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Experimental data on the circadian (�24-h) clock in mammalian
cells are vast, diverse, and detailed. Mathematical models are
therefore needed to piece these data together and to study overall
clock behavior. Previous models have focused on Neurospora or
Drosophila or can be converted to a Drosophila model simply by
renaming variables. Those models used Hill-type terms for tran-
scription regulation and Michaelis–Menten type or delay terms for
posttranslation regulation. Recent mammalian experimental data
call into question some of the assumptions in these approaches.
Moreover, gene duplication has led to more proteins in the mam-
malian system than in lower organisms. Here we develop a de-
tailed distinctly mammalian model by using mass action kinetics.
Parameters for our model are found from experimental data by
using a coordinate search method. The model accurately predicts
the phase of entrainment, amplitude of oscillation, and shape of
time profiles of clock mRNAs and proteins and is also robust to
parameter changes and mutations.

mathematical models � eukaryotic transcription regulation � PER �
CRY � CLOCK

Men and women lead scheduled lives in which the time of
day dictates when to eat, sleep, work, or relax. To live this

way, our bodies must have internal clocks to know when to be
prepared for eating, sleeping, working, or relaxing. Amazingly,
many cells in our bodies have such a clock that is coordinated by
the cellular clocks within the suprachiasmatic nucleus (SCN)
cells of the brain. Each cell’s clock is much more complex than
some might naively imagine, because it involves many interacting
genes and proteins. For this reason, mathematical models are
needed for any hope of understanding cellular clocks in a
detailed way.

At its core, the circadian clock within a cell is a series of
biochemical reactions that produce �24-h oscillations. As long
as the details of these reactions were largely unknown, early
modeling attempts made simplifying assumptions about the
reactions within the clock to keep the number of equations at a
minimum. For instance, some authors represented many bio-
chemical processes as simply a delay (1). Most models also
assumed low enzyme concentrations (summarized in ref. 2).
Both of these simplifying assumptions made it easier for a model
to oscillate.

Recent advances provide a more detailed picture of mamma-
lian cellular circadian clocks than these earlier models represent
and even challenge some assumptions made in previous models.
There is no pure delay in the clock. Likewise, the key enzyme in
the mammalian circadian clock, casein kinase I� (CKI�), is
expressed at a higher concentration than its substrates, the
PERIOD proteins, PER1 and PER2 (3). Moreover, with the
recent advances in computational speed and software designed
to simulate biochemical processes (e.g., BIOSPICE, www.biospice.
org), the number of equations in a model does not need to be
limited by computational resources. In short, we are now able to
identify many of the specific reactions involved in the clock and
directly simulate them on computers. Here, we do this for the
circadian clocks found in mouse cells.

Model Description and Rationale
A very good overview of the circadian system in mice can be
found in Reppert and Weaver (4). Oversimply stated, the PER1
and PER2 proteins transport the CRYPTOCHROME proteins
CRY1 and CRY2 into the nucleus, where CRY1 and CRY2
inhibit the production of the PERs and CRYs. This gives the
basic structure of a negative feedback loop, which could oscillate.
However, such an oversimplified view omits most of the details
of the clock (e.g., how phosphorylation affects the location and
stability of the PER proteins). We therefore formulate a much
more detailed model of the mammalian circadian clock. This
model can be completely described by the set of biochemical
reactions outlined in Table 1, which we describe below in detail.
Our model system is the clock within the cells of the SCN, the
main circadian pacemaker in mouse, which is located in the
hypothalamus. We also need to use data from liver cells, as well
as educated guesses when data directly from the SCN cells are
not available.

We begin with the control of the transcription of genes that
encode for clock proteins. The sequence CACGTG (called an E
box) can be found in the control region (promoter) of the PER1
and CRY1 genes. PER1 has five E boxes (5), whereas CRY1 has
one (6). Because transcription control of the PER2 promoter is
not fully understood, we treat its promoter as we do the PER1
promoter, because some choice must be made, and because the
PER2 gene appears to be controlled in a similar way as the PER1
gene (7). Because very little information is available about the
CRY2 promoter, we treat it as we treat the CRY1 promoter.
When the CLOCK (CLK) and BMAL1 proteins bind together
(dimerize), the CLK:BMAL1 heterodimer can bind to an E box
and increase the rate of transcription of the corresponding gene
(8). Although CLK and BMAL1 levels vary throughout the
circadian day and night in liver cells, CLK and BMAL1 are
constitutively bound to E boxes (3), perhaps because of satura-
tion. CLK and BMAL1 do not vary throughout the circadian day
in SCN cells and are expressed at high levels (9).

