial roles in
phageλ physiology. These processes, at least as they occur in leaky terminators,
are explicitly present in the models by M&S and ARM and are handled similarly,
aside from the deterministic treatment of the former and the stochastic treatment
of the latter. In the deterministic case, a leaky terminator prevents a fixed frac-
tion of elongation complexes from passing; complexes that have previously been
antiterminated are exempt. In the stochastic case, there is a fixed probability that
the elongation complex will dissociate upon reaching the leaky terminator. This
probability is zero for antiterminated complexes. Termination that occurs when
the elongation complex reaches the end of a coding region is not given particular
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treatment by any of the models we discuss. Typically, the completed transcript is
simply released.

Transcriptional attenuation appears in the S&M model. The details of the pro-
cess are entirely abstracted into a mathematical term that reduces by large amounts
the fraction of initiating transcripts that are actually completed, unless the trp con-
centration is very low (Figure 3b).

The ARM model further makes allowances for convergent transcription from
the facing PR and PRE promoters. When two elongation complexes originating at
these promoters collide in the intervening sequence, one or both of the transcripts
are terminated prematurely. The presence of convergent promoters also raises the
possibility of antisense RNA interactions, but such effects are not treated by the
ARM model. Handling of these interactions is further described below.

Translation

Translation occurs in stages much like those of transcription: initiation, elongation,
and termination. However, only three of the four detailed models we discuss treat
stages of translation explicitly. The model by M&S uses a lumped representation
of translation and is discussed below. Initiation of translation is typically repre-
sented by the binding of a ribosome to a ribosome binding site (RBS) on the
transcript. In all three models, this binding is allowed to occur before the transcript
is complete. C&K and ARM, in tracking the growing transcript, also check for
initial RBS availability and its clearance of transcribing ribosomes. S&M employ
additional time delays to represent the time needed for an RBS to be transcribed
initially and the time it takes an initiating ribosome to clear the RBS. Translational
elongation is treated in a very similar way to transcriptional elongation—S&M
utilize time delays, and ARM and C&K use explicit tracking of elongating ribo-
somes. Much like transcriptional termination, translational termination is implicit
in all the models—the completed peptide is simply released. Other phenomena
like translational stalling or premature termination have not been modeled. Even
though translational stalling due to insufficient charged trp-tRNA is crucial to the
mechanism of transcriptional attenuation of thetrp operon, S&M chose not to treat
it explicitly (see above). A highly detailed model of attenuation in thetrp operon
is given by Koh et al. (40), who use deterministic chemical kinetics for each step
of translational elongation to derive the pause duration of a ribosome stalled at
the trp codons in the attenuator. The degree of attenuation is then determined by
how much transcription occurs during the stall and hence whether the terminator
structure will form in the nascent transcript. Although the authors suggest that this
model may be combined with an earlier model they give for repression of thetrp
operon (41), this has not been done.

DNA Inversion

In the fim model by Wolf & Arkin (83), the flipping of an invertible DNA element is
treated by a novel application of the BEWARE approach. Instead of factors bound
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at a promoter, the authors enumerate the configurations of recombinases bound
to the recombination sites of the fim switch and global regulatory factors bound to
regulatory sites in the switch. Each configuration is associated not with a transcript
initiation rate, but with the “flipping” rate for the switch, i.e., the rate of DNA
inversion. The rate is a probabilistic one, the probability of switching per unit
time. The effect of switch orientation on the availability of the FimE recombinase
(orientational control) is treated by embedding the BEWARE model within a more
complex stochastic model that explicitly constrains the FimE concentration based
on the switch orientation. Although the precise mechanism of orientational control
is not known, convergent transcription and masking by an antisense transcript have
both been suggested. The abstract model can thus be used to represent the effects
of either mechanism.

