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To obtain a systems-level understanding of a biological system, the authors conducted quantitative
dynamic experiments from which the system structure and the parameters have to be deduced. Since
biological systems have to cope with different environmental conditions, certain properties are often
robust with respect to variations in some of the parameters. Hence, it is important to use optimal ex-
perimental design considerations in advance of the experiments to improve the information content of
the measurements. Using the MAP–Kinase pathway as an example, the authors present a simulation
study investigating the application of different optimality criteria. It is demonstrated that experimen-
tal design significantly improves the parameter estimation accuracy and also reveals difficulties in
parameter estimation due to robustness.
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1. Introduction

Systems biology examines how individual components of
biological systems dynamically interact with each other to
obtain a systems-level understanding of the biological pro-
cess under consideration [1]. For this approach, quantita-
tive measurements are made. These measurements are then
used to statistically assess the performance of a proposed
mathematical model describing the biological system un-
der investigation [2]. Since in general, the parameters are
unknown, the deviances of the model predictions can either
be caused by wrong parameters or by a wrong model struc-
ture. Hence, the model parameters are estimated from the
experimental data. Based on these parameter estimates, the
model can be statistically validated if it is able to reproduce
the observed dynamic behavior [3].
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To successfully identify the model structure and reliably
estimate the system parameters, these have to be identifi-
able given the current experimental design. If this is not the
case, the experimental design has to improved. Moreover,
even if identifiability is given, an enhanced experimental
design may drastically improve the estimation accuracy.
Since quantitative time-resolved measurements are time
and cost intensive, these improvements will also reduce
the experimental costs needed to achieve a prespecified
accuracy.

In the following, we discuss how optimality of an exper-
imental design can be defined and calculated. Then a sim-
ulation study using the MAP–Kinase signaling pathway,
which is known to be a robust pathway involved in a vari-
ety of different regulatory systems, is presented. The main
aim of this simulation study is to investigate how computer
simulations in advance of the experiments can be used to
improve the experimental design. Experimental design can
be used to optimize the selection of the time points at which
the measurements are recorded and to calculate optimal
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stimulations of the system. Here we are mainly concerned
with optimization of the input to the MAP–Kinase path-
way. All measurements are recorded on a prespecified uni-
form grid of time points. Using this pathway as an example,
the advantages and disadvantages of different optimality
criteria are discussed.

This article is structured as follows. Section 2 intro-
duces the basic system identification theory and briefly
reviews some concepts of optimal experimental design.
After a short introduction of the MAP–Kinase pathway in
section 3, the results of the simulation study are presented
in section 4.

2. System Identification

Dynamical biological systems can be described by a vari-
ety of different mathematical models, ranging from partial
or ordinary differential equations to stochastic differen-
tial equations. In the following, we will restrict ourselves
to models defined in terms of ordinary differential equa-
tions. In this case, the time evolution of the system state
xxx(t) ∈ R

K is given by

ẋxx(t) = fff (xxx(t),θθθ, u(t)), (1)

where θθθ ∈ R
P denotes the parameters of the system, and

u(t) is the input to the system. Note that θθθ may not only
include dynamic parameters such as reaction rates but also
unknown initial conditions of the system state vector xxx(0).
For the sake of simplicity, the input function u(t) is as-
sumed to be scalar, but the methods presented in the fol-
lowing do not depend on this assumption.

Often, not all components of the system can be mea-
sured directly. The observation functionggg describes which
properties yyyM(t,θθθ) ∈ R

L of the system can be measured,

yyyM(ti,θθθ, u) = ggg(xxx(ti,θθθ, u)) i = 1, . . . , N . (2)

The observation function ggg and the input function u(t), to-
gether with the specification of the time points ti at which
the measurements are recorded, completely specify the ex-
perimental design used. The observations yyyD(ti) ∈ R

L are
given by

yyyD(ti) = yyyM(ti,θθθ0, u)+ εεεi i = 1, . . . , N . (3)

The true parameter vector is denoted by θθθ0, and εεεi ∈ R
L

describes the observation error at time ti . Most often, the
observation error is assumed to be distributed according to

εij = N(0, σ2
ij
), i = 1, . . . , N j = 1, . . . , L . (4)

The variances σij can be estimated from repetitions of the
experiments.