Although we do not consider varying levels of CLK:BMAL1
in this study, they might be considered in future work.
CLK:BMAL1 bound to just one E box can enhance transcription
(6, 8), and when bound to more than one E box, they enhance
transcription in an additive way (8). This suggests that there are
no allosteric interactions between E boxes. Moreover, if the
binding of CLK:BMAL1 to one E box were to facilitate the
binding of CLK:BMAL1 to other E boxes, transcription en-
hancement in a multiple E box promoter should be greater than
the sum of the transcription enhancement by each E box alone
(i.e., nonadditive). For these reasons, we cannot justify cooper-
ativity between E boxes in the transcription activation by
CLK:BMAL1 [note that similar cooperativity is assumed in
virtually all other molecular models of circadian clocks (10)]. We
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instead propose that binding of CLK:BMAL1 to individual E
boxes and the resulting transcription enhancement in one E box
occur independently of the state of the other E boxes, and that
the effects of the different E boxes on transcription are additive.

CRY1 and CRY2 have not been shown to bind directly to
DNA. Instead, they bind to CLK:BMAL1 and inhibit the ability
of CLK:BMAL1 to enhance transcription (11). When CRY1 and
CRY2 are bound to CLK:BMAL1 on promoters, transcription
is stopped (6, 7). It appears that oscillations in the CRY proteins,
rather than in CLK:BMAL1, control the rhythmic E box-
mediated activation of promoters (3, 7). Because CLK:BMAL1
does not bind cooperatively to E boxes, CRY most likely does not
bind cooperatively to the different CLK:BMAL1 dimers on a
given promoter. CRY could, however, act allosterically to con-
trol transcription. Indeed, this happens in our model, because we
assume that if CRY is bound to just one CLK:BMAL1 at an E
box of a given gene, all transcription of that gene stops. In line
with this, we know that CRY can stop transcription of a gene

with just one E box (6). Based on these data, our model assumes
that CLK:BMAL1 is found at constitutive high levels in the
nucleus of the cell (i.e., that its concentration is constant
throughout the circadian day), and that the nuclear concentra-
tion of CLK:BMAL1 is high enough that there is always one
heterodimer bound to an E box in each promoter. We are
concerned only with CLK:BMAL1 in the nucleus [also BMAL1
appears to be almost exclusively found in the nucleus (3)]. We
also assume that the fraction of CLK:BMAL1 bound to CRY1
and CRY2 is the same regardless of whether the CLK:BMAL1
is bound to an E box. Also, our model would not change if
CLK:BMAL1 bound instead to sites that were not CACGTG E
boxes [such as what is seen in the Drosophila tim promoter (12)],
or if CRY bound to something else on the promoter besides
CLK:BMAL1.

In addition to transcription regulation through E boxes, the
REV-ERB� protein can inhibit transcription through a se-
quence on the promoter known as a RORE element (13). There

Table 1. Reactions and rates of the model

Description of reaction class Name Value Sensitivity Minimum Maximum

Translation of PER1 and PER2 tlp 10.00 0.00 0.003 Big
Translation of CRY1 and CRY2 tlr 1.031 0.14 0.2 Big
Translation of REV-ERB� tlrv 2.53 0.00 0 Big
Degradation of phosphorylated PER unbound to CRY up 3.39 0.16 0.7 2,000
Degradation of unphosphorylated PER upu 0.08 0.17 0 3
Initial phosphorylation of PER2 hot 0.09 0.00 0 Big
Degradation of CRY1 unbound to PER uro 0.44 0.12 0.2 Big
Degradation of CRY2 unbound to PER urt 0.59 0.24 0.2 Big
Binding of PER1 and PER2 to kinases ac 0.47 1.87 0.007 Big
Unbinding of PER1 and PER2 to kinases dc 5.09 0.70 2 600
Binding of PER1 and PER2 to CRY1 and CRY2 ar 0.27 0.07 0.06 1
Unbinding of PER1 and PER2 to CRY1 and CRY2 dr 0.35 0.04 0.14 1.6
Nuclear localization of initially phosphorylated PER and