mRNA Interactions and Stability

Models that explicitly represent mRNA must include its degradation to be accurate.
Moreover, the control of mRNA stability can be an important regulatory strategy
in both prokaryotes and eukaryotes. Having an interest in the effects of mRNA
stability on heterologous gene expression, C&K use the most detailed conceptual
representation of the mRNA degradation process. In their model, an implemen-
tation of an idea proposed by Alifano et al. (5a), RNAse E binds to the 5′ end
of an mRNA and attempts to cleave it at a randomly chosen internal site. The
attempt may fail in two ways: if the chosen site is not a recognition site for the
RNAse or if it is a recognition site but is protected by an elongating ribosome.
In either case, the RNAse dissociates. A successful cleavage attempt prevents any
further translation from initiating on the mRNA; any ribosomes downstream of
the cleavage site are allowed to continue. The presence of two cistrons on the tran-
script in thelac operon model introduces additional complexity. RNAse cleavage
within the upstream cistron still allows translation to initiate at the downstream
cistron. The ARM model also includes protection of mRNA by ribosomes by pro-
hibiting degradation when a ribosome is occupying the RBS. Most other models
treat mRNA degradation more abstractly, as the action of a constant reservoir of
RNA-destroying machinery, resulting in first-order decay processes.

The much more complicated issue of the fate of mRNA in eukaryotes (12, 56, 57)
has recently been braved by detailed kinetic modeling by Cao & Parker (15), who
include deadenylation, decapping, and exonuclease degradation processes of well-
studied yeast mRNAs as series of first-order chemical reactions. Although tackling
only a part of the thicket of eukaryotic gene expression, this model is a prime
candidate for incorporation as a component into a larger gene-expression model.
Components that could provide it with realistic input by simulating the production
and transport of mRNA (treated as constant-rate processes by Cao & Parker) are,
however, in short supply.

Before being degraded, some RNA molecules may participate in antisense
interactions. Although the regulatory importance of such interactions in eukaryotes
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is well established (13) and is increasingly being recognized in bacteria (6), only
the M&S model contains one explicitly, where the production of the Q protein is
inhibited in the presence of the antisense transcript. Targeted antisense interactions
are explored in a more abstract way, proportionally removing the target transcript
as it is formed, in the T7 growth model by Endy et al. (21, 22).

Lumped and Phenomenological Representations

Lumped (or lumped-parameter) representations are those in which details of vari-
ous processes are aggregated into a single mathematical expression. The expression
is formally derivable from a more detailed mathematical representation under given
assumptions, and in the process, expressions and parameters of the more extensive
representation are transformed and reduced in number. Lumped representations
are to be distinguished from phenomenological representations, where the mathe-
matical expression is chosen purely to reproduce observations, with no regard for
underlying mechanism. Sometimes the distinction between these becomes blurred,
especially in the absence of discussion about how various mathematical expres-
sions were reached.

Lumped versions of transcription include only the end result, production of
mRNA, in the conceptual scheme. The actions of various players in transcription
do not appear in separate mechanistic steps of the process, but rather as immediate
effects on the overall rate at which mRNA is produced. This is done in the deter-
ministic lac operon model (Figure 3a) and the similarly constructed model of the
phosphate starvation response by Keasling and coworkers (80, 84). Their approach
starts with a basal rate of mRNA production that is then modified by “efficiency
factors” that reflect binding equilibria between promoters and RNAP and between
transcription factors and operator sites.

Endy et al. (22) use a similar approach, but the efficiency of T7 mRNA pro-
duction in their model is affected by promoter strengths and the availability of
polymerases. The latter depends both on the fraction of the viral genome that has
entered the host cell (i.e., how many promoters are vying to bind polymerase) and
the interaction of the viral and host polymerases with viral inhibitors, treated as
equilibrium processes.

Lumped versions of translation tend to look similar to lumped versions of tran-
scription, often even simpler. The deterministic models by Keasling and coworkers
for the most part treat translation as protein appearing with a first-order depen-
dence on its mRNA. Because the model by Endy and coworkers explicitly contains
transcript lengths, translation rates are calculated from a constant elongation rate
along a transcript, carried out by multiple ribosomes and scaled by the amount of
transcript available.

When models do not explicitly include mRNA, the overall process of gene
expression is given a lumped representation. A sophisticated lumped representation
is used by Shea & Ackers (70) [and Reinitz & Vaisnys (66), whose model is
a direct extension]. This model is conceptualized to include transcription and
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translation but ends up having a lumped mathematical form because of certain
assumptions: that transcription initiation is the rate-limiting step of expression and
that each transcript produces a fixed (average) number of proteins. Any effects of
mRNA degradation are assumed to be fixed and reflected in the average number of
proteins per transcript. Thus a single production term lumps together contributions
from transcription and translation. Less sophisticated lumped versions of gene
expression have also been used and are, in fact, very common. The trivial example
of a constant enzyme concentration can be interpreted as the simplest lumped
representation of gene expression. Less trivial versions are the production of protein
at a constant rate, a rate proportional to cell size, and a rate proportional to the
concentration of some activator. Such versions of gene expression have appeared
in the biochemically sophisticated models of the eukaryotic cell cycle given by
Tyson and coworkers (17, 18), where the focus is on the interplay of enzymes, and
gene expression is only of peripheral importance.

The majority of the models of eukaryotic systems we discuss employs phe-
nomenological representations of gene action. The gene network models of eu-
karyotic developmental processes (46, 47, 64, 65, 69) all share the same basic
mathematical form, which reflects nothing about the biochemistry behind genetic
interaction. Rather, the inhibitory effect of one gene on another is represented as
a negative entry in a matrix, whereas activation is represented by a positive one.
This approach leads to a picture of the regulation within a set of genes that is clear
but difficult to reason about and to extend with knowledge about the effects of ex-
perimental conditions or mutations. Theendo16models by Yuh et al. (85, 86) are
almost purely phenomenological also. The logical and algebraic formulae in these
models describe informational rather than biochemical activities. They summarize
extensive empirical knowledge, the mechanistic basis of which is still highly un-
clear. Even the segment polarity network model by von Dassow et al. (81), which
is based on a fairly detailed conceptualization involving RNA synthesis and degra-
dation and the interaction and transport of proteins, represents gene expression in
an essentially phenomenological way. There, the inhibitory effects of proteins are
represented by saturable, cooperative inhibition terms that modulate a maximal
transcription rate. The actual inhibitory mechanisms are probably quite complex,
but the phenomenological representation, although simple, gives dose-response
curves that are reasonable given general biological considerations.

PROBLEMS, PLATFORMS, AND PERSPECTIVES

The discussion in the preceding sections should serve in bringing out the funda-
mental problem with modeling biological systems: It is very difficult to gauge what
a model is worth. Trouble appears at both ends of a modeling study, the formula-
tion of a model and its results. A model’s formulation necessarily involves many
simplifying assumptions, some of which may be deeply hidden within the model’s
mathematics. Every assumption raises the question of whether any important
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effects are ignored, distorted, or introduced. Is the model pitched at the right level
of conceptual detail, and does its mathematical formulation accurately reflect that
level of detail? How accurate are the many parameter values that have not been
measured directly and must therefore be estimated, sometimes from experiments
done under different conditions, in a different strain, or even in a different but
related organism than that under study?

On the other side are the results. In cases lacking quantitative experimental
data, qualitative agreement with observations is taken as success. But evaluating
qualitative agreement is stubbornly subjective. Even when quantitative data are
available, there is no commonly accepted methodology for performing formal
comparisons. It is certainly possible to do chi-squared tests to compare predicted
dependencies to observed ones, for example, or to calculate least-squares distances
between experimental and simulated data. Deeper techniques for using limited data
to score and compare models are emerging from the study of Bayesian networks
(25, 30, 33). It is thus possible to compare different models and assess which one
gives closer agreement to experiment. But for individual models there is typically
no context in which to place a quantitative comparison score, so subjectivity comes
into play again. And if a model’s output is deemed not to fit experimental data,
do the faults lie somewhere in the typically massive edifice of assumption and
estimation, are the experimental data used to parameterize the model erroneous,
or are important pieces missing from the fundamental understanding of the system
being modeled?