Knowledge of the system structure (equation (1)) and
the experimental design (equation (2)) allows for evaluat-
ing the identifiability of the system structure and the pa-
rameters. This is a prerequisite for the inference of system
properties, which is the final goal of systems biology.

2.1 Identifiability

One distinguishes between structural, local, and practical
identifiability. Structural identifiability of parameters is a
theoretical property of the model structure depending only
on the observation functionggg and the input function u(t). It
does not depend on the observational noise or the number
of data points measured but rather is an asymptotic property
in the limit of an infinite number of observations.

The parametersθθθ of a model are structural identifiable if

∀ θθθ1,θθθ2 ∈ R
P ,θθθ1 �= θθθ2 ⇒ ∃ t with

ggg(xxx(t,θθθ1, u)) �= ggg(xxx(t,θθθ2, u)) .
(5)

This definition for structural identifiability is rather strict.
One can easily imagine realistic situations in which the
parameters are not identifiable according to this definition
but nevertheless would be identifiable for a reasonably re-
stricted set of all possible parameters. Hence, for all prac-
tical purposes, it is crucial to restrict the set of possible
parameters to decide if parameters can be identified with
the current experimental protocol. This leads to the defini-
tion of local identifiability.

The parameters θθθ of a model are locally identifiable in
a ε neighborhood of a parameter θθθ0 if

∀ θθθ1,θθθ2 ∈ {θθθ ∈ R
P | ‖θθθ− θθθ0‖ < ε} ,θθθ1 �= θθθ2

⇒ ∃ t with ggg(xxx(t,θθθ1, u)) �= ggg(xxx(t,θθθ2, u)) .
(6)

In contrast to the theoretical properties of structural and lo-
cal identifiability, the practical identifiability of parameters
is limited by the finite amount of data and observational
noise. Hence, if there are large observation errors or few
data, and thus no reliable estimate of the parameters is pos-
sible, these parameters are called practical nonidentifiable.

There are different analytical approaches to prove the
structural identifiability of parameters (see [4–6] or [7] for
an overview). However, for large nonlinear systems, these
analytical approaches are quite complicated. For the pur-
poses needed in this study, local identifiability near the true
parameter value is sufficient. To prove local identifiability,
we used an approach based on the parameter estimation
accuracy [8], which will be discussed in section 2.3.

Identifiability of parameters has to be distinguished
from model selection, whereby one tries to discrimi-
nate between different possible models. If the set of
all models under investigation is given by M = {fff |
possibly true model}, the true model is structural identi-
fiable if

∀ M1(θθθ1),M2(θθθ2) ∈M ,M1 �= M2

⇒ ∃ t with ggg(xxx(t,θθθ1, u)) �= ggg(xxx(t,θθθ2, u)) .
(7)

2.2 Parameter Estimation

In all practical applications, parameters of the system have
to be estimated since they cannot be measured directly. In
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addition, the measured values (see equation (3)) contain
observational errors. Due to its superior statistical proper-
ties, the most popular approach to parameter estimation is
the maximum likelihood method [9–11].

In the case of Gaussian observational noise, the maxi-
mum likelihood estimation corresponds to a minimization
of the weighted residual sum of squares,

χ2(θθθ) =
L∑

j=1

N∑
i=1

(
yD
j
(ti)− yM

j
(ti,θθθ, u)

σij

)2

. (8)

The asymptotic distribution of the least squares estimate
θ̂θθ can be computed analytically. To this end, one assumes
that in the limiting case of an infinite number of obser-
vations, the deviation ∆θθθ between the real and estimated
parameters is also small. Hence, the observation function
can be expanded in a Taylor series, yielding

yM

j
(ti,θθθ, u) = yM

j
(ti,θθθ0, u)+∇∇∇θθθ yj |ti ,θθθ0

(θθθ− θθθ0)

= yM

j
(ti,θθθ0, u)+

{∇∇∇θθθ gj

∇∇∇xxx gj

([∇∇∇θθθ x1]T , . . . , [∇∇∇θθθ xK]T
)T } |

ti ,θθθ0
(θθθ− θθθ0).

(9)

After inserting this result in the minimization functional,
one obtains

χ2(θθθ) =
L∑

j=1

N∑
i=1

[
ε2
ij

σ2
ij

− 2 εij

σ2
ij

∇∇∇θθθ yj (ti,θθθ0) ∆θθθ

+ [∆θθθ]T
(

1

σ2
ij

[∇∇∇θθθyj

]T [∇∇∇θθθyj

])∣∣∣
ti ,θθθ0

∆θθθ

]
.

(10)

The minimization of χ2(θθθ) with respect to θθθ yields the
following equation for the estimated deviation of the pa-
rameter vector ∆θθθ,{

M∑
j=1

N∑
i=1

1

σ2
ij

[∇∇∇θθθ yj

]T [∇∇∇θθθ yj

]}
∆θθθ =: F∆θθθ

=
M∑
j=1

N∑
i=1

εij

σ2
ij

[∇∇∇θθθ yj

]T
,

(11)

where the so-called Fisher information matrix F was in-
troduced [9]. The equation above can be solved, and one
obtains

∆θθθ = F−1

L∑
j=1

N∑
i=1

εij

σ2
ij

[∇∇∇θθθ yj

]T
. (12)

Finally, the covariance matrix Σ of the estimated parameter
vector is computed by

Σ = 〈∆θθθ∆θθθT 〉 = F−1 . (13)

To evaluate this covariance matrix, we need the derivations
of the observation function with respect to the parameters,
∇∇∇θθθ yj (ti). Taking into account equation (9), one hence
needs the derivation ofgggwith respect toθθθ andxxx. In addition,
the derivations ∇∇∇θθθ xk(ti) have to be computed from the
system of ordinary differential equations,

∂

∂t

(∇∇∇θθθ xk

) = K∑
r=1

∂fk(xxx,θθθ)

∂xr

∇∇∇θθθxr +∇∇∇θθθfk(xxx,θθθ) , (14)

with the initial conditions (∇∇∇θθθ xk)(0) = ∇∇∇θθθ xk(0). If the
Fisher information matrix and thus the covariance matrix
of the estimated parameters are known, the asymptotic con-
fidence intervals for the estimates can be computed from
the multivariate normal distribution,

p(θθθ) =
√

Det(F )

[2π]P/2
exp(−1

2
θθθT Fθθθ) . (15)

2.3 Local Identifiability

Local identifiability of the parameters in a small neighbor-
hood of the true parameter values can be assessed using
the parameter estimation accuracy [8]. If at least one of the
parameters is not identifiable, there must exist a functional
relationship between some of the parameters. This would
result in a joint probability distribution p(θθθ), which is not a
multivariate normal distribution. Technically, such a non-
identifiability would result in a covariance matrix that does
not have full rank. Hence, the condition number, the ratio
of the largest eigenvalue to the smallest eigenvalue, would
asymptotically tend to infinity. Therefore, the asymptotic
behavior of the condition number can be used to assess
local parameter identifiability.

Note that if there are large differences in the size of the
parameters to be estimated, it will be advantageous to use
relative estimation errors. In such a setting, the correlation
matrix is used instead of the covariance matrix.

2.4 Optimal Experimental Design

Basically, the information content of a measurement can
be quantified by the covariance matrix Σ of the estimated
parameters. Simply speaking, the smaller the joint confi-
dence intervals for the estimated parameters are, the more
information is contained in the experiment. Mostly, four
measures of the information content are distinguished [12-
15]:

• A-optimal design: max(Tr(F ))

• D-optimal design: min(det(Σ))

• E-optimal design: min(λmax(Σ))

• Modified E-optimal design: min(λmax(Σ)/λmin(Σ))

The A-optimal design tries to maximize the trace of
the Fisher information matrix F . However, this criterion is
rarely used since it can lead to noninformative experiments
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[16], with a covariance matrix that is not positive definite. A
D-optimal design minimizes the determinant of the covari-
ance matrix Σ and can thus be interpreted as minimizing
the geometric mean of the errors in the parameters. The
largest error is minimized by the E-optimal design, which
corresponds to a minimization of the largest eigenvalue of
the covariance matrix. The modified E-optimal design min-
imizes the ratio of the largest to the smallest eigenvector
and thus optimizes the functional shape of the confidence
intervals. Other measures for the information content are
possible (see, e.g., [17] for a criterion based on the largest
actual estimation error).

The optimization of the different optimality criteria can
be quite intensive in terms of computing time. For the com-
putation of the optimal stimulation of the MAP–Kinase
pathway in section 3, a polynomial parameterization of
the input function is used. Then, a minimization algorithm
based on a sequential quadratic programming method, im-
plemented in the NAG numerical libraries [18], is used to
obtain the optimal stimulation.

3. Application to the MAP–Kinase Cascade

Upon external stimulation, cell surface receptors initiate a
network of internal signaling pathways that are essential to
cell function by transmitting the signal through the cyto-
plasm to the nucleus. One of these signaling pathways, the
mitogen-activated protein kinase (MAPK) signal cascade,
is a highly conserved pathway found in a variety of eukary-
otic organisms. Therefore, cumulative efforts over the past
decade have been carried out to explore the functionality
and properties of this module [19–25; for an overview, see
26–28].

MAP–Kinase is assumed to be composed of three ki-
nases: MAPK kinase kinase (Raf), MAPK kinase (Mek),
and MAPK (Erk). These kinases can be activated by phos-
phorylation. The activated form then catalyzes the acti-
vation of the downstream kinase. Double-phosphorylated
Erk, the final step of the signaling cascade, translocates
into the nucleus and triggers gene expression. The MAP–
Kinase forms the final step of numerous signaling path-
ways, as shown in Figure 1.

In the following, we will concentrate on the last step of
the MAPK cascade, which is shown in Figure 2.

The reactions occurring in this last step of the signaling
cascade are

[Erk]+[Mek∗∗]
a1−→←−
b1

[Erk−Mek∗∗] c1−→[Erk∗]+[Mek∗∗],

[Erk∗]+[Mek∗∗]
a3−→←−
b3

[Erk∗ −Mek∗∗] c3−→[Erk∗∗]+[Mek∗∗],

[Erk∗∗]+[Pase]
a4−→←−
b4

[Erk∗∗ − Pase] c4−→[Erk∗]+[Pase],

[Erk∗]+[Pase]
a2−→←−
b2

[Erk∗ − Pase] c2−→[Erk]+[Pase].

Figure 1. The typical graphical representation of signaling
pathways. The receptor spans the cell membrane. Its activa-
tion upon extracellular stimulation is mediated to the DNA in
the cell nucleus by a cascade of phosphorylations. The last
steps of the cascade form the MAP–Kinase cascade.

� � � �

� � 
 ∗∗

(1)

(2)

(3)

(4)

� 
 � � � � ∗∗� � � ∗

Figure 2. The last step of the mitogen-activated protein kinase
(MAPK) cascade. Activated MAPK kinase (Mek∗∗) catalyzes
the activation of MAPK (Erk) by phosphorylation, resulting in
the activated form Erk∗∗. The deactivation of the active form
is catalyzed by the phosphatase (Pase).

Assuming the mass action law for each of these reactions,
a system of coupled ordinary differential equations for the
involved proteins can be derived:

[Erk∗] = c1[Erk−Mek∗∗] − a3[Erk∗][Mek∗∗]
+ b3[Erk∗ −Mek∗∗] + c4[Erk∗∗ − Pase]
− a2[Erk∗][Pase] + b2[Erk∗ − Pase],

[Erk∗∗] = c3[Erk∗ −Mek∗∗] − a4[Erk∗∗][Pase]
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+ b2[Erk∗ − Pase],
[Erk−Mek∗∗] = a1[Erk][Mek∗∗]

− (b1 + c1)[Erk−Mek∗∗],
[Erk∗ −Mek∗∗] = a3[Erk∗][Mek∗∗]

− (b3 + c3)[Erk∗ −Mek∗∗],
[Erk∗ − Pase] = a2[Erk∗][Pase]

− (b4 + c4)[Erk∗ − Pase],
[Erk∗∗ − Pase] = a3[Erk∗∗][Pase]

− (b4 + c4)[Erk∗∗ − Pase].
Since the model assumes that the total Erk concentration

is constant, the nonactivated Erk is given in terms of the
total Erk concentration,

[Erk](t) = [Erk]total − [Erk∗](t)− [Erk∗∗](t) . (16)

Altogether, there are 14 dynamical parameters involved:
the 12 reaction rates ai, bi, ci, i ∈ 1, . . . , 4 and the total
phosphatase (Pase) and kinase (Erk) concentrations. The
parameters ai denote the rates at which the substrate binds
to the enzyme, bi denotes the corresponding breaking rates,
and ci denotes the rate at which the actual activation reac-
tion occurs. For this system, Mek∗∗ serves as input, while
Erk∗∗ can be regarded as the output of the system. The
initial concentrations of all phosphorylated Erks and com-
plexes of phosphorylated Erks with Meks or phosphatases
are zero.

4. Results

To understand the functionality of the MAPK signaling
pathway, a quantitative description of the signal dynamic
is necessary [24]. The crucial question for such a systems-
level approach is how the information content of measure-
ments can be quantified and how experiments can be opti-
mized to yield a maximal amount of information about the
observed system.

To answer these questions, we performed a simulation
study, using the last step of the MAPK cascade as an exam-
ple. We assumed that the dynamical behavior of both the
inactive (Erk) and the active (Erk∗∗) form of MAPK can be
measured subject to a known stimulation of the activated
MAPK (Mek∗∗) (see Fig. 2).

The dynamic behavior of the system and thus the pa-
rameter estimation accuracy depend on the actual param-
eter values. To demonstrate the prospects of experimental
design considerations, the following parameters have been
chosen for the purpose of the presented simulation study:

ai = 0.5, bi = 0.6, ci = 0.9, i = 1, . . . , 4

Pasetot = 20, Erktot = 50.
(17)

In general, for optimal experimental design investigations,
a rough knowledge of the actual parameters is necessary.

Mathematical Model

Experiment

Parameter Estimation Optimal Experimental Design

Figure 3. Illustration of the model-building process. Starting
from a hypothetical mathematical model, experiments are
performed to validate and improve the model. After each
parameter estimation, optimal experimental design can
be used to perform further informative experiments, which
increase the information about the system.

Usually, a first simple experiment is performed to get a first
estimate of the parameters. Then, these parameters are used
to design new experiments. In an iterative process, then, the
information from these new experiments is included in the
design process (see Fig. 3).

A typical time evolution of the system response—the
two measured components Erk and Erk∗∗, subject to a stim-
ulus with a quartic input function (see equation (18)), in-
cluding Gaussian observational noise (σ = 0.3)—is shown
in Figure 4a.

To simplify the discussion of the results, we restrict
ourselves to the estimation of two parameters from the first
reaction in Figure 2. We will discuss the estimation of a1,
b1 and a1, c1; since these two cases showed quite different
behavior, all other parameters were fixed. However, the
concepts discussed can be generalized to a larger parameter
space.