bound proteins
nl 2.31 0.02 0.005 7

Nuclear export of PER bound Proteins ne 0.71 0.41 0.2 100
Initial phosphorylation of PER1 hoo 0.29 0.00 0 Big
Phosphorylation that stops nuclear localization of PER1

and bound proteins
hto 1.45 0.04 0.08 Big

Total kinase concentration Ct 7.71 1.95 0.6 Big
Binding of CRY to CLK:BMAL1 in nucleus bin 1,476.52 0.01 200 Big
Unbinding of CRY to CLK:BMAL1 in nucleus unbin 23.78 0.00 0.002 300
Transcription of PER1 trPo 807.4 0.03 0 100,000
Transcription of PER2 trPt 308.8 0.10 0 Big
Transcription of CRY1 trRo 9.03 0.07 0 Big
Transcription of CRY2 trRt 7.66 0.13 0 Big
Transcription of Rev-erb� trRv 0.05 0.00 0 Big
Preparation and nuclear export of all mRNA tmc 0.42 7.15 0.08 3
Dimerization of Rev-erb� arv 0.21 0.00 0 Big
Undimerization of Rev-erb� drv 3.62 0.00 0 Big
Normalized binding of nuclear REV-ERB� to RORE element binRv 0.13 0.00 0 Big
Normalized unbinding of nuclear REV-ERB� to RORE element unbinRv 21.76 0.00 0 Big
Degradation of REV-ERB� uRv 16.25 0.00 0 Big
Degradation of PER1 mRNA umPo 6.21 0.00 0.1 Big
Degradation of PER2 mRNA umPt 0.38 8.55 0.08 Big
Degradation of CRY1,2 mRNA umR 0.30 0.30 0 3
Degradation of REV-ERB� mRNA umRv 15.11 0.00 0 Big
Strength of light stimulus Lon 3.39E-4 0.02 n/a n/a
Ratio of nuclear to cytoplasmic compartment volume Nf 115.76 0.01 4 1600

See text for a detailed description of individual reactions. Protein binding or unbinding, as well as degradation, could occur in either
the cytoplasm or the nucleus. If binding occurs in the nucleus, the rate constant is multiplied by Nf to account for the smaller nuclear
volume. The units of time are hours, and concentrations are expressed in nanomole. See Appendix 1, which is published as supporting
information on the PNAS web site, for all reaction rates. Sensitivity (rounded to the nearest 0.01) was calculated by dlog(Y)/dlog(X),
where dY was the change in the badness of fit for a 10% decrease in the parameter value X. The minimum and maximum values of the
parameters that gave oscillations in darkness are shown (big � �1,000,000). Each reaction class could represent many (�20) individual
reactions. n�a, not applicable.
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are three E boxes of the type described above in the Rev-erb�’s
promoter. Rev-erb� homodimerizes, and the dimer binds and
unbinds with the RORE element (13). There are two RORE-
binding elements on the BMAL1 promoter (13) and three on the
CRY1 promoter (7). Because we assume that CLK:BMAL1 is
constitutively expressed, we do not consider the effect of REV-
ERB� on BMAL1 gene expression. Instead, we model the effect
of REV-ERB� on CRY1 transcription (13) (this interaction has
never been modeled previously). Because little is known about
the specifics of REV-ERB�’s control of CRY1, we used the
model of transcription inhibition described earlier, where just
one REV-ERB� molecule bound to any RORE element can
stop transcription.

The mRNAs considered in the model are those that encode
PER1, PER2, CRY1, CRY2, and REV-ERB�. All of these
species of mRNA are produced in the nucleus of the cell,
transported to the cytoplasm, and degraded. In the cytoplasm,
mRNA is translated into protein. Four key proteins then interact
to complete one arm of the feedback loop (the other arm being
provided by REV-ERB�): PER1, PER2, CRY1, and CRY2.
PER1 and PER2 can each bind with kinases and can be
phosphorylated (14). The kinases CKI� and CKI� are constitu-
tively expressed (3) and can bind and phosphorylate PER1 and
PER2 (3, 15). To model this, we assume a general kinase
concentration, which represents CKI�, CKI�, and perhaps other
unidentified kinases. These kinases bind to PER1 and PER2 and
can be transported into and out of the nucleus when bound to
PER1 or PER2 (3). Phosphatases are probably important as well,
but the specific phosphatases, as well as their effects, have not
yet been characterized. For this reason, we consider only kinases.