Creators of models go to great lengths to justify their formulations, appealing
both to fundamental physical principles and to established biological knowledge,
but questions of validity must ultimately be answered empirically. Direct experi-
ments must be done to measure the numerical values of model parameters and to
test the validity of various modeling assumptions. More of this work will get done
as the gulf between modelers and experimentalists narrows. There is, however,
an alternate empirical avenue, emphasizing correct prediction over correct formu-
lation. The practical validation of modeling approaches according to their utility
could be carried out efficiently if a large community of biologists could use models
easily to make predictions and could explore various aspects and combinations of
modeling components in attempts to best reproduce experimental results. Such a
community effort would produce bilateral benefits. It would benefit mainstream bi-
ologists by illustrating the usefulness of modeling in a variety of contexts and more
efficiently directing aspiring users of models to the most promising approaches.
It would also benefit model builders, who would be prodded by a wider and more
discerning audience to provide better, more useful models. An essential prerequi-
site for this situation, however, is the capability for nonspecialists to explore entire
families of models for a given system, to vary not just parameter values but more
substantial aspects of a model like the level of detail of the conceptualization and
the mathematical treatment of its processes.

Two factors currently make it difficult for even motivated nonspecialists to
perform such explorations on existing models. First is the lack of integration with
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data, an issue discussed further below. Second are the primitive ways in which
models can currently be shared. In the examples we have discussed so far, the
simulations have been hand crafted. Most of the required software was written
by the various authors. Today there are three principal ways that such software is
dispersed: (a) The authors encapsulate their model into a software tool specifically
designed for use by others. (b) The authors make their in-house software available
by request. (c) Interested researchers may implement their own version of the
model based on published descriptions. Of these, only the first is of much interest
to nonspecialists. Software tools are usually well documented and have a usable
interface. However, because of their stand-alone nature, tools can be difficult if not
impossible to modify, extend, or integrate with models in other forms. A potential
solution is the use of shared simulation environments. A model implemented within
an environment can readily be distributed by way of the files that configure the
implementation. However, to make this effective, the environment, or at least the
format for the configuration files, should be standard.

No such standard currently exists. Rather, a number of different simulation envi-
ronments intended specifically for biological applications are currently available.
These come in two basic types: environments that compute continuous determin-
istic equation systems and environments that do stochastic simulation. Packages
in the former category include Gepasi (54), DBSolve (32), E-CELL (77), and
Virtual Cell (45, 68). All these have a number of features in common. They all
offer good facilities for chemical reactions, including predefined rate laws for
various enzymatic mechanisms. They also allow user-defined rate laws, for which
the necessary equations must be supplied. Facilities for various kinds of math-
ematical analysis, such as metabolic control analysis, linear stability analysis of
steady states, parameter fitting, and bifurcation analysis, are also offered by Gepasi
and DBSolve. Virtual Cell can do basic parameter sensitivity analysis. Although
all the packages handle spatially homogeneous systems well, Virtual Cell is also
particularly strong on spatially distributed systems with arbitrary geometries and
subcellular compartments. It allows system geometries to be imported directly
from microscopic images and provides image-like visualization of its simulation
output. Gepasi handles multiple interacting compartments and has recently been
expanded to handle a limited number of inhomogeneous spatial arrangements and
random parameter distributions (55). The fully stochastic simulation environments
include MCell (11) and StochSim (44). MCell is useful for low-level simulations
and is particularly strong in its handling of spatial structure and diffusion. It al-
lows elementary chemical reactions to be implemented as choices of outcomes
for events where particles physically interact. Its visualization facilities are also
striking. StochSim implements an ad hoc Monte-Carlo algorithm to simulate first-
and second-order chemical reactions. It includes facilities for tracking the states
of individual molecules, such as phosphorylation or methylation states of en-
zymes. Primarily intended for simulating spatially homogeneous systems, it has
recently been extended to handle two-dimensional lattices with nearest-neighbor
interactions (1).
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Although these biological simulation environments are impressive efforts, they
all suffer important limitations. First, although chemical reaction processes are well
supported, more complex processes like those associated with genes are not [but see
(39) for efforts to represent a simplified version of genetic regulatory interactions
with DBSolve]. Those interested in modeling gene expression and regulation have
two choices: decompose all of the processes of interest into chemical reactions or,
in those environments that permit it, provide a purely mathematical representation
in terms of equations.

Second, it is not possible to import many kinds of experimental data directly into
these simulation environments. The exceptions are Virtual Cell for microscopic
image data, as mentioned above, and DBSolve, which can import metabolic path-
ways directly into a model from the WIT database (59) and accepts tabular kinetic
data entered by the user. The problem of data is a deeper one and cannot be solved
by designers of simulation environments alone. This is discussed further below.

Finally, each environment uses a different format to store its models, parame-
ters, and output, which limits their sharing. Efforts are in progress to improve this
situation by creating a standard format for describing models of biological systems.
The highest achievements of these efforts are currently the two formal descrip-
tion languages SBML (37) and CellML (2). Both languages accommodate the
separation of models into conceptual structure and mathematical representation.
However, the conceptual vocabulary is heavily skewed toward chemical reactions.
SBML assigns chemical species to reactant or product roles in a reaction, whereas
CellML expresses a slightly wider range of functional notions, including catalyst,
activator, and inhibitor. Both languages contain the notion of a compartment, but
CellML has a richer vocabulary for expressing topological relationships between
compartments (e.g., containment or adjacency). In the mathematical realm, both
languages allow the specification of arbitrary rate laws associated with reactions.
SBML can also express global mathematical constraints on the chemical species
in a model. CellML’s handling of mathematics, in part relying on the mathematical
dialect MathML (3), endows it with broad power to express abstract aspects of
models, including the ability to specify purely abstract components of a model.
That is, CellML can describe model components defined purely mathematically,
with no reference to any biological concepts.

This dearth of conceptual expressiveness in the formal description languages
and the simulation environments described above is one crucial factor impeding
the integration of modeling into mainstream biological methodology. The primi-
tive interactions between models and data is another. For modeling and simulation
to become truly accessible to as wide an audience as possible, a software environ-
ment that provides flexible interaction between concepts, mathematics, and data
must be developed. Such an environment must handle simulation components that
implement models at a variety of levels of detail and with a variety of mathematical
representations. At the same time, the environment must support the distinction be-
tween a model’s conceptual structure and its mathematical representation. It must
allow users to rapidly and intuitively construct a conceptual picture of their system



5 Aug 2002 12:29 AR AR167-GG03-14.tex AR167-GG03-14.SGM LaTeX2e(2002/01/18)P1: IBC

362 GILMAN ¥ ARKIN

of interest, much like sketching a diagram, at whatever level of detail is deemed
appropriate. Users must then be allowed to render this conceptual model into a sim-
ulable mathematical form by selecting among simulation components that provide
various mathematical representations for the specified concepts. Throughout the
process, transparent access to both qualitative and quantitative empirical knowl-
edge must be maintained. Users should not only be able to locate experimentally
determined quantities that can be used immediately to parameterize the simulation
components they have chosen or data against which to check the output of their
simulations. More generally, exploiting the integrative aspect of modeling, they
should be able to use their models as information gateways, opening on things like
evidence for and against the model’s formulation, related models made by others,
and alternate versions of the present model, together with reasons and results.

To make such an environment possible, developments must occur on several
distinct fronts. First, to mitigate the shift of emphasis away from mathematics, mod-
elers wishing to provide components for the environment will have to annotate their
contributions exhaustively. This means a full description of the conceptual basis
of the model, the physical and mathematical assumptions and when they would
be valid, guidelines for appropriate use and permissible interaction with other
components, and whenever possible, references to supporting literature and data.

Second, the simulation environment needs to provide a high degree of consis-
tency checking on several levels at once. It should ensure conceptual consistency—
an mRNA degradation process should not be fed from a lumped gene-expression
process that does not treat RNA, for example. It should enforce mathematical
compatibility—a module requiring continuous input should not be fed from one
providing discrete output; stochastic and deterministic modules should be correctly
combined, etc. And it should make sure that the assumptions behind different
modules’ formulations can all hold under the same conditions—an enzyme that is
represented by a Michaelis-Menten Vmax parameter in one component should not
be allowed to be consumed by another component, for example.

Third, the capacity to link models to data must be greatly enlarged. The environ-
ment must allow transparent access to a range of information, from raw experimen-
tal data and simulation output to processed and edited statements of biological fact
and hypothesis. Such ambitious capabilities can only arise through broader devel-
opments in how biological information is handled in general. A much wider variety
of empirical information must be given standardized representations, in much the
same way as sequence and structure data are today and microarray data will be soon
(4, 26). Canonical, machine-readable representations are needed for data generated
by methodology such as gene-expression assays, mass-spectroscopic studies, gel
and blot assays, two-hybrid assays, genetic knockout experiments, and flow cytom-
etry, just to name a few. These representations must include information describing
the context in which the data were gathered, such as experimental conditions or
detailed protocols, organisms, strains, genotypes, and even the hypotheses being
investigated by the experiments. This contextual information must be standardized
as well. An integral part of the standardization effort will be the requirement that
data submitted for publication be provided in the standard formats.
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Developments along these lines will ultimately result in very powerful tools
useful to the entire biological community. In particular, they will enable the in-
tegration of modeling into everyday biological methodology, bringing to a much
wider audience the advantages we discuss above. More generally, the standardiza-
tion and formalization of biological knowledge resulting from these developments
will further accelerate the pace of biological discovery and will inevitably make
biology a more exact and powerful discipline.

CONCLUDING REMARKS

We take a narrow focus in this paper, discussing only those modeling studies that
treat gene expression and regulation in real systems, referring whenever possible
to actual experimental results. We steer clear of the more abstract models, as they
often tend to put analysis before biology. Abstraction in itself, however, is not to
be disparaged. It is only through abstraction that we can comprehend and formu-
late general principles of behavior of complicated systems. For example, virtually
all the models we discuss rely on the abstraction of a regulated metabolism that sup-
plies the gene-expression machinery with activated nucleotides and other biosyn-
thetic intermediates and properly disposes of degradation products. Abstraction
must be used with caution, however. By abstracting a part of a complex, intercon-
nected system important connections may be severed. This is a particular danger
for many biological systems, given our incomplete knowledge of how their various
parts interact. Also, when a system behavior is given an abstract representation, ac-
cess to the causal framework that gives rise to that behavior is foregone. Abstraction
is best used when it can be grounded on a solid foundation of observations showing
that important aspects have not been missed or on the careful consideration of the
underlying details.

Detailed models constitute the strongest statements of the causal structure of
biological phenomena and, hence, give the strongest predictions of the effects of
perturbations (gene knockouts, enzyme activity mutants, antisense RNA, etc.).
Many of the models we review reflect a rather high level of detail. This enables
them to explore a wide variety of hypotheses, from the microscopic, like the precise
concentrations of proteins and RNA at a given time, to the global, like whether an
infectingλ phage will lysogenize. There are some serious disadvantages of mod-
eling at high detail, however. First, the details may make important general princi-
ples difficult to discern. Second, simulating a detailed model requires significant
resources of time and computational power. We expect the constraints on these re-
sources to diminish progressively as simulation algorithms and computer hardware
are further developed. Third, detailed models require large amounts of detailed
data, such as individual binding constants, concentrations, reaction rates, half-
lives, and probability distributions. Such data are difficult to obtain, particularly
in relevant biological contexts (in vivo, in single cells rather than whole popu-
lations, etc.). Besides inevitable improvements in experimental methodology, we
also expect that the integration of modeling into the biological mainstream will
drive an increase in experiments specifically directed to gather such data.
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Initial examples of this process will likely come from the study of recently
constructed synthetic gene networks like the bistable genetic switches by Gardner
et al. (27) and the “repressilator” by Elowitz & Liebler (20). Modeling played
a key role in the design of both these systems, although the models are very
abstract and provide little more than suggestions of feasibility. As these systems are
composed of a small set of known parts and possess well-defined functionality with
easily measurable outputs, they are good candidates to become “characterization
platforms.” That is, once all the parts and their interactions are characterized
in sufficient biochemical detail, unknown parts can be substituted; the changes
produced in the system output should then allow the relevant properties of the
unknown parts to be readily calculated. It will be interesting to see how far such
an approach can go.

Ultimately, the complexity of biological systems and the diversity of emphases
of various research directions demand tools that offer the capability to make models
at any level of abstraction, to simultaneously combine components at different
levels of abstraction, and to move freely from one level to another. This capability
is already available in mature engineering disciplines like electrical and mechanical
engineering.

The heterogeneity in levels of abstraction, conceptual structure, and mathemat-
ical representation that we have tried to illustrate in recent hand-crafted models
of genetic systems, together with the heterogeneity in biological knowledge, data
sources, and experimental methodology, contributes to the difficulties inherent in
evaluating the formulation and results of modeling studies. These difficulties and
the lack of general tools that allow nonspecialists to implement and explore models
on their own are slowing the widespread adoption of modeling by the biological
community at large as an important complement to more traditional approaches to
research. Modeling offers great advantages in integrating and evaluating informa-
tion, providing strong predictions, and focusing experimental directions. Getting
models and data together into the hands of mainstream biologists in forms that
are standard and sophisticated but not mathematically overwhelming is therefore a
critical necessity if these strengths are to be properly brought to bear on important
biological problems.

Appendix: A Brief Guide to Recent Reviews

The review by Arkin (8) enumerates the various functions of models and points to
examples of each. Smolen et al. provide a series of excellent reviews of abstract
modeling of genetic regulatory systems (71–74). The authors focus on complex
dynamical phenomena (multistability, oscillations, frequency selectivity, chaos)
arising in various models. They also discuss the effects that changing the repre-
sentation of biological transport or introducing stochastic fluctuations can have on
system dynamics. Endy & Brent (21) discuss successes and practical problems
of modeling and offer suggestions for overcoming the latter. Rao & Arkin (63)
review regulatory motifs in biology from an engineering standpoint and provide
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general discussion on modeling. Tyson et al. (78, 79) review modeling studies of
the eukaryotic cell cycle. The latter paper also gives a brief tutorial on nonlinear
dynamical systems.

McAdams & Arkin (50) give a strong statement of the circuit analogy to bio-
logical networks and discuss issues like promoter control models and stochasticity
in gene expression. Stochastic effects are further reviewed by these authors in
another paper (51), where ways for organisms to control fluctuations and guar-
antee nonrandom outcomes are also discussed. In a later paper (52), McAdams
& Arkin give brief comments on genetic circuit engineering and discuss some
recently constructed artificial genetic networks. Hasty et al. (35) review these sys-
tems in depth. Their paper also reviews abstract dynamical modeling studies of
systems with transcription factors and gives a brief description of various modeling
methodologies.

Recent reviews of modeling metabolic networks, a large and important field, are
given by Gombert & Nielsen (31) and Giersch (29), the latter with an emphasis on
plants. A more general perspective is presented by Palsson (60), who discusses the
importance of constraints to modeling biological systems for which little detailed
information is available.

The notion of modularity in biology is discussed by Hartwell et al. (34). Astha-
giri & Lauffenburger (10) review complexity in cell signaling and discuss modules
for modeling. Lauffenburger (43) also discusses modularity of function and biolog-
ical control principles. Finally, Ideker et al. (38) review the emerging paradigm of
“systems biology,” in which modeling plays an important part. Recent advances in
high-throughput genetic manipulation, large-scale data gathering, and biological
databases are discussed.
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Figure 2 Computational model diagram of the BA region of theendo16 cis-regulatory
system, redrawn from (86). The double line represents the DNA upstream of theendo16
gene, and the labeled boxes are individual binding sites. The components of Module
B and its effects are shown inblue. Those of Module A are inred. BP is the basal
promoter. The labeled circles represent nodes where intermediate logical or algebraic
computations are performed by the model. Heavy lines show the flow of time-dependent
numerical information, dashed lines show Boolean information, and solid lines indicate
time-invariant numerical information. See (86) for the specific functions calculated at
each intermediate node and for further details.