4.1 Parameter Identifiability

Before one tries to estimate these parameters, one must
ensure that the parameters are identifiable at all. To inves-
tigate identifiability, we simulated data according to the
model, and observational noise was added. Then, mini-
mization of χ2(θθθ) (see equation (8)) yielded an estimate
of the parameters and the covariance matrix. As discussed
in section 2.3, the asymptotic behavior of the condition
number of this covariance matrix can be used to assess the
identifiability of the parameters [8]. Figure 4b shows the
behavior of the condition number if the parameters a1 and
b1 are estimated and c1 is fixed. It can be seen that the con-
dition number does not tend to infinity with an increasing
number N of data points; hence, in this setting, the param-
eters are locally identifiable. However, the large values of
the condition number already indicate that there will be
large estimation errors, which probably limit the practical
identifiability. Estimation of a1 and c1 showed the same
qualitative behavior, but the values of the condition num-
ber were much smaller.
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Figure 4. (a) Typical time evolution of the measured activated and inactivated mitogen-activated protein kinase (MAPK) concen-
trations, Erk and Erk∗∗, for a linear input signal with p1 = 0.267 (see equation (18)) and parameters for the MAP–Kinase cascade
ai = 0.5, bi = 0.6, ci = 0.9 and Pasetot = 20, Erktot = 50. (b) Asymptotic behavior of the condition number of the covariance matrix
when the rate constants a1 and b1 are estimated.

4.2 Optimal Experimental Design

Designing optimal experiments typically involves deci-
sions about what components of the system are measured at
which points in time. In addition, the stimulation of the sys-
tem has to be chosen. For our simulation study, we assume
that the time evolution of the inactive (Erk) and activated
(Erk∗∗) MAPK is measured at a given time resolution, and
we try to find the most informative input profile for Mek∗∗.
To this end, we used a polynomial parameterization of the
input function

Mek∗∗(t) = 2+
d∑

k=1

pk t
k,

2 ≤ Mek∗∗(t) ≤ 10 ∀t ∈ [0, 30],
(18)

where the maximal and minimal Mek∗∗ concentrations are
bounded. Using this parameterization of the input, we op-
timized the different design criteria discussed in section
2.4 to obtain the optimal input for different degrees d of
the input function.

The confidence intervals calculated according to equa-
tion (15) are valid in the asymptotic case of an infinite num-
ber of observations. To assess the validity of this assump-
tion in the present case, observational noise is added to
simulated data, and the parameters are estimated. Figure 5
shows the 95% confidence ellipsoids calculated according
to equation (15) for a modified E-optimal design, together
with 200 samples of estimated parameters for the optimal
linear and 500 samples for the quartic input function. It can

be seen that the shape and size of the computed confidence
ellipsoids resemble the distribution of the estimated param-
eters, while the estimated parameters are slightly shifted
toward higher parameter values. This indicates that in the
current setting, the asymptotic covariance matrix can be
used to optimize the experimental design. Note that also
if this assumption would not be valid, one can still use the
estimated parameters to reconstruct the covariance matrix
and thus optimize the experimental design. However, the
numerical efforts in this case are much larger.

Figure 6 shows the shape of the 95% confidence ellip-
soid calculated according to equation (15) for an estimation
of the parameters a1 and b1, using two optimal input func-
tions of different degree d. The modified E-optimal design
was used to find the optimal linear and quartic input func-
tion. It can be seen that there is a substantial improvement
in parameter estimation accuracy in moving from an op-
timal linear input to the optimal quartic input function. In
this case, the estimation error in the parameter a1 was re-
duced by approximately 60%.

Figure 7a shows the 95% confidence intervals for esti-
mation of a1, b1 for the D-optimal, E-optimal, and modi-
fied E-optimal design using the largest degree of the input
function. There is a strong correlation between the esti-
mates of these two parameters. These correlations can lead
to practical nonidentifiability for less optimal input func-
tions, despite the structural identifiability that is present in
this case.

Especially in the case of correlated estimates, it is im-
portant to be aware of the multidimensionality of the con-
fidence interval. For example, the estimation error of a1, if
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Figure 5. The 95% confidence intervals for the parameters a1 and b1 in the case of a modified E-optimal design for the best linear
(a) and quartic (b) input function, together with 200 (a) and 500 (b) samples of estimated parameters
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Figure 6. The 95% confidence intervals for the parameters a1 and b1 in the case of a modified E-optimal design for the best linear
and quartic input function

the parameter b1 would be fixed, is about 10 times smaller
than in the case when both parameters are estimated. The
estimation error of a1, if b1 is fixed, can be seen in Figure 7a
as the projection of the intersection of the b1 = 0.6 line
and the confidence ellipsoid to the a1 axis.

Figure 7b shows the confidence regions for an estima-
tion of a1 and c1. There is only a small correlation between
these two parameters present, and hence these parameters
are better suited to a discussion of the different design crite-

ria. As expected, the D-optimal design results in the small-
est volume in the parameter space of the confidence region,
while the E-optimal design minimizes the largest principal
axis of the confidence ellipsoid. In contrast to these cri-
teria, the modified E-optimal design, which optimizes the
shape of the confidence region, results in larger estimation
errors, especially for the parameter a1.

Figure 8 shows the optimal input functions for differ-
ent degrees of the polynom from equation (18) for the
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Figure 7. (a) The 95% confidence intervals for the estimation of a1, b1 and a1, c1 (b) for different design criteria using a optimal
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Figure 8. The optimal input functions for the E-optimal design (a), the modified E-optimal design (b), and the D-optimal design (c)
for different degrees of the input function polynom
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E-optimal design, the modified E-optimal design, and the
D-optimal design.

5. Conclusion

Systems biology is based on quantitative dynamic mea-
surements of biological systems, from which the system
structure and the parameters have to be deduced. We have
used the MAP–Kinase signaling cascade, a highly con-
served regulatory module, to demonstrate the impact of
improved experimental designs on parameter estimation
accuracy. We have shown that by moving from a linear
input function to a specific quartic input function, the pa-
rameter estimation error could be reduced by 60%.

In addition to improving the estimation accuracy, com-
puter simulations can also help in detecting possible prac-
tical nonidentifiabilities in the parameter space. Practical
nonidentifiability will result in a large condition number
of the estimated covariance matrix (see Fig. 6 as an ex-
ample). This example illustrates that, for example, for an
analysis of robustness, where the sensitivity of the output
to variations in the parameters is studied, it does not suffice
to use variations in single parameters. In general, combi-
nations of parameters are the most prospective candidates
for nonidentifiabilities.

Since the modified E-optimal design resulted in larger
confidence intervals, this simulation study would prefer
the E- and D-optimal experimental designs. These designs
resulted in roughly the similar shape and size of the confi-
dence regions.

The software used for the presented simulations is
available on request from the authors (jeti@fdm.uni-
freiburg.de).

6. References

[1] Kitano, H. 2002. Systems biology: A brief overview. Science
295:1662-4.

[2] Swameye, I., T. G. Müller, J. Timmer, O. Sandra, and U. Klingmüller.
Identification of nucleocytoplasmic cycling as a remote sensor in
cellular signaling by data-based modeling. Proceedings of the Na-
tional Academy of Science 100:1028-33.

[3] Cox, D. R., and D. V. Hinkley. 1994. Theoretical statistics. London:
Chapman & Hall.

[4] Pohjanpalo, H. 1978. System identifiability based on power series
expansion of the solution. Mathematical Biosciences 41:21-33.

[5] Ritt, J. F. 1932. Differential equations from the algebraic standpoint.
Ann Arbor: American Mathematical Society.

[6] Wu, W. T. 1986. On zeros of algebraic equations—an application of
Ritt principle. Kexue Tongbao 31:1-5.

[7] Müller, T. G. 2002. Modeling complex systems with differential equa-
tions. Ph.D. diss., Albert-Ludwigs Universität Freiburg [Online].
Available: www.freidok.uni-freiburg.de/volltexte/556/

[8] Müller, T. G., N. Noykova, M. Gyllenberg, and J. Timmer. 2002. Pa-
rameter identification in dynamical models of anaerobic wastew-
ater treatment. Mathematical Biosciences 177-178:147-60.

[9] Fisher, R. A. 1912. On an absolute criterion for fitting frequency
curves. Messenger of Mathematics 41:155-60.

[10] Schittkowski, K. 1994. Parameter estimation in systems of nonlinear

equations. Numerische Mathematik 68:129-42.
[11] Ljung, L. 1999. System identification. Englewood Cliffs, NJ: Pren-

tice Hall.
[12] Box, G. E. P., and W. J. Hill. 1967. Discrimination among mecha-

nistic models. Technometrics 9:57-71.
[13] Munack, A. 1991. Optimization of sampling. In Biotechnology, a

multi-volume comprehensive treatise, edited by K. Schügerl, 251-
64. Weinheim: VCH, Weinheim.

[14] Munack, A. 1992. Some improvements in the identification of bio-
processes. In Modeling and control of biotechnical processes, 2nd
IFAC Symposium, edited by M. N. Karim and G. Stephanopoulos,
89-94. San Diego: Elsevier.

[15] Baltes, M., R. Schneider, C. Sturm, and M. Reuss. 1994. Optimal ex-
perimental design for parameter estimation in unstructured growth
models. Biotechnology Progress 10:480-8.

[16] Goodwin, G. C. 1987. Identification: Experiment design. In Systems
and control encyclopedia, vol. 4, edited by M. Singh, 2257-64.
Oxford: Pergamon Press.

[17] Lohmann, T., H. G. Bock, and J. P. Schlöder. 1992. Numerical meth-
ods for parameter estimation and optimal experimental design in
chemical reaction systems. Industrial and Engineering Chemistry
Research 31:54-7.

[18] Numerical Algorithms Group. 2002. The NAG Fortran library man-
ual, Mark 20. Cambridge: Cambridge University Press.

[19] Koshland, D. E. 1987. Switches, thresholds and ultrasensitivity.
Trends in Biochemical Sciences 12:225-9.

[20] Huang, C.-Y. F., and J. E. Ferrell. 1996. Ultrasensitivity in the
mitogen-activated protein kinase cascade. Proceedings of the Na-
tional Academy of Science 93:10078-83.

[21] Asthagiri, A. R., and D. A. Lauffenburger. 2001. A computational
study of feedback effects on signal dynamics in a mitogen–
activated protein kinase (MAPK) pathway model. Biotechnology
Progress 17:227-39.

[22] Heinrich, R., B. G. Neel, and T. A. Rapoport. 2002. Mathemati-
cal models of protein kinase signal transduction. Molecular Cell
9:957-70.

[23] Bhalla, U. S., P. T. Ram, and R. Iyengar. 2002. MAP kinase phos-
phatase as a locus of flexibility in a mitogen-activated protein
kinase signalling network. Science 297:1018-23.

[24] Ingolia, N. T., and A. W. Murray. 2002. History matters. Science
297:948-9.

[25] Kholodenko, B. N. 2002. MAP kinase cascade signaling and en-
docytic trafficking: A marriage of convenience. TRENDS in Cell
Biology 12(4):173-7.

[26] Blüthgen, N., and H. Herzel. 2001. MAP–Kinase-cascade: Switch,
amplifier or feedback controller. In 2nd Workshop on Computa-
tion of Biochemical Pathways and Genetic Networks, edited by
U. Kummer R. Gauges, and C. van Gend, 55-62. Berlin: Logos
Verlag.

[27] Pearson, G., Robinson, T. B. Gibson, B. Xu, M. Karandikar,
K. Berman, and M. H. Cobb. 2001. Mitogen-activated protein
(MAP) kinase pathways: Regulation and physiological functions.
Endocrine Reviews 22:153-8.

[28] Pouysségur, J., V. Volmat, and P. Lenormand. 2002. Fidelity and
spatio-temporal control in MAP kinase (ERKs) signalling. Bio-
chemical Pharmacology 64:755-63.

D. Faller is a PhD student at the Freiburg Center for Data Anal-
ysis and Modeling, Freiburg, Germany.

U. Klingmüller is a group leader at the Max-Planck-Institute for
Immunology, Freiburg, Germany.

J. Timmer is a group leader at the Freiburg Center for Data
Analysis and Modeling, Freiburg, Germany.

Volume 79, Number 12 SIMULATION 725