PER1 and PER2 are phosphorylated at many sites, and
detailed knowledge about individual sites is not available. We
instead model overall states of phosphorylation, each of which
can represent the combined phosphorylation of many individual
sites. The implications of these phosphorylations are somewhat
complex. In the unphosphorylated state, we assume PER1 and
PER2 are confined to the cytoplasm, are incapable of binding
with CRY1 and CRY1, and are degraded at a slow rate. Once
a primary state of phosphorylation has been reached, we assume
PER1 and PER2 become unstable in agreement with experi-
ments on PER1 (16). CRY1 and CRY2 bind to PER1 and PER2
at different sites from the binding sites for the kinases (16, 17).
PER1 and PER2 bind to CRY1 or CRY2 only when they are
phosphorylated (3). We thus treat the binding of the PER
proteins to the CRY proteins and the binding of the PER
proteins to the kinases as occurring independently, except that
the primary phosphorylation of the PERs must have occurred
before they can bind to the CRYs. When PER1 or PER2 is
bound to CRY1 or CRY2, both proteins of the dimer are
protected from degradation (18). In our model, we assume the
dimer does not degrade at all. It also appears that CRY1 and
CRY2’s effects on the nuclear or cytoplasmic localization of
PER1 and PER2 are indirect and occur because of this dimer
stabilization (19). We shall discuss this later.

PER1 and PER2 each contain an active nuclear localization
signal (NLS) [PER1 (14), PER2 (20)] and nuclear export
sequences (14, 18). Phosphorylation appears to be needed for
PER1 or PER2 to enter the nucleus (3). Somewhat paradoxi-
cally, phosphorylation of PER1 can also block PER1’s NLS (14),
thereby preventing PER1 from entering the nucleus of the cell.
To model this, we assume a secondary phosphorylation of PER1
can occur whose sole effect is to stop the nuclear entry of PER1.
We allow for this secondary phosphorylation also in PER2 in our
model. Because this has little effect on the behavior of our model
(unpublished observations), we report simulations where the
rate of PER2 secondary phosphorylation was set to zero.

Moreover, it is important to make some distinctions between
PER1 and PER2, and between CRY1 and CRY2. PER1 re-

quires more phosphorylation to bind with CRY1 or CRY2 or to
enter the nucleus than PER2 (3). To model this, we assume the
primary phosphorylation of PER1 (which represents several
phosphorylation steps) proceeds at a slower rate than that of
PER2. Once this phosphorylation has occurred, PER2 can
undergo more phosphorylation than PER1 (3), and accordingly
we assume that PER2’s secondary phosphorylation proceeds at
a slower rate than that of PER1. CRY2 is ubiquitinated more
quickly than CRY1 (18), which suggests that it is degraded faster.

Certain proteins related to the circadian clock will not be
considered in our model. We do not consider PER3, because
targeted disruption of PER3 does not significantly disrupt clock
function (21, 22). Although Dec1,2 may be important for the
clock (23), we do not consider them, because very little is known
about how they function.

Finally, it is important to model the effects of light on the
circadian clock. Light has been shown to induce PER1 and PER2
transcription regardless of the state of their E boxes (24, 25).
Accordingly, we assume that light causes the production of PER1
and PER2 mRNA in an E box-independent manner.

Model Structure
Our model is completely described by the reactions in Table 1.
We now list the variables of the model, whose differential
equations can be derived directly from Table 1. The actual
equations are included in Appendix 1. The variable names used
in the different equations and in Table 1 are in parentheses here.
The proteins considered in our model are PER1 (Po), PER2
(Pt), CRY1 (Ro), CRY2 (Rt), REV-ERB� (Rv), and the
kinases (C), each of which can bind with other proteins. PER1
and PER2 can bind with the kinase and be phosphorylated (we
use p for phosphorylated; PoC, PopC, PoppC, PtC, PtpC, PtppC,
Pop, Popp, Ptp, and Ptpp). PER1 and PER2 can also bind with
CRY1 and CRY2 when phosphorylated (PopRo, PoppRo,
PopRt, PoppRt, PopCRo, PoppCRo, PopCRt, PoppCRt,
PtpRo, PtppRo, PtpRt, PtppRt, PtpCRo, PtppCRo, PtpCRt,
and PtppCRt). PER1 and PER2 when phosphorylated can bring
CRY1 and CRY2 as well as kinases into the nucleus of the cell
(we use n for a protein in the nucleus; PopRon, PoppRon,
PopRtn, PoppRtn, PopCRon, PoppCRon, PopCRtn, Pop-
pCRtn, PtpRon, PtppRon, PtpRtn, PtppRtn, PtpCRon, Ptpp-
CRon, PtpCRtn, PtppCRtn, PopCn, PoppCn, PtpCn, PtppCn,
Popn, Poppn, Ptpn, Ptppn, Ron, Rtn, and Cn). REV-ERB� can
dimerize (RvRv) and can enter (and exit) the nucleus of the cell
(Rvn, RvRvn). The mRNAs of these proteins can be in the
nucleus of the cell (MnPo, MnPt, MnRo, MnRt, and MnRv) or
the cytoplasm (McPo, McPt, McRo, McRt, and McRv). Finally,
let G be the probability that CRY is bound to a given binding site
on a promoter, and let GRv be the probability that REV-ERB�
is bound to a binding site on a promoter. Overall, we have 74
variables but 73 differential equations, because the total kinase
concentration does not vary. The differential equations are
available in Appendix 1. All reactions are governed directly by
mass action except transcription, whose rate is the activated
transcription rate multiplied by the probability that the gene is
activated. For instance, transcription on the PER1 promoter is
trPo(1-G)5, because there are five sites where CRY could bind
with probability G, and because all sites must be unoccupied for
transcription to occur.

Time is in units of hours. All ‘‘concentrations’’ are defined
with respect to the volume of cytoplasm where cytoplasmic
reactions occur. That is, the ‘‘concentration’’ of any molecular
species is the number of mols of that species divided by the
cytoplasmic volume. To get the true concentration of a species
confined to the nucleus, one must multiply by the ratio of the
cytoplasmic volume to the nuclear volume. We assume a typical
volume of 5,000 �m3 (26) and that there are �5,000 molecules
at the maximum of the CRY1 concentration in the cell; then we

14808 � www.pnas.org�cgi�doi�10.1073�pnas.2036281100 Forger and Peskin



have �1 molecule��m3, which gives concentrations in the nano-
molar range.

All simulations were done by using MATHEMATICA (Wolfram
Research, Champaign, IL) and were verified by JIGCELL�XPP
(www.biospice.org). Copies of our model in MATHEMATICA are
available as Mathematica, which is published as supporting
information on the PNAS web site. The model can also be
accessed through BIOSPICE.

Fitting the Model and Comparison with Experimental Data
The parameter search was done as follows. First, an initial set of
parameters was chosen by trial and error that gave �24-h
oscillations. Mimicking experiments, we then entrained this
model to 40 days and 40 nights, each 24-h period comprised of
12 h of constant light and 12 h of constant darkness. The model
entrained to this light–dark cycle, so the particular initial
conditions are not important. We then recorded the total
concentrations of several of the model’s mRNAs and proteins
during the next 24 h in darkness and compared these with the
SCN data presented in Reppert and Weaver (4). We also used
liver data for the relative concentrations of the different clock
proteins (3), because no SCN data were available. The following
formula was used to measure badness of fit of the model to the
data:

Badness of fit

� ��
j

�
i�1:nj

�si, j � ei, j�
2

nj
� �

k

�pmk � pk�
2 � �

k

�tmk � tk�2 ,

where j runs through the mRNA, and proteins; nj is the number
of data points for the jth mRNA or protein; si,j and ei,j are the
model predictions (scaled so their peak was 100 and trough 0,
which is how experimental SCN data are presented) and exper-
imental data points from Reppert and Weaver (4), respectively;
k runs through the proteins; pmk and tmk are the predicted peak
and trough for the kth protein (scaled so that the maximum of
the CRY1 rhythm was 1, which is how the experimental data are
presented); and pk, tk are the measured peak and trough for the
kth protein (scaled in the same manner). In this way, each mRNA
or protein contributed equally to the fit of model to data. Our
procedure for minimizing the badness of fit was to cycle through
the parameters one at a time: keeping it the same, increasing it,
and decreasing it by 20%. Of the three tested values of each
parameter, we retained the value that gave the best fit. If
increasing or decreasing a given parameter did not improve the
fit, on the next cycle for that parameter, we would try a 10%, 5%,
change, etc. This kind of optimization procedure is often called
a coordinate search method.

Fig. 1. Model comparison with experimental data. Our model was first entrained to a 24-h day consisting of 12 h of light and 12 h of darkness at time 0, the
expected onset of light; darkness for 24 h followed as we recorded the rhythms and compared their time profiles, peak, and trough with experimental data (4).
Blue represents mRNA rhythms, whereas black represents protein rhythms. Curves are from the model, and filled circles are experimental data. See text for more
details.
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The fitting procedure found a set of parameters for which our
model is in very good agreement with experimental data (Fig. 1).
When not entrained to 24 h, the autonomous period of our
model is 24.299 h, which is well within the range of autonomous
periods found for mammals from hamsters to humans (27). The
total amount of kinase predicted by our model (including CKI�
and CKI�) is more than the total amount of CKI� experimentally
observed (Fig. 1). Our model predicted a slightly higher CRY1
minimum than predicted by the experimental data from liver.
However, our intent is to model cells within the SCN where the
CRY1 rhythm appears to have a smaller amplitude than those
in liver (ref. 28, supporting information). Most important, our
model’s predictions of the time profiles of the total PER1, PER2,
CRY1, CRY2, mRNA, and protein levels after entrainment to
24-h light–dark cycle (12 h of light followed by 12 h of darkness)
fit experimental data remarkably well, especially with respect to
their phase of entrainment (Fig. 1), general shape (Fig. 1), and
relative amplitude (Fig. 1).

Essentially every parameter in our model (shown in Table 1)
is a prediction of an experimentally testable biochemical rate
constant or protein concentration. Indeed, many of these rates
agree with the limited available experimental data. For instance,
CRY1 degrades more quickly than CRY2 (18), and PER1 takes
longer to be initially phosphorylated than PER2 (3). The PER
proteins also degrade more quickly when phosphorylated than
when not phosphorylated.

Two questions can now be asked. First, ‘‘How precisely does
our fitting procedure determine the rates in Table 1?’’ To assess
this, we tested the sensitivity of the badness of fit in our model
to a 10% reduction in each parameter (see Table 1). Indeed,
some parameters seem to be rather precisely determined (e.g.,
the degradation rate of PER2 mRNA) and others not, as
precisely determined (e.g., the rates associated with REV-
ERB�). Nevertheless, because of the limited data on the circa-
dian clock, it is hard to consider any of these parameters as
anything more than ballpark estimates. We also note that in real
life, many of these parameters may be tissue- or cell-specific.

The second question (actually the same question but from a
different point of view) is, ‘‘How robust is our model to
parameter changes?’’ Or, stated another way, ‘‘Does the quali-
tative behavior of our model change when the parameters are
varied?’’ Indeed, the model will oscillate even if each parameter
is individually varied over many orders of magnitude, with the
exception of the binding and unbinding of CRY to PER, which
can be varied over one order of magnitude (see Table 1). In
short, this model appears to be rather robust to parameter
changes.

Testing Model Assumptions
Phosphorylation. Experimental studies of the phosphorylation of
PER1 by CKI� have produced some perplexing results. In Cos7
cells, CKI� moves PER1 into the nucleus of the cell (16). A
similar mechanism is seen in our model where an initial phos-
phorylation of the PER proteins is required for nuclear entry. In
HEK293 cells, overexpressed PER1 enters the nucleus without
overexpressed CKI�. Overexpressing CKI� has the opposite
effect in HEK293 cells as it does in COS7 cells: it moves PER1
to the cytoplasm of the cell (14). Our model provides a possible
explanation by suggesting that in HEK293 cells, CKI� overex-
pression mainly changes the secondary phosphorylation of
PER1, which blocks nuclear entry.

Several studies also suggest that phosphorylation affects tran-
scription rates. In our model, phosphorylation can promote both
the nuclear and�or cytoplasmic accumulation of PER1 and
PER2, which can bring with them the transcription factors CRY1
and CRY2. For instance, in HEK293 cells, expression of dom-
inant negative kinase (a kinase that is ineffective at phosphor-
ylation) reduces transcription (17). Because phosphorylation
blocks the entry of PER1 into the nucleus of these cells (14),
using an ineffective kinase would allow more PER1 to enter the
nucleus, bringing with it CRY1 and CRY2, which would reduce
transcription.

Nuclear Localization. In line with studies by the Okamura group
(especially ref. 18), we assume that CRY1 and CRY2 affect the
stability of PER1 and PER2 but do not directly affect PER1 and
PER2’s ability to enter and exit the nucleus of the cell. How then
can CRY promote PER entry into the nucleus of the cell (as was
shown in ref. 3)? The fit of our model to data predicts that the
volume in the nucleus of the cell where PER and CRY interact
is much smaller than the corresponding volume in the cytoplasm
of the cell. Thus, when PER and CRY are in the nucleus of the
cell, they are more prone to be bound together because of the
smaller volume. When PER and CRY are bound, they are
protected from degradation, thus PER is more stable, especially
in the nucleus, when CRY is present. PER2 achieved its primary
phosphorylation quicker than PER1, and more PER2 is in this
phosphorylated state than PER1 (Fig. 2). Indeed, once the PER
proteins are phosphorylated, they are found at much higher
concentrations in the nucleus of the cell (Fig. 4, which is
published as supporting information on the PNAS web site).
More PER2 is found in the nucleus than PER1, because PER2
is expressed at higher concentrations and requires less phos-
phorylation to enter the nucleus (Fig. 4). Both of these predic-
tions match experimental data (3). Finally, we predict that there

Fig. 2. Fractions of PER1 and PER2 that are phosphorylated. Shown are the
same simulations as in Fig. 1.

Fig. 3. PER null mutants. Simulated time profile of promoter binding in the
PER1 null mutant (solid) and the PER2 null mutant (dashed). See Fig. 5 for more
detail. Note that the PER1 mutant is rhythmic and the PER2 mutant is not (the
small-amplitude oscillation disappears with time).
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is more CRY in the nucleus than PER, even though CRY can
enter or exit the nucleus only through PER association (3) (Fig. 4).

PER and CRY Mutants. We next explored the behavior of our model
when some of the PERs or CRYs were removed. These null
mutations can be included in our model by setting the corre-
sponding rates of transcription (including that mediated by light)
to zero. Removing either PER1, CRY1, or CRY2 individually
did not abolish rhythmicity, but removing PER2 did (Fig. 3; Fig.
5, which is published as supporting information on the PNAS
web site). This is in agreement with experimental data (21,
29–31). Indeed, of all four simulated null mutations, PER2 had
the strongest phenotype: it greatly shortened the period of the
clock [as is seen in experimental data (21)] and significantly
decreased the clock’s amplitude to undetectable levels (Fig. 3).
Perhaps individual cells in the PER2 mutant are rhythmic, but
because of the decreased rhythm amplitude predicted by our
model, cells are unable to couple together, which leads to
desynchrony. Somewhat amazingly, our model also agrees with
experimental data in that removing CRY1 or CRY2 in PER2
mutants restores rhythmicity (32).

The CRY1 null mutant had a shorter period than the CRY2
null mutant, also in agreement with experimental data (31). This
occurs in our model, because CRY2 degrades more quickly than

CRY1. PER1-PER2 double mutants and CRY1-CRY2 double
mutants were not rhythmic in our model, in agreement with data
[PER1-PER2 (21), CRY1-CRY2 (31)]. Finally, as experimen-
tally (31), rhythmicity can be seen in our model, even if only one
of the four CRY alleles is present. This circumstance is simulated
by reducing the transcription rate of the one active CRY by a
factor of two.

Conclusion
Our model is unique in the detail with which we model the
mammalian intracellular circadian clock. By (i) not making
certain conventional simplifying assumptions; (ii) accounting for
the specific interactions of proteins; (iii) accounting for differ-
ences between PER1 and PER2, as well as between CRY1 and
CRY2; and (iv) directly fitting parameters by using a direct
search method, we are able to explain many circadian clock
properties, including entrainment and the effects of single and
double null mutants, as well as the role of the feedback loop in
which REV-ERB� regulates CRY1 transcription.
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