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ABSTRACT

In order to understand the functioning of organisms on the molecular level, we need to
know which genes are expressed, when and where in the organism, and to which extent.
The regulation of gene expression is achieved through genetic regulatory systems struc-
tured by networks of interactions between DNA, RNA, proteins, and small molecules. As
most genetic regulatory networks of interest involve many components connected through
interlocking positive and negative feedback loops, an intuitive understanding of their dy-
namics is hard to obtain. As a consequence, formal methods and computer tools for the
modeling and simulation of genetic regulatory networks will be indispensable. This paper
reviews formalisms that have been employed in mathematical biology and bioinformatics
to describe genetic regulatory systems, in particular directed graphs, Bayesian networks,
Boolean networks and their generalizations, ordinary and partial differential equations,
qualitative differential equations, stochastic equations, and rule-based formalisms. In ad-
dition, the paper discusses how these formalisms have been used in the simulation of the
behavior of actual regulatory systems.

Key words: genetic regulatory networks, mathematical modeling, simulation, computational
biology.

1. INTRODUCTION

The genome of an organism plays a central role in the control of cellular processes, such as
the response of a cell to environmental signals, the differentiation of cells and groups of cells in the

unfolding of developmental programs, and the replication of the DNA preceding cell division. Proteins
synthesized from genes may function as transcription factors binding to regulatory sites of other genes,
as enzymes catalyzing metabolic reactions, or as components of signal transduction pathways. With few
exceptions, all cells in an organism contain the same genetic material. This implies that, in order to
understand how genes are implicated in the control of intracellular and intercellular processes, the scope
should be broadened from sequences of nucleotides coding for proteins to regulatory systems determining
which genes are expressed, when and where in the organism, and to which extent.

Gene expression is a complex process regulated at several stages in the synthesis of proteins (Lewin,
1999). Apart from the regulation of DNA transcription, the best-studied form of regulation, the expression
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FIG. 1. Example of a genetic regulatory system, consisting of a network of three genes a, b, and c, repressor proteins
A, B, C, and D, and their mutual interactions. The � gure distinguishes several types of interaction. More complex
graphical conventions to represent cellular networks are proposed by Kohn (1999, 2000).

of a gene may be controlled during RNA processing and transport (in eukaryotes), RNA translation, and
the posttranslational modi� cation of proteins. The degradation of proteins and intermediate RNA products
can also be regulated in the cell. The proteins ful� lling the above regulatory functions are produced by
other genes. This gives rise to genetic regulatory systems structured by networks of regulatory interactions
between DNA, RNA, proteins, and small molecules. An example of a simple regulatory network, involving
three genes that code for proteins inhibiting the expression of other genes, is shown in Fig. 1. Proteins B
and C independently repress gene a by binding to different regulatory sites of the gene, while A and D
interact to form a heterodimer that binds to a regulatory site of gene b.1 Binding of the repressor proteins
prevents RNA polymerase from transcribing the genes downstream.

Analyses of the huge amounts of data made available by sequencing projects have contributed to the
discovery of a large number of genes and their regulatory sites. The KEGG database, for instance, contains
information on the structure and function of about 110,000 genes for 29 species (Kanehisa and Goto,
2000). In some cases, the proteins involved in the control of the expression of these genes, as well as the
molecular mechanisms through which regulation is achieved, have been identi� ed. Much less is known,
however, about the functioning of the regulatory systems of which the individual genes and interactions
form a part (Brownstein et al., 1998; Collado-Vides et al., 1996; Fields et al., 1999; Kanehisa, 2000; Lander,
1996; Loomis and Sternberg, 1995; Nowak, 1995; Palsson, 1997; Strohman, 1997; Thieffry, 1999). Gaining
an understanding of the emergence of complex patterns of behavior from the interactions between genes
in a regulatory network poses a huge scienti� c challenge with potentially high industrial pay-offs.

The study of genetic regulatory systems has received a major impetus from the recent development of
experimental techniques like cDNA microarrays and oligonucleotidechips, which permit the spatiotemporal
expression levels of genes to be rapidly measured in a massively parallel way (Brown and Botstein, 1999;
Lipschutz et al., 1999; Lockhart and Winzeler, 2000). Other techniques, such as the mass spectrometric
identi� cation of gel-separated proteins, allow the state of a cell to be characterized on the proteomic level
as well (Kahn, 1995; Mann, 1999; Pandey and Mann, 2000; Zhu and Snyder, 2001). Although still in
their infancy, these techniques have become prominent experimental tools, by opening up a window on
the dynamics of gene expression.

In addition to experimental tools, formal methods for the modeling and simulation of gene regulation
processes are indispensable. As most genetic regulatory systems of interest involve many genes connected

1As a notational convention, names of genes are printed in italic and names of proteins and other molecules start
with a capital.
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FIG. 2. Analysis of genetic regulatory systems. The boxes represent activities, the ovals information sources, and
the arrows information � ows.

through interlocking positive and negative feedback loops, an intuitive understanding of their dynamics is
hard to obtain. Using formal methods, the structure of regulatory systems can be described unambiguously,
while predictions of their behavior can be made in a systematic way. Especially when supported by user-
friendly computer tools, modeling and simulation methods permit large and complex genetic regulatory
systems to be analyzed.

Figure 2 shows the combined application of experimental and computational tools. Starting from an initial
model, suggested by knowledge of regulatory mechanisms and available expression data, the behavior of
the system can be simulated for a variety of experimental conditions. Comparing the predictions with the
observed gene expression pro� les gives an indication of the adequacy of the model. If the predicted and
observed behavior do not match, and the experimental data is considered reliable, the model must be revised.
The activities of constructing and revising models of the regulatory network, simulating the behavior of
the system, and testing the resulting predictions are repeated until an adequate model is obtained.

The formal basis for computer tools supporting the modeling and simulation tasks in Fig. 2 lies in meth-
ods developed in mathematical biology and bioinformatics. Since the 1960s, with some notable precursors
in the two preceding decades, a variety of mathematical formalisms for describing regulatory networks
have been proposed. These formalisms are complemented by simulation techniques to make behavioral
predictions from a model of the system, as well as modeling techniques to construct the model from exper-
imental data and knowledge on regulatory mechanisms. Traditionally, the emphasis has been on simulation
techniques, where the models are assumed to have been hand-crafted from the experimental literature.
With more experimental data becoming available and easily accessible through databases and knowledge
bases, modeling techniques are currently gaining popularity.

This paper gives an overview of formalisms to describe genetic regulatory networks and discusses their
use in the modeling and simulation of regulatory systems. While it was being prepared, several other
reviews on the modeling and simulation of genetic regulatory systems appeared (Endy and Brent, 2001;
Hasty et al., 2001; McAdams and Arkin, 1998; Smolen et al., 2000) [see Glass (1977), Rosen (1968),
Thomas (1979) for earlier reviews]. The present report differs from these reviews in that it focuses on the
mathematical methods, evaluating their relative strengths and weaknesses, rather than on the biological
results obtained through their application. Recently, a collection of introductory chapters covering some of
the methods discussed below appeared (Bower and Bolouri, 2001).

Sections 2 to 11 of this paper give an overview of formalisms proposed in the literature and discuss
modeling and simulation techniques appropriate for each of the formalisms. Formalisms to be discussed
include directed graphs, Bayesian networks, Boolean networks and their generalizations, ordinary and
partial differential equations, qualitative differential equations, stochastic master equations, and rule-based
formalisms. It will come as no surprise that the review is not meant to be exhaustive. As hinted at above,
the computational study of gene regulation is a subject with a long history. Moreover, in the last few
years the number of papers seems to be growing in an exponential fashion. To mention some omissions,
no attention is paid to Petri nets (Goss and Peccoud, 1998; Hofestädt and Thelen, 1998; Matsuno et al.,
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2000; Reddy et al., 1996), transformational grammars (Collado-Vides, 1989, 1996; Collado-Vides et al.,
1998), and process algebra (Regev et al., 2001). The impact of these approaches on the dynamic analysis
of genetic regulatory networks has been limited thus far. Moreover, they are related to some of the other
formalisms discussed below.

2. DIRECTED AND UNDIRECTED GRAPHS

Probably the most straightforward way to model a genetic regulatory network is to view it as a directed
graph. A directed graph G is de� ned as a tuple hV ; Ei, with V a set of vertices and E a set of edges.
A directed edge is a tuple hi; j i of vertices, where i denotes the head and j the tail of the edge. The
vertices of a directed graph correspond to genes or other elements of interest in the regulatory system,
while the edges denote interactions among the genes. The graph representation of a regulatory network can
be generalized in several ways. The vertices and edges could be labeled, for instance, to allow information
about genes and their interactions to be expressed. By de� ning a directed edge as a tuple hi; j; si, with s

equal to C or ¡, it can be indicated whether i is activated or inhibited by j . Hypergraphs can be used
to deal with situations in which proteins cooperatively regulate the expression of a gene, for instance
by forming a heterodimer (Fig. 1). The edges are then de� ned by hi; J; Si, where J represents a list of
regulating genes and S a corresponding list of signs indicating their regulatory in� uence. Figure 3 shows
simple regulatory networks of three genes.

Current databases and knowledge bases containing information about regulatory interactions can be
viewed, to a large extent, as richly annotated graph representations. Examples of such databases and
knowledge bases are aMAZE (van Helden et al., 2000), EcoCyc (Karp et al., 1999a), GeneNet (Kolpakov
et al., 1999), GeNet (Samsonova et al., 1998), GIF-DB (Jacq et al., 1997), KEGG (Kanehisa and Goto,
2000), KNIFE (Euzenat et al., 1997), and RegulonDB (Salgado et al., 2000). GeneNet describes cell types
and lineages, genes with their regulatory features, proteins and protein complexes, regulatory interactions
and other chemical reactions, physiological conditions under which the interactions have been observed, and
primary literature sources. The databases and knowledge bases are usually supplemented by applications
to compose and edit networks by selecting and manipulating individual interactions. At the very least, they

FIG. 3. (a) Directed graph representing a genetic regulatory network and (b) its de� nition. The plus and minus
symbols in the pictorial representation can be omitted and replaced by ! and a edges, respectively. (c)–(d) Directed
hypergraph representation of a regulatory network with cooperative interactions.
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permit the user to visualize complete or partial networks, often on different levels of detail, and to navigate
the networks (Samsonova and Serov, 1999; Sanchez et al., 1999). Some current databases and knowledge
bases integrate metabolic and signal transduction pathways with gene regulation processes (e.g., Kanehisa
and Goto [2000] and Karp et al. [1999a]).

A number of operations on graphs can be carried out to make biologically relevant predictions about
regulatory systems. A search for paths between two genes, for instance, may reveal missing regulatory
interactions or provide clues about redundancy in the network. Furthermore, cycles in the network point at
feedback relations that are important for homeostasis and differentiation (Section 6). Global connectivity
characteristics of a network, such as the average and the distribution of the number of regulators per gene,
give an indication of the complexity of the network. Loosely connected subgraphs point at functional
modules of the regulatory system of which the behavior could be considered in isolation. From a comparison
of regulatory networks of different organisms, it might be possible to establish to which extent parts of
regulatory networks have been evolutionary conserved.

The graph models to which the above operations are applied may be composed from information stored
in databases and knowledge bases, but they can also be obtained from gene expression data through
inductive or reverse engineering approaches. A variety of clustering algorithms have been used to group
together genes with similar temporal expression patterns (Alon et al., 1999; Ben-Dor et al., 1999; Brown
et al., 2000; Cho et al., 1998; Eisen et al., 1998; Holter et al., 2001; Michaels et al., 1998; Spellman et al.,
1998; Tamayo et al., 1999; Wen et al., 1998). Several techniques for clustering expression data time-series
have been proposed in the literature, based on measures like Euclidian distance, mutual information, linear
correlation, and rank correlation (D’haeseleer et al., 1998). The use of clustering algorithms is motivated
by the idea that two genes exhibiting similar expression patterns over time may regulate each other or be
coregulated by a third gene. Additional analyses may permit one to extract more information on putative
regulatory connections between coexpressed genes in the graph, such as the analysis of time lags (Arkin
and Ross, 1995; Arkin et al., 1997; Chen et al., 1999a), the performance of perturbation experiments
(Holstege et al., 1998; Hughes et al., 2000; Laub et al., 2000; Spellman et al., 1998), the mapping of
co-expressed genes to pathway functions (Kanehisa and Goto, 2000; Zien et al., 2000), and the screening
of upstream regions of coexpressed genes for shared promoters or regulatory sites (Laub et al., 2000;
Spellman et al., 1998; Tavazoie et al., 1999).

3. BAYESIAN NETWORKS

In the formalism of Bayesian networks (Friedman et al., 2000; Pearl, 1988), the structure of a genetic
regulatory system is modeled by a directed acyclic graph G D hV; Ei (Fig. 4). The vertices i 2 V ,
1 · i · n, represent genes or other elements and correspond to random variables Xi . If i is a gene, then
Xi will describe the expression level of i. For each Xi , a conditional distribution p.Xi j parents.Xi//

is de� ned, where parents.Xi/ denotes the variables corresponding to the direct regulators of i in G. The

FIG. 4. Example Bayesian network consisting of a graph, conditional probability distributions for the random vari-
ables, the joint probability distribution, and conditional independencies (Friedman et al., 2000).
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graph G and the conditional distributions p.Xi j parents.Xi//, together de� ning the Bayesian network,
uniquely specify a joint probability distribution p.X/.

Let a conditional independency i.Xi I Y j Z/ express the fact that Xi is independent of Y given Z, where
Y and Z denote sets of variables. The graph encodes the Markov assumption, stating that for every gene i

in G, i.XiI nondescendants.Xi/ j parents.Xi//. By means of the Markov assumption, the joint probability
distribution can be decomposed into

p.X/ D
nY

iD1

p.Xi j parents.Xi//: (1)

The graph implies additional conditional independencies, as shown in Fig. 4 for the example network.
Two graphs, and hence two Bayesian networks, are said to be equivalent, if they imply the same set
of independencies. The graphs in an equivalence class cannot be distinguished by observation on X .
Equivalent graphs can be formally characterized as having the same underlying undirected graph, but may
disagree on the direction of some of the edges (see Friedman et al. [2000] for details and references).

Given a set of expression data D in the form of a set of independent values for X , learning techniques for
Bayesian networks (Heckerman, 1998) allow one to induce the network, or rather the equivalence class of
networks, that best matches D. Basically, the techniques rely on a matching score to evaluate the networks
with respect to the data and search for the network with the optimal score. As this optimization problem
is known to be NP-hard, heuristic search methods have to be used, which are not guaranteed to lead to a
globally optimal solution. As an additional problem, currently available expression data underdetermines
the network, since at best a few dozen of experiments provide information on the transcription level of
thousands of genes.

Friedman and colleagues (Friedman et al., 2000) have proposed a heuristic algorithm for the induction
of Bayesian networks from expression data that is able to deal with this so-called dimensionality problem.
Instead of looking for a single network, or a single equivalence class of networks, they focus on features
that are common to high-scoring networks. In particular, they look at Markov relations and order relations
between pairs of variables Xi and Xj . A Markov relation exists, if Xi is part of the minimal set of variables
that shields Xj from the rest of the variables, while an order relation exists, if Xi is a parent of Xj in
all of the graphs in an equivalence class. An order relation between two variables may point at a causal
relationship between the corresponding genes. Statistical criteria to assess the con� dence in the features
have been developed. A recent extension of the method (Pe’er et al., 2001) is able to deal with genetic
mutations and considers additional features, like activation, inhibition, and mediation relations between
variables.

Markov relations and order relations have been studied in an application of the algorithm to the cell
cycle data set of Spellman and colleagues (1998) (see Pe’er et al. [2001] for another application). This
data set contains 76 measurements of the mRNA expression level of 6,177 S. cerevisiae ORFs included in
time-series obtained under different cell cycle synchronization methods. The Bayesian induction algorithm
has been applied to the 800 genes whose expression level varied over the cell cycle. By inspecting the
high-con� dence order relations in the data, Friedman and colleagues found that only a few genes dominate
the order, which indicates that they are potential regulators of the cell cycle process. Many of these genes
are known to be involved in cell-cycle control and initiation. Of the high-con� dence Markov relations,
most pairs are functionally related. Some of these relations were not revealed by the cluster analysis of
Spellman and colleagues.

A Bayesian network approach towards modeling regulatory networks is attractive because of its solid
basis in statistics, which enables it to deal with the stochastic aspects of gene expression and noisy
measurements in a natural way. Moreover, Bayesian networks can be used when only incomplete knowledge
about the system is available. Although Bayesian networks and the graph models in the previous sections are
intuitive representations of genetic regulatory networks, they have the disadvantage of leaving dynamical
aspects of gene regulation implicit. To some extent, this can be overcome through generalizations like
dynamical Bayesian networks, which allow feedback relations between genes to be modeled (Murphy and
Mian, 1999). In the next sections, formalisms that explicitly take into account the dynamics of regulatory
systems will be discussed.
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4. BOOLEAN NETWORKS

As a � rst approximation, the state of a gene can be described by a Boolean variable expressing that it is
active (on, 1) or inactive (off, 0) and hence that its products are present or absent. Moreover, interactions
between elements can be represented by Boolean functions which calculate the state of a gene from the
activation of other genes. The result is a Boolean network, an example of which is shown in Fig. 5. Modeling
regulatory networks by means of Boolean networks has become popular in the wake of a groundbreaking
study by Kauffman (1969b) (see Sugita [1961, 1963] and Walter et al. [1967] for early uses of the Boolean
approximation). Recent reviews of the use of Boolean network models can be found in Kauffman’s book
and in a number of articles (Huang, 1999; Kauffman, 1993; Somogyi and Sniegoski, 1996).

Let the n-vector x of variables in a Boolean network represent the state of a regulatory system of n

elements. Each Oxi has the value 1 or 0, so that the state space of the system consists of 2n states. The
state Oxi of an element at time-point t C 1 is computed by means of a Boolean function or rule Obi from the
state of k of the n elements at the previous time-point t . (Notice that k may be different for each Oxi .) The
variable Oxi is also referred to as the output of the element and the k variables from which it is calculated
the inputs. For k inputs, the total number of possible Boolean functions Obi mapping the inputs to the output
is 22k

. This means that for k D 2 there are 16 possible functions, including the nand, or, and nor in Fig. 5.
In summary, the dynamics of a Boolean network describing a regulatory system are given by

Oxi.t C 1/ D Obi.x.t //; 1 · i · n; (2)

where Obi maps k inputs to an output value.
The structure of a Boolean network can be recast in the form of a wiring diagram (Fig. 5(c)). The upper

row lists the state at t and the lower row the state at t C 1, while the Boolean function calculating the
output from the input is shown below each element. The wiring diagram is a convenient representation
for computing transitions between states. The transition from one state to the next is usually determined
in a parallel fashion, applying the Boolean function of each element to its inputs. For instance, given a
state vector 000 at t D 0, the system in the example will move to a state 011 at the next time-point
t D 1. That is, if all three genes are inactive at t D 0, the second and the third gene will become active at
the next time-point. Hence, transitions between states in a network are deterministic, with a single output
state for a given input, and synchronous, in the sense that the outputs of the elements are updated simul-
taneously.

A sequence of states connected by transitions forms a trajectory of the system. Because the number of
states in the state space is � nite, the number of states in a trajectory will be � nite as well. More speci� cally,
all initial states of a trajectory will eventually reach a steady state or a state cycle, also referred to as

FIG. 5. (a) Example Boolean network and (b) the corresponding equations. In this case, n D 3 and k D 2. (c) Wiring
diagram of the Boolean network.
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point attractor or dynamic attractor, respectively. The states that are not part of an attractor are called
transient states. The attractor states and the transient states leading to the attractor together constitute the
basin of attraction. In the example, both attractors have a basin of attraction consisting of four states.

For simple networks, the attractors and their basins of attraction in the state space can be calculated
by hand, but for larger systems computer programs become inevitable. An example of such a program is
DDLab, developed by Wuensche (1998). Given suf� cient memory, DDLab allows the basins of attraction
of a network to be calculated up to n D 31. Individual basins of attraction can be determined for much
larger networks. Another example is the program Gene-O-Matic (Platzer et al., 2001), which permits
differentiation in multicellular systems to be simulated (Jackson et al., 1986).

Boolean networks were among the � rst formalisms for which model induction methods were proposed,
the REVEAL algorithm developed by Liang et al. (1998) being an example (see Akutsu et al. [1998a,
1998b, 1999], Ideker et al. [2000], Karp et al. [1999b], Maki et al. [2001], Noda et al. [1998] for other
examples and Thomas [1973] for seminal ideas). In outline, this algorithm uses information theory to
establish how given elements are connected in the network and then determines the functions that specify
the logic of the interactions from the data. For each of the n elements, all possible combinations of k

inputs are considered (1 · k · n), until a set of inputs is found which fully determines the output of
the element. In information-theoretic terms, this means that the mutual information of the output of the
element and its inputs equals the information value of the output of the element alone. The function for
the element is then found by comparing the state transitions in the observed trajectory with the Boolean
function de� nitions. An implementation of the algorithm proved to be able to reliably reproduce networks
with n D 50 and k D 3 given 100 state transition pairs (out of the 1015 possible pairs).

Examples of Boolean network models of simple regulatory systems can be found in Kauffman (1974).
An interesting application of Boolean networks is their use in the study of global properties of large-scale
regulatory systems (see Kauffman [1991], Kauffman [1993], Somogyi and Sniegoski [1996], Szallasi and
Liang [1998], Weisbuch [1986] for reviews). The basic idea is to generate random Boolean networks with
local properties that hold for all members of a class of systems. Properties of interest are, for example,
the number k of regulators of a gene and the type of functions Obi through which the regulators in� uence
gene expression. By locating the attractors, trajectories, and basins of attraction in the state space, one can
systematically investigate the implications of the local properties for the global dynamics of the networks.

This approach has been explored by Kauffman (1969b) (see Kauffman [1969a, 1974, 1977, 1979] for
later work, summarized in Kauffman [1991, 1993]).2 He randomly connected each of the n elements in the
network to k inputs and randomly selected the Boolean function Obi computing the output of the element
from among the 22k

possible functions. Analysis of networks of up to 10,000 elements showed that, for
low k and certain choices of regulatory functions, the systems exhibited highly-ordered dynamics. For
example, the expected median number of attractors was empirically found to be about

p
n, the square root

of the number of elements. This means that a network of 10,000 elements would be expected to have
only 100 state cycles and steady states. Moreover, the length of the attractors was found to be restricted
as well, also proportional to

p
n. Interpreting an attractor of the Boolean network as a pattern of gene

expression corresponding to a cell type, Kauffman argued that the square root dependence on n of the
number of attractors is in accordance with the observation that the number of cell types seems to grow
with the square root of the number of genes. The high degree of order observed in large, random Boolean
networks has led Kauffman to venture that, once living systems with certain local properties have evolved
under the pressure of natural selection, ordered global dynamics necessarily follows (Kauffman, 1993).

Boolean networks allow large regulatory networks to be analyzed in an ef� cient way, by making strong
simplifying assumptions on the structure and dynamics of a genetic regulatory system. In the Boolean
network formalism, a gene is considered to be either on or off, and intermediate expression levels are
neglected. Also, transitions between the activation states of the genes are assumed to occur synchronously.
When transitions do not take place simultaneously, as is usually the case, certain behaviors may not be
predicted by the simulation algorithm. There are situations in which the idealizations underlying Boolean
networks are not appropriate, and more general methods are required.

2Similar ideas have been explored by means of continuous formalisms discussed in later sections (Alves and
Savageau, 2000; Bagley and Glass, 1996; Glass and Hill, 1998; Kauffman, 1969a; Newman and Rice, 1971).
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5. GENERALIZED LOGICAL NETWORKS

In this section, a generalized logical method developed by Thomas and colleagues will be discussed.
The method is based on a formalism that generalizes upon Boolean networks in that it allows variables
to have more than two values and transitions between states to occur asynchronously. Since its original
conception, the method has undergone several extensions. The version that will be presented here in outline
is more extensively described by Thomas (1991), Thomas and d’Ari (1990), Thomas et al. (1995) (see
Thomas [1973, 1979] for earlier formulations).

The formalism of Thomas and colleagues uses discrete variables Oxi , so-called logical variables, that
are abstractions of real concentrations variables xi . The possible values of Oxi are de� ned by comparing
the concentrations xi with the thresholds of the in� uence of i on other elements of the regulatory system.
If an element i in� uences p other elements of the regulatory system, it may have as many as p distinct
thresholds (van Ham, 1979):

¾
.1/
i < ¾

.2/
i < : : : < ¾

.p/
i :

Given these thresholds, Oxi has the possible values f0; : : : ; pg and is de� ned as follows:

Oxi D 0; if xi < ¾
.1/
i

Oxi D 1; if ¾
.1/
i < xi < ¾

.2/
i

: : :

Oxi D p; if xi > ¾
.p/
i :

The vector x denotes the logical state of the regulatory system.
The pattern of regulatory interactions in the system is described by logical equations of the form

OXi.t / D Obi.x.t//; 1 · i · n; (3)

where OXi is called the image of Oxi . The image is the value towards which Oxi tends when the logical
state of the system is x. The image of Oxi is not necessarily its successor value, and should therefore be
distinguished from Ox.t C 1/ in (2). The logical function Obi is a generalization of the Boolean function in
(2), since the logical variables now have more than two possible values. The logical function computes the
image of Oxi from the logical state of the system, more speci� cally from the value of k of its n elements.

In Fig. 6, an example regulatory network is shown. Gene 1 regulates genes 2 and 3, so that it has two
thresholds and the corresponding logical variable Ox1 takes its value from f0; 1; 2g. Similarly, Ox2 and Ox3 have
one and two thresholds, respectively, and hence possible values f0; 1g and f0; 1; 2g. Each edge in the graph
has been labeled with the rank number of the threshold as well as the sign of the regulatory in� uence. For
instance, the label ¡2 from gene 1 to gene 3 means that 1 inhibits 3 above its second threshold, that is,
when Ox1 D 2.

The graph in Fig. 6(a) can be transformed into logical equations, as shown in Fig. 6(b). The functions
Ob1; : : : ; Ob3 need to be speci� ed such as to be consistent with the threshold restrictions in the graph.
Examples of logical functions allowed by the method are shown in Fig. 6(c), in a notation that emphasizes
the correspondence with the Boolean functions in the previous section (see Thomas and d’Ari [1990],
Thomas et al. [1995] for a full account of the speci� cation of logical functions). Consider the case of Ob2.
If Ox1 > 0 and Ox3 > 0, so that x1 and x3 have values above their � rst threshold, the inhibitory in� uences
of genes 1 and 3 on gene 2 become operative. Figure 6(c) indicates that Ox2 will tend to 0, that is, below
the � rst threshold of the protein produced by gene 2. If either Ox1 D 0 or Ox3 D 0, that is, if only one of
the inhibitory in� uences is operative, then gene 2 is moderately expressed. This is here represented by
the value 1 for the image of Ox2. In general, several logical functions will be consistent with the threshold
restrictions. Exactly which logical function is chosen may be motivated by biological considerations or
may be a guess re� ecting uncertainty about the structure of the system being studied.
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FIG. 6. (a) Example regulatory network in graph notation, where the edges are labeled to express the rank number
of the threshold as well as the sign of the in� uence (Thomas et al., 1995). (b) Logical equations corresponding to the
graph and (c) possible de� nitions of the logical functions.

The logical equations form the input for the analysis of the regulatory system, in particular the determi-
nation of its logical steady states. A logical steady state occurs when the logical state of the system equals
its image, i.e.,

X D x: (4)

Since the number of logical states is � nite, due to the discretization achieved by the introduction of logical
variables, one can exhaustively test for logical steady states. In the case of the logical equations in Fig. 6,
the logical state [2 0 1]0 is the only steady state among the 18 possible logical states. The other states are
transient logical states.

If the regulatory system is in a transient logical state, it will make a transition to another logical
state (Thomas, 1991; Thomas and d’Ari, 1990). Since a logical value will move into the direction of its
image, the possible successor states of a logical state can be deduced by comparing the value of a logical
variable with that of its image. With the assumption that two logical variables will not change their value
simultaneously, a maximum of n successor states can be reached from a current state. Of course, if a logical
state is steady, it has no successor states, since the logical variables equal their image. The logical states
and the transitions among them can be organized in a state transition graph. In more advanced analyses
of state transitions, time delays occasioned by transcription, translation, and transport can be taken into
account (Thomas, 1983; Thomas and d’Ari, 1990).

The generalized logical method outlined above has been generalized in several ways, notably by the in-
troduction of logical parameters and threshold values for the logical variables. Logical parameters (Snoussi,
1989; Thomas and d’Ari, 1990) allow classes of logical functions, as compared with individual logical func-
tions, to be characterized. This facilitates the identi� cation of logical steady states. By introducing logical
values that correspond to threshold values in a continuous description (Snoussi and Thomas, 1993; Thomas
and d’Ari, 1990), it becomes possible to detect additional logical steady states. The resulting method in-
tegrates elements from the differential equation formalisms discussed in the next sections (Snoussi, 1989;
Thomas and d’Ari, 1990).

The logical method of Thomas has been implemented (Thieffry et al., 1993) and its effectiveness
demonstrated in the study of a number of genetic regulatory systems of limited scale, like ¸ phage infection
in E. coli (Thieffry and Thomas, 1995; Thomas and d’Ari, 1990; Thomas et al., 1976) and dorso-ventral
pattern formation and gap gene control in Drosophila (Sánchez and Thieffry, 2001; Sánchez et al., 1997).
Another example is a study of the regulatory network controlling � ower morphogenesis in Arabidopsis
thaliana (Mendoza et al., 1999) (see also Mendoza and Alvarez-Buylla [1998]). In this case, a regulatory
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network involving ten genes has been derived from published genetic and molecular data and reduced to
two subnetworks of two and four genes, respectively. After choosing appropriate logical functions, the
system can be shown to have six logical steady states. Four steady states correspond to the patterns of
gene expression found in the � oral organs of the plant (sepals, petals, stamens, carpels), whereas a � fth
accounts for a non� oral state. The sixth steady state has not been characterized experimentally thus far.
Consideration of the state transition graph, and constraints on the logical parameters, leads to the prediction
that the gene LFY must have at least one more regulator to account for the transition from the non� oral
steady state to one of the four � owering states.

6. NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

Being arguably the most widespread formalism to model dynamical systems in science and engineering,
ordinary differential equations (ODEs) have been widely used to analyze genetic regulatory systems. The
ODE formalism models the concentrations of RNAs, proteins, and other molecules by time-dependent
variables with values contained in the set of nonnegative real numbers. Regulatory interactions take the
form of functional and differential relations between the concentration variables.

More speci� cally, gene regulation is modeled by rate equations expressing the rate of production of a
component of the system as a function of the concentrations of other components. Rate equations have the
mathematical form

dxi

dt
D fi.x/; 1 · i · n; (5)

where x D [x1; : : : ; xn]0 ¸ 0 is the vector of concentrations of proteins, mRNAs, or small molecules,
and fi : Rn ! R a usually nonlinear function. The rate of synthesis of i is seen to be dependent upon
the concentrations x, possibly including xi , and fi can be extended to include concentrations u ¸ 0 of
input components, e.g., externally-suppliednutrients. Discrete time delays, arising from the time required to
complete transcription, translation, and diffusion to the place of action of a protein, can also be represented:

dxi

dt
D fi.x1.t ¡ ¿i1/; : : : ; xn.t ¡ ¿in//; 1 · i · n; (6)

where ¿i1; : : : ; ¿in > 0 denote discrete time delays. Alternatively, integrals can be used to model distributed
time delays (Landahl, 1969; Mahaffy, 1984; MacDonald, 1989; Smolen et al., 2000).

Powerful mathematical methods for modeling biochemical reaction systems by means of rate equations
have been developed in the past century, especially in the context of metabolic processes (see Cornish-
Bowden [1995], Heinrich and Schuster [1996], and Voit [2000] for introductions). Using these methods,
kinetic models of genetic regulation processes can be constructed by specifying the functions fi .

In Fig. 7, a kinetic model of a simple genetic regulation process is shown, going back to early work
by Goodwin (1963, 1965). The end-product of a metabolic pathway co-inhibits the expression of a gene
coding for an enzyme that catalyzes a reaction step in the pathway. This gives rise to a negative feedback
loop involving the mRNA concentration x1, the enzyme concentration x2, and the metabolite concentration
x3. More generally, equations of the form

dx1

dt
D ·1nr.xn/ ¡ °1x1; (7)

dxi

dt
D ·i;i¡1xi¡1 ¡ °ixi ; 1 < i · n;

are employed (Tyson and Othmer, 1978). The parameters ·1n; ·21; : : : ; ·n;n¡1 > 0 are production constants
and °1; : : : ; °n > 0 degradation constants. The rate equations express a balance between the number of
molecules appearing and disappearing per unit time. In the case of x1, the production term involves a
nonlinear regulation function r : R ! R, whereas the concentrations xi , 1 < i · n, increase linearly with
xi¡1. In order to express that the metabolic product is a co-repressor of the gene, r needs to be a decreasing
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FIG. 7. (a) Example of a genetic regulatory system involving end-product inhibition and (b) its ODE model (adapted
from Goodwin [1963, 1965]). A is an enzyme and C a repressor protein, while K and F are metabolites; x1, x2, and x3
represent the concentrations of mRNA a, protein A, and metabolite K, respectively;·1; ·2; ·3 are production constants,
°1; °2; °3 degradation constants, and r : R ! R a decreasing, nonlinear regulation function ranging from 0 to 1.

function, i.e., @r=@xn < 0. The terms ¡°ixi , 1 · i · n, state that the concentrations xi decrease through
degradation, diffusion, and growth dilution at a rate proportional to the concentrations themselves.

A regulation function often found in the literature is the so-called Hill curve (Fig. 8(a)):

hC.xj ; µj ; m/ D
xm

j

xm
j C µm

j

; (8)

with µj > 0 the threshold for the regulatory in� uence of xj on a target gene, and m > 0 a steepness
parameter. The function ranges from 0 to 1 and increases as xj ! 1, so that an increase in xj will
tend to increase the expression rate of the gene (activation). In order to express that an increase in xj

decreases the expression rate (inhibition), as in (7), the regulation function hC.xj ; µj ; m/ is replaced by
h¡.xj ; µj ; m/ D 1 ¡ hC.xj ; µj ; m/. For m > 1, Hill curves have a sigmoid shape, in agreement with
experimental evidence (Yagil, 1975; Yagil and Yagil, 1971). Figure 8 shows two further examples of
regulation functions that will be discussed in more detail in a later section.

Due to the nonlinearity of fi , analytical solution of the rate equations (5) is not normally possible.
In special cases, qualitative properties of the solutions, such as the number and the stability of steady

FIG. 8. Examples of regulation functions: (a) Hill function hC , (b) Heaviside or step function sC, and (c) logoid
function lC .
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states and the occurrence of limit cycles, can be established. This is illustrated by studies that investigate
the relationship between (single) feedback loops and the dynamics of regulatory systems (e.g., Cherry
and Adler [2000], Goodwin [1965], Grif� th [1968a, 1968b], Keller [1994], Othmer [1976], Tyson [1975],
Walter [1970], Wolf and Eeckman [1998], reviewed in Smolen et al. [2000], Tyson and Othmer [1978]).
In the case of a negative feedback loop, as in Fig. 7, the system may approach or oscillate around a single
steady state. In the presence of a positive feedback loop, on the contrary, the system tends to settle in one
of two stable states, depending on whether the initial state is on one or the other side of a separatrix.

In fact, a negative feedback loop is a necessary condition for stable periodicity and a positive feedback
loop for multistationarity (Gouzé, 1998; Plahte et al., 1995a; Snoussi, 1998; Thomas, 1981; Thomas and
Kaufman, 2001). Following seminal ideas in Delbrück (1949) and Monod and Jacob (1961), Thomas has
drawn attention to the relation between the feedback structure of a system and the biological phenomena of
homeostasis and differentiation (Thieffry et al., 1995; Thomas, 1981, 1998; Thomas and d’Ari, 1990). In
particular, the stable periodicity of negative feedback loops can be interpreted as representing homeostasis,
whereas the multistationarity occasioned by a positive feedback loop provides a suggestive parallel to
differentiation processes observed in development.

One way to work around the refractoriness of nonlinear rate equations to mathematical analysis is to
simplify the models, an approach that will be discussed in Section 7. Alternatively, one can take recourse
to numerical techniques. In numerical simulation, the exact solution of the equations is approximated by
calculating approximate values x0; : : : ; xm for x at consecutive time-points t0; : : : ; tm (Lambert, 1991).
A variety of computer tools speci� cally adapted to the simulation and analysis of biochemical reaction
systems are available, such as DBsolve (Goryanin et al., 1999), GEPASI (Mendes, 1993), MIST (Ehlde
and Zacchi, 1995), and SCAMP (Sauro, 1993).

Numerical simulations of a few well-studied regulatory systems have been carried out. For instance,
Reinitz and Vaisnys (1990) discuss a numerical model of the cro-cI switch controlling the growth of phage
¸ in E. coli. They study the switch when certain genes have been mutated, causing it to be functionally
isolated from the rest of the phage genome. Another simulation of the phage ¸ system is described by
MacAdams and Shapiro (1995) (see also Ackers et al. [1997] and Shea and Ackers [1985] and the review
in McAdams and Arkin [1998]). An interesting feature of this work is the parallel drawn between genetic
regulatory networks and electrical circuits, resulting in a hybrid approach that integrates biochemical kinetic
modeling within the framework of circuit simulation. Other well-known examples of genetic regulation
processes for which numerical models have been developed include the induction of the lac operon in
E. coli (Bliss et al., 1982; Carrier and Keasling, 1999; Mahaffy, 1984; Sanglier and Nicolis, 1976; Wong
et al., 1997), the developmental cycle of bacteriophage T7 (Endy et al., 2000; You and Yin, 2001), the
synthesis of trp in E. coli (Koh et al., 1998; Prokudina et al., 1991; Santillán and Mackey, 2001; Xiu
et al., 1997), the expression of a human immunode� ciency virus (HIV) (Hammond, 1993), and circadian
rhythms in Drosophila and other organisms (Goldbeter, 1995; Leloup and Goldbeter, 1998; Ruoff et al.,
2001; Ueda et al., 2001).

Simulation of the functioning of a regulatory network is often complemented by bifurcation analysis
tools to investigate the sensitivity of steady states and limit cycles to parameter values (Strogatz, 1994).
Borisuk and Tyson (1998) have applied these techniques to a numerical model of a much-studied example
of posttranslational modi� cation, the control of mitosis in the Xenopus oocyte (Novak and Tyson, 1993b)
(see Novak and Tyson [1993a] for a variant of this model). The model consists of ten ODEs describing
the network of biochemical reactions regulating M-phase promoting factor (MPF), a protein triggering a
number of key events of mitosis. By introducing additional assumptions about the biochemical properties
of the system, the M-phase control model can be simpli� ed to just two ODEs, for the concentrations of
active MPF and its regulatory subunit Cyclin, without losing essential qualitative features of the solutions.
A rich array of distinct behaviors were found when varying parameter values, corresponding to well-known
physiological states of the cell as well as states that had never been recognized experimentally. Recently,
similar models for yeast have been developed by the same group (Chen et al., 2000; Novak et al., 1998;
Novak and Tyson, 1995) (see Goldbeter [1997], Obeyesekere et al. [1992], Tyson [1999], and Tyson et al.
[1996] for reviews of cell cycle models).

A problem hampering the use of numerical techniques is the lack of in vivo or in vitro measurements of
the kinetic parameters in the rate equations. Numerical parameter values are available for only a handful
of well-studied systems, the ¸ phage switch being a rare example. In contrast, in the cell cycle models
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mentioned above, in most cases the parameter values had to chosen such that the models are able to
reproduce the observed qualitative behavior. For larger models, � nding appropriate values may be dif� cult
to achieve.

The growing availability of gene expression data could alleviate the problem to some extent. From
measurements of the state variables x at several stages of a process of interest, possibly under a variety
of experimental conditions, parameter values might be estimated with the help of system identi� cation
techniques (Ljung, 1999). In a later section, this approach will be examined in more detail. Some recent
studies suggest another response to the absence of measured values of the kinetic parameters. For instance,
in a simulation study of the segment polarity network in Drosophila, it was found that essential properties
of the system were quite robust to variations in parameter values and initial conditions over sometimes
several orders of magnitude (von Dassow et al., 2000). A similar conclusion had been drawn earlier from
analysis of a model of bacterial chemotaxis (Barkai and Leibler, 1997) (see Savageau [1971] for pioneering
work). These robustness results suggest that it is the network structure rather than the precise value of the
parameters that confers stability to the system.

7. PIECEWISE-LINEAR DIFFERENTIAL EQUATIONS

In this section, a special case of the rate equations (5) will be considered that is based on two simplifying
assumptions. First, the models abstract from the biochemical details of regulatory interactions by directly
relating the expression levels of genes in the network. Second, the switch-like behavior of genes whose
expression is regulated by continuous sigmoid curves is approximated by discontinuous step functions
(Fig. 8). The resulting differential equations are piecewise linear, and have favorable mathematical proper-
ties facilitating their qualitative analysis. Piecewise-linear differential equation (PLDE) models are related
to the logical models in Sections 4 and 5, notwithstanding subtle differences caused by the discrete rather
than continuous nature of the latter formalisms.

We will be concerned with piecewise-linear differential equations of the form

dxi

dt
D gi.x/ ¡ °ixi ; 1 · i · n; (9)

where xi denotes the cellular concentration of the product of gene i and °i > 0 the degradation rate of xi

(Glass, 1975a; Mestl et al., 1995a; Thomas and d’Ari, 1990). Regulation of degradation could be modeled
by replacing °i with a function similar to gi , but this will be omitted here.

In its most general form, the function gi : Rn
¸0 ! R¸0 is de� ned as

gi.x/ D
X

l2L

·il bil.x/ ¸ 0; (10)

where ·il > 0 is a rate parameter, bil : Rn
¸0 ! f0; 1g a function de� ned in terms of sums and multiplications

of step functions, and L a possibly empty set of indices. The function bil should be seen as the arithmetic
equivalent of a Boolean function, expressing the conditions under which the gene is expressed at a rate ·il

(Glass, 1977; Plahte et al., 1998; Snoussi, 1989). The conditions are speci� ed by means of step functions
sC and s¡, de� ned by

sC.xj ; µj / D

(
1; xj > µj

0; xj < µj

; and s¡.xj ; µj / D 1 ¡ sC.xj ; µj /: (11)

In the example of Fig. 9, we see that for gene 1, g1.x2/ D ·1 sC.x2; µ21/, meaning that protein
1 is synthesized at a rate ·1, if the concentration of protein 2 is below the threshold concentration
µ21. Gene 2 is repressed by a heterodimer composed of proteins 1 and 3, so that it is expressed at
a rate ·2, if the concentration of either protein remains below its respective threshold (g2.x1; x3/ D
·2 .1 ¡ sC.x1; µ11/ sC.x3; µ31//). More complex combinations of step functions can be used to model the
combined effects of several regulatory proteins.
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FIG. 9. (a) Example regulatory network of three genes and (b) corresponding piecewise-lineardifferential equations;
x1, x2, and x3 represent protein or mRNA concentrations, respectively, ·1; : : : ; ·4 production constants, °1; : : : ; °3
degradation constants, and µ11; µ12; µ21; µ31; µ32 threshold constants.

Equations (9) have been well-studied in mathematical biology and elsewhere (Edwards, 2000; Edwards
and Glass, 2000; Edwards et al., 2001; Glass, 1975a, 1975b, 1977; Glass and Hill, 1998; Glass and
Pasternack, 1978a, 1978b; Lewis and Glass, 1991; Mestl et al., 1995a, 1995b; Plahte et al., 1994; Snoussi,
1989; Snoussi and Thomas, 1993; Thomas and d’Ari, 1990). Consider an n-dimensional (hyper)box of the
phase space de� ned as follows:

0 · xi · maxi > max
x¸0

gi.x/=°i; 1 · i · n; (12)

where we assume that for all threshold concentrations µik of the protein encoded by gene i it holds that
µik < maxi . The n ¡ 1-dimensional threshold (hyper)planes xi D µik divide the n-box into orthants.
Figure 10(a) displays the phase space box and orthants corresponding to the example system in Fig. 9.

In each orthant of the n-box, by evaluation of the step functions, (9) reduces to ODEs with a constant
production term ¹i composed of rate parameters in bi :

Pxi D ¹i ¡ °ixi ; 1 · i · n: (13)

Figure 10(b) gives an example of the state equations corresponding to the orthant 0 · x1 < µ21, µ12 <

x2 · max2, and µ33 < x3 · max3.

FIG. 10. (a) The phase space box of the model in Fig. 9, divided into 2 ¢ 3 ¢ 3 D 18 orthants by the threshold planes.
(b) The state equations for the orthant 0 · x1 < µ21 , µ12 < x2 · max2, and µ33 < x3 · max3 (the orthant demarcated
by bold lines).
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Since Equations (13) are linear and orthogonal, the behavior inside an orthant is straightforward. In fact,
all trajectories evolve towards a stable steady state x¤ D m=g , the so-called focal state. The focal state of
an orthant may lie inside or outside the orthant. If the focal state lies outside the orthant, the trajectories
will tend towards one or several of the threshold planes bounding the orthant. The trajectories may be
continued in an adjacent orthant, with a new focal state determined by the reduced state equations in that
orthant. Whether a trajectory can be continued in an adjacent orthant will depend on the precise way
in which the PLDEs (9) are de� ned in the threshold planes, where the step functions are discontinuous.
Several alternatives have been proposed in the literature (Glass, 1977; Gouzé and Sari, 2001; Plahte et al.,
1994), ranging from restrictions on the function gi to general solutions based on sophisticated mathematical
techniques.

The PLDEs (9) have two types of steady states. In addition to regular steady states lying inside the
orthants, there are singular steady states situated on one or more threshold planes separating the orthants
(Snoussi and Thomas, 1993). Regular steady states can be readily identi� ed, since they are the focal state
of some orthant in the n-box. Singular steady states, important as they are as possible homeostatic points
of the regulatory system, pose a dif� culty for the piecewise-linear formalism, due to the discontinuities
at the thresholds. Techniques to identify these steady states are presented by Plahte et al. (1977, 1994),
Snoussi and Thomas (1993), and Gouzé and Sari (2001).

The global behavior of the PLDEs can be quite complex and is not well understood in general. Continu-
ations of trajectories in several orthants may give rise to oscillations towards a singular steady state located
at the intersection of threshold planes, cycles, or limit cycles (Glass and Pasternack, 1978a, 1978b; Lewis
and Glass, 1991; Mestl et al., 1995b; Plahte et al., 1994). Numerical simulation studies have shown that
aperiodic, chaotic dynamics can occur for n ¸ 4 and become quite common for higher dimensions and
particular characteristics of the functions gi (Glass and Hill, 1998; Lewis and Glass, 1991, 1992; Mestl
et al., 1996, 1997). Mestl et al. (1996) analyzed the occurrence of chaos in some detail in an example
network.

The use of PLDEs is exempli� ed by the method of generalized threshold models developed by Tchuarev
and colleagues (Prokudina et al., 1991; Tchuraev, 1991) (see also Kananyan et al. [1981], Ratner and
Tchuraev [1978], and Tchuraev and Ratner [1983] for earlier formulations of threshold models). They use
PLDEs that have been embedded in a � nite-state machine framework, allowing regulatory interactions to
be modeled in a more explicit and detailed manner than is possible by (9) alone. Among other things,
the average time a regulatory protein is bound to the DNA can be taken into account, as well as the
existence of several copies of a gene in different functional states. The resulting equations may contain
time delays (Section 6). Generalized threshold models have been applied to study the dynamics of the
regulation of tryptophan synthesis and arabinose catabolism in E. coli. The numerical simulation results
suggest a number of hypotheses on the functioning of the regulatory systems, among other things the
relative importance of three different mechanisms controlling the synthesis of tryptophan (Prokudina et al.,
1991). Other applications of PLDE models can be found in Alur et al. [2001], de Jong et al. [2001] and
Ghosh and Tomlin [2001].

How much information is lost by the approximation of sigmoid regulation functions by step functions?
Numerical simulation studies by Glass and Kauffman (1972, 1973) and Glass and Pérez (1974) show that
in most cases there is no difference in the qualitative properties of the solutions when step functions instead
of Hill functions are used (see also Plahte et al. [1995b, 1998], and Thomas and d’Ari [1990]; Plahte et al.
[1994] discusses situations in which differences do occur). In the context of a study on the regulation of
free iron level in mammalian cells, Omholt and colleagues have shown that as the step functions were
relaxed to moderately steep sigmoids, the singular steady state predicted on the basis of an analysis of
the PLDEs was preserved (Omholt et al., 1998; Plahte et al., 1998). The numerical and analytical results
turned out to be within the same order of magnitude, comparable to the experimental accuracy.

A major advantage of the use of PLDEs is the simplicity of the mathematical analysis entailed by the
form of the equations. In a similar vein, Savageau (1969, 1996a, 1996b) has proposed to de� ne gi in (5)
by means of power-law functions, giving rise to nonlinear models of the form

Pxi D
pX

kD1

·ik

nY

jD1

x
rijk

j ¡
pX

kD1

°ik

nY

jD1

x
sijk

j ; 1 · i · n; (14)
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where rij k (sij k) are kinetic orders for elementary processes contributing to the production (degradation) of
xi , and ·ik (°ik) are rate constants for these processes (·ik ; °ik > 0). By changing to a logarithmic scale,
(14) becomes a linear system that is much more tractable to analysis than the original nonlinear system
(see Savageau [1996b], and Voit [1991, 2000] for reviews and a software package). Among other things,
the power-law formalism has been applied to the study of the functional effectiveness of different types of
coupling in regulatory networks (Savageau, 1989, 1996a).

8. QUALITATIVE DIFFERENTIAL EQUATIONS

Piecewise-linear differential equations of the form (9) can be analyzed qualitativelyby de� ning qualitative
states that correspond to the orthants of the phase space. Whenever trajectories can pass from one orthant to
another, there is a transition between the corresponding qualitative states. This results in a transition graph
summarizing the qualitative dynamics of the system (Edwards et al., 2001; Glass, 1975a. A similar idea
was encountered in the logical method discussed in Section 5. In fact, Snoussi (1989) has demonstrated
that the generalized logical formalism of Thomas and colleagues can be seen as an abstraction of a special
case of (9).

The idea of abstracting a discrete description from a continuous model and analyzing the discrete
instead of continuous equations to draw conclusions about the dynamics of the system, is central to work
on qualitative reasoning in arti� cial intelligence. One of the best-known formalisms developed for this
purpose are the qualitative differential equations (QDEs) used in the simulation method QSIM (Kuipers,
1986, 1994). QDEs are abstractions of ODEs of the form

dxi

dt
D fi.x/; 1 · i · n; (15)

where fi : Rn ! R can be any linear or nonlinear function. The variables x take a qualitative value
composed of a qualitative magnitude and direction. The qualitative magnitude of a variable xi is a discrete
abstraction of its real value, while the qualitative direction is the sign of its derivative. The function fi is
abstracted into a set of qualitative constraints which restrict the possible qualitative values of the variables.
Given an initial qualitative state consisting of the qualitative values for x at the initial time-point, the
QSIM algorithm generates a tree of qualitative behaviors. Each behavior in the tree describes a possible
sequence of state transitions from the initial state. It has been proven that every qualitatively distinct
behavior of the ODE corresponds to a behavior in the tree generated from the QDE, although the reverse
may not be true.

The incomplete understanding of many genetic regulatory mechanisms on the molecular level and the
general absence of quantitative knowledge have stimulated an interest in qualitative simulation techniques.
An example of their application is given by Heidtke and Schulze-Kremer (1998b). Their case study concerns
¸ phage growth control in E. coli. The model consists of seven QDEs representing the different stages
of ¸ phage growth as it follows either the lytic or lysogenic pathway. Each QDE describes in detail the
infected bacterium including explicit representation of ¸ phages inside and outside the cell, viral DNA,
ribosomes, mRNA, and proteins, and the way in which they interact to control major cellular events. For
other examples of the application of qualitative reasoning concepts to gene regulation, see Akutsu et al.
[2000], de Jong et al. [2001], Koile and Overton [1989], and Trelease et al. [1999].

A problem with qualitative simulation approaches is their limited upscalability. As a consequence of
the weak nature of qualitative constraints and the dif� culty to identify implicit constraints, behavior trees
quickly grow out of bounds. This causes the range of application of the methods to be limited to regulatory
systems of modest size and complexity. Systems of even a few genes related by positive and negative
feedback loops cannot be handled, unless these systems have been so well-studied already that behavior
predictions can be tightly constrained. An attractive feature of the class of PLDEs discussed in Section 7
is that they put strong constraints on local behavior in the phase space. By reframing the mathematical
analysis of these models in a qualitative simulation framework, using a simulation algorithm tailored to
the equations, larger networks with complex feedback loops can be treated. The resulting method has been
applied to the simulation of the initiation of sporulation in B. subtilis (de Jong et al., 2001).
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Extensions of qualitative simulation methods allow weak numerical information in the form of interval
bounds on the qualitative magnitude and direction of the variables, and numerical envelopes around the
functions fi , to be integrated in the simulation process (Berleant and Kuipers, 1997). This presents another
way to restrict the number of behaviors, while it may also re� ne the predictions of the remaining behaviors.
Heidtke and Schulze-Kremer (1998b) show how the conclusions of their model can be made more precise
by adding semiquantitative information. The integration of numerical information is more dif� cult to
achieve in the logical approaches discussed above, in which the relation between the discrete and the
underlying continuous models is less direct.

Much work in qualitative reasoning has focused on the automated composition of an appropriate model
of a system, given a user query, from a situation description and a domain knowledge base (Nayak, 1995).
One of the basic approaches towards automated modeling, qualitative process theory (Forbus, 1984), has
been used by Karp in his method for the construction and revision of gene regulation models (Karp, 1991,
1993a, 1993b). From a taxonomic knowledge base describing biological objects like strains of bacteria,
genes, enzymes, and amino acids, and a process knowledge base comprising a theory about biochemical
reactions, the program GENSIM predicts the outcome of a proposed experiment. If the predictions do not
match with the observations made while actually carrying out the experiment, then the program HYPGENE
generates hypotheses to explain the discrepancies. In particular, it revises assumptions about the experi-
mental conditions that GENSIM used to derive its predictions. The programs have been able to partially
reproduce the experimental reasoning underlying the discovery of the attenuation mechanism regulating
the synthesis of tryptophan in E. coli. Other examples of the use of automated modeling techniques in the
context of gene regulation can be found in Heidtke and Schulze-Kremer [1998a] and Koile and Overton
[1989] (see also de Jong and Rip [1997] and Kohn [2001]).

9. PARTIAL DIFFERENTIAL EQUATIONS AND OTHER
SPATIALLY DISTRIBUTED MODELS

Differential equations of the form (5) describe genetic regulatory processes while abstracting from spatial
dimensions. The regulatory systems of interest are assumed, implicitly, to be spatially homogeneous. There
are situations in which these assumptions are not appropriate. It might be necessary, for instance, to
distinguish between different compartments of a cell, say the nucleus and the cytoplasm, and to take into
account the diffusion of regulatory proteins or metabolites from one compartment to another. Moreover,
gradients of protein concentrations across cell tissues are a critical feature in embryonal development. The
introduction of time delays for diffusion effects allows some aspects of spatial inhomogeneities to be dealt
with, while preserving the basic form of the rate equations (Busenberg and Mahaffy, 1985; Smolen et al.,
1999) (Section 6). However, in the case that multiple compartments of a cell, or multiple cells, need to be
explicitly modeled, a more drastic extension of (5) becomes necessary.

Suppose that a multicellular regulatory system is considered, where the p cells are arranged in a row, as
shown in Figure 11(a). We introduce a vector x.l/.t/ ¸ 0, which denotes the time-varying concentration of
gene products in cell l, with l a discrete variable ranging from 1 to p. Within each cell, regulation of gene

FIG. 11. Examples of spatial con� gurations of multicellular genetic regulatory systems.
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expression occurs in the manner described by equation (5). Between pairs of adjacent cells l and l C 1,
1 · l < p, diffusion of gene products is assumed to occur proportionally to the concentration differences
x

.lC1/
i ¡ x

.l/
i , x

.l/
i ¡ x

.l¡1/
i , and a diffusion constant ±i . Taken together, this leads to a system of coupled

ODEs, so-called reaction-diffusion equations

dx
.l/
i

dt
D fi.x.l// C ±i

±
x

.lC1/
i ¡ 2x

.l/
i C x

.l¡1/
i

²
; 1 · i · n; 1 < l < p: (16)

Notice that fi is the same for all l, in order to account for the fact that the genetic regulatory network is
the same in every individual cell.

The reaction-diffusion equations are valid for the case that cells are arranged in a row, but they can be
generalized to other one-dimensional and higher-dimensional spatial con� gurations (Fig. 11). In addition,
the diffusion constants can be made to vary at different locations. Although (16) has been introduced here
with a multicellular regulatory system in mind, it is valid for compartmental unicellular systems as well,
perhaps with some small adaptations (see Glass and Kauffman [1972] for an example).

If the number of cells is large enough, the discrete variable l in (16) can be replaced by a continuous
variable ranging from 0 to ¸, where ¸ represents the size of the regulatory system. The concentration
variables x are now de� ned as functions of both l and t , and the reaction-diffusion equations become
partial differential equations (PDEs):

@xi

@t
D fi.x/ C ±i

@2xi

@l2
; 0 · l · ¸; 1 · i · n: (17)

If it is assumed that no diffusion occurs across the boundaries l D 0 and l D ¸, the boundary conditions
become

@2

@l2
xi.0; t / D 0 and

@2

@l2
xi.¸; t/ D 0: (18)

Reaction-diffusion equations have been widely used in mathematical biology to study pattern formation in
development (see Gierer [1981], Kauffman [1993], Maini et al. [1997], Meinhardt [1982], and Nicolis and
Prigogine [1977] for reviews). The equations are also referred to as Turing systems, after the mathematician
who suggested their applicability to developmental phenomena (Turing, 1951). Turing considered a special
case of Equations (16) and (17), with two concentration variables x1 and x2 (also called morphogens). Most
of the work on reaction-diffusion equations is concerned with this special case, although higher-dimensional
systems have been investigated as well (e.g., Gierer [1981] and Lacalli [1990]).

In what follows, continuous equations (17) will be considered for the case n D 2. Not surprisingly, direct
analytical solution of this system of nonlinear PDEs is not possible in general. However, suppose that there
exists a unique, spatially homogeneous steady state .x¤

1 ; x¤
2 /, such that x¤

1 ; x¤
2 > 0 (Fig. 12). The spatial

homogeneity of the steady state ensures that it is consistent with boundary conditions (18). By linearizing
around .x¤

1 ; x¤
2 /, the behavior of the system in response to a small perturbation of the steady state can be

predicted. Let 1xi represent the deviation of xi from the homogeneous steady-state concentration x¤
i on

[0; ¸]. Given the above boundary conditions,

1xi.l; t/ D xi.l; t / ¡ x¤
i D

1X

kD0

cik.t / cos

³
¼k

¸
l

´
; i D 1; 2; (19)

with cos.¼kl=¸/ the modes or eigenfunctions of the Laplacian operator @2=@l2 on [0; L], and cik.t/ the
mode amplitudes (Fig. 12) (Britton, 1986; Nicolis and Prigogine, 1977; Segel, 1984). The steady state
.x¤

1 ; x¤
2 / is stable to perturbations, if the mode amplitudes cik all decay exponentially in response to a

� uctuation decomposable into a large number of weighted modes. However, if at least one mode amplitude
cik , k 6D 0, causes the corresponding mode cos.¼kl=¸/ to grow exponentially, then the steady state is
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FIG. 12. (a) Homogeneous steady state of the reaction-diffusion system. (b)–(c) Two modes of the solution of the
linearized system around the steady state. In (b) k D 2 and in (c) k D 4.

unstable. In this case, diffusion between adjacent cells does not have a homeogenizing in� uence, but
instead entails spatially heterogeneous gene expression patterns. Details on the mathematics of the stability
analysis can be found in the references listed above.

Gierer and Meinhardt have formulated constraints on the functions and parameters in (17) such that an
initial steady state can be destabilized by a small � uctuation (Gierer, 1981; Gierer and Meinhardt, 1972;
Meinhardt, 1982, 2000). Among other things, the product of gene 1, the activator, must positively regulate
itself, i.e., @f1=@x1 > 0, while the product of gene 2, the inhibitor, must negatively regulate gene 1, i.e.,
@f1=@x2 < 0. Further, the inhibitory effect must be suf� ciently strong and be relatively fast compared to
the activating effect. Both the activator and inhibitor diffuse through the system (±1; ±2 > 0), but the latter
has to do so more rapidly than the former to achieve the necessary combination of short-range activation
and long-range inhibition (±2=±1 > 1). Another prerequisite for diffusion-driven instability is that the size ¸

of the domain is larger than some minimum domain size (or, what comes to the same thing, the diffusivity
of the inhibitor is smaller than a certain minimum diffusion coef� cient, or the reactions proceed at a rate
faster than a certain maximum reaction rate).

Activator-inhibitor systems have been extensively used to study the emergence of segmentation patterns in
the early Drosophila embryo. In the early stage of embryogenesis, the embryo forms a syncytial blastoderm,
a single cell with many nuclei. This permits spatial interactions to be conveniently treated in terms of
diffusion of gene products. Goodwin and Kauffman (1989, 1990) and Kauffman (1993), following earlier
suggestions in Kauffman et al. (1978), have noted that the observed spatial and temporal expression
patterns of genes involved in the segmentation process much resemble the modes of the linearization of
(17) around its equilibrium. By taking parameters slowly time-varying to mimic developmental effects,
sequences of sigmoids of increasing frequency (increasing k, see Fig. 12) are generated that conform to
the expression of the pair-rule genes in the mid-embryo. Numerical simulation studies have demonstrated
that some aspects of stripe formation in Drosophila can indeed be reproduced in this way (e.g., Bunow
et al. [1980], Lacalli [1990], Nagorcka [1988]). Other examples of modeling Drosophila embryogenesis
by means of reaction-diffusion systems can be found in Hunding [1989], Hunding et al. [1990], Lacalli
et al. [1988], Meinhardt [1977, 1986, 1988], Russell [1985] (see Kauffman [1993] and Meinhardt [1982]
for reviews).

The use of reaction-diffusion equations in modeling spatially-distributedgene expression is compromised
by the observation that the predictions are quite sensitive to the shape of the spatial domain, the initial
and boundary conditions, and the chosen parameter values (Bard and Lauder, 1974; Bunow et al., 1980).
This affects the credibility of the models, as biological variation among individual members of a species or
small � uctuations in environmental conditions do not generally lead to large deviations of developmental
trajectories.

Even more seriously, the activator-inhibitor models commonly used suffer from the fact that scarce
experimental evidence has been found for the hypothesis that two reacting and diffusing morphogens
underlie pattern formation. From what is known from experimental studies of Drosophila development, it
appears that the situation is much more complex. The regulatory system consists of layered networks of
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tens or hundreds of developmental genes that mutually interact and whose products diffuse through the
embryo. It seems, therefore, preferable to work with instances of the reaction-diffusion Equations (16) and
(17) that re� ect the underlying regulatory networks more directly.

The gene circuit method proposed by Reinitz and colleagues (Mjolsness et al., 1991; Reinitz et al., 1995,
1998; Reinitz and Sharp, 1995), reviewed in Reinitz and Sharp (1996) is an example of such an approach
(see Burstein [1995], Edgar et al. [1989], Hamahashi and Kitano [1998], Kyoda et al. [2000], Sánchez
et al. [1997], and von Dassow et al. ]2000] for related work). The method employs a variant of (16):

dx
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where x.l/ ¸ 0 is a state vector of protein concentrations in nucleus l, and u
.l/
1 ¸ 0 an input variable. The

real parameters ¸ij and ¹j describe the contribution of the state and input variables, respectively, to the

expression rate of x
.l/
i . The sum of the regulatory in� uences, including a basal expression term ·i > 0, is

modulated by a sigmoid regulation function ri : R ! R and a constant ½i > 0 indicating the maximum
expression rate of gene i. The diffusion parameter is the same for every protein, but depends on the number
k of nuclear divisions that have taken place.3

Equations (20) have been used to model the formation of striped patterns of the products of gap genes
and pair-rule genes in the middle region of the Drosophila blastoderm (see Marnellos et al. [2000] and
Marnellos and Mjolsness [1998] for other applications). State variables are introduced for the gap genes
Kruppel, knirps, giant, and hunchback, and for the pair-rule gene even-skipped (n D 5). The input variable
represents the maternal Bicoid concentration. The values of the parameters in (20) can be estimated by
means of measurements of protein concentrations in the nuclei at a sequence of time-points (Kosman et al.,
1998; Myasnikova et al., 2001; Reinitz and Sharp, 1995). Given that the sign of a ¸ij speci� es the nature
of the interaction between two genes i and j (positive, negative, or no interaction), the parameter values
thus obtained yield the regulatory network underlying the formation of the striped Eve pattern. On the
basis of a least-square � t to expression data, Reinitz and Sharp demonstrate that each border in the stripes
2 to 5 is controlled by one of the four gap genes and that for the pattern to emerge, the diffusivity of Eve
should be orders of magnitude lower than the diffusivity of the gap gene proteins (Reinitz et al., 1995;
Reinitz and Sharp, 1995). Using the estimated parameter values, mutant patterns have also been predicted
(Sharp and Reinitz, 1998).

The fact that parameters of the model may represent interactions in the regulatory network, like the ¸ij s
in equation (20), deserves special mention. As noted above, it implies that an estimation of parameter values
simultaneously � xes the regulatory structure of the system. Models of the system could thus be induced from
expression data, without relying on prior knowledge on the existence of regulatory interactions between
genes. This idea has already been encountered in Sections 3 and 4, of course, but is here generalized to the
case of continuous dynamical models. Related work taking ordinary differential equations and difference
equations as their point of departure has come up recently (Chen et al., 1999b; D’haeseleer et al., 2000;
Noda et al., 1998; van Someren et al., 2000; Weaver et al., 1999; Wessels et al., 2001).

The induction of models from measurements of x at a sequence of time-points is made attractive by the
growing availability of gene expression data. However, precise measurements of absolute expression levels
are currently dif� cult to achieve. In addition, as a consequence of the dimensionality problem referred to
in Section 3, the models need to be simple and are usually strong abstractions of biological processes (Erb
and Michaels, 1999). For larger and more complex models, the computational costs of � nding an optimal
� t between the parameter values and the data may be prohibitively high.

3The de� nition of ±i .k/ reveals a particularity of Equation (20), namely that it only holds in interphase, the period
between two nuclear divisions in which the gene products are synthesized. Mjolsness, Reinitz, and Sharp supplement
the model by a transition rule that describes how the model and its parameters need to be changed after division (see
Mjolsness et al. [1991] for details).
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10. STOCHASTIC MASTER EQUATIONS

In principle, differential equations allow gene regulation to be described in great detail, down to the level
of individual reaction steps like the binding of a transcription factor to a regulatory site, or the transcription
of a gene by the stepwise advancement of DNA polymerase along the DNA molecule (Fig. 13) (Drew,
2001). However, a number of implicit assumptions underlying DE formalisms are no longer valid on the
molecular level.

Differential equations presuppose that concentrations of substances vary continuously and deterministi-
cally, both of which assumptions may be questionable in the case of gene regulation (Gibson and Mjolsness,
2001; Gillespie, 1977; Ko, 1991, 1992; McAdams and Arkin, 1999; Nicolis and Prigogine, 1977; Rigney,
1979; Szallasi, 1999). In the � rst place, the small numbers of molecules of some of the components of
the regulatory system compromise the continuity assumption. There may be only a few tens of molecules
of a transcription factor in the cell nucleus, and a single DNA molecule carrying the gene. Second, de-
terministic change presupposed by the use of the differential operator d=dt may be questionable due to
� uctuations in the timing of cellular events, such as the delay between start and � nish of transcription.
As a consequence, two regulatory systems having the same initial conditions may ultimately settle into
different states, a phenomenon strengthened by the small numbers of molecules involved.

Instead of taking a continuous and deterministic approach, some authors have proposed to use discrete
and stochastic models of gene regulation (Arkin et al., 1998; Gillespie, 1977; McAdams and Arkin,
1997; Morton-Firth and Bray, 1998; Nicolis and Prigogine, 1977; Rigney, 1979). Discrete amounts X of
molecules are taken as state variables, and a joint probability distribution p.X ; t / is introduced to express
the probability that at time t the cell contains X1 molecules of the � rst species, X2 molecules of the second
species, etc. The time evolution of the function p.X ; t/ can now be speci� ed as follows:

p.X ; t C 1t/ D p.X ; t /

0

@1 ¡
mX

jD1

®j 1t

1

A C
mX

jD1

¯j 1t; (21)

where m is the number of reactions that can occur in the system, ®j 1t the probability that reaction j

will occur in the interval [t; t C 1t] given that the system is in the state X at t , and ¯k1t the probability
that reaction j will bring the system in state X from another state in [t; t C 1t] (Gillespie, 1977, 1992).
Rearranging (21), and taking the limit as 1t ! 0, gives the master equation (van Kampen, 1997):

@

@t
p.X ; t / D

mX

jD1

.¯j ¡ ®j p.X ; t//: (22)

Compare this equation with the rate equations (5) in Section 6. Whereas the latter determine how the state
of the system changes with time, the former describes how the probability of the system being in a certain
state changes with time. Notice that the state variables in the stochastic formulation can be reformulated
as concentrations by dividing the number of molecules Xi by a volume factor.

Although the master equation provides an intuitively clear picture of the stochastic processes govern-
ing the dynamics of a regulatory system, it is even more dif� cult to solve by analytical means than the

FIG. 13. Example of two reaction steps involved in DNA transcription.The � rst reaction step describes the binding of
RNA polymerase (RNAP) to the transcription initiation site, while the second reaction step describes the advancement
of RNAP along the DNA.
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deterministic rate equation. Moreover, numerical simulation of the system is complicated by the form
of (22), which contains n C 1 independent variables: n discrete variables X and a continuous variable
t . Under certain conditions, the master equation can be approximated by stochastic differential equa-
tions, so-called Langevin equations, that consist of a deterministic ODE of the type (5) extended with
a noise term (Gillespie, 2000; Nicolis and Prigogine, 1977; van Kampen, 1997). The conditions under
which the approximation is valid may not always be possible to satisfy in the case of genetic regulatory
systems.

An alternative approach would be to disregard the master equation altogether and directly simulate the
time evolution of the regulatory system. This idea underlies the stochastic simulation approach developed
by Gillespie (1977). Basically, the stochastic simulation algorithm (i) determines when the next reaction
occurs and of which type it will be, given that the system is originally in state X at t , (ii) revises the
state of the system in accordance with this reaction, and (iii) continues at the resulting next state. The
stochastic variables ¿ and ½ are introduced, which represent the time interval until the next reaction occurs
and the type of reaction, respectively. At each state, a value for ¿ and ½ is randomly chosen from a set of
values whose joint probability density function p.¿; ½/ has been derived from the same principles as those
underlying the master equation (21). This guarantees that when a large number of stochastic simulations
are carried out, the resulting distribution for X at t will approach the distribution implied by the master
equation. In other words, whereas the master equation deals with behavior averages, obtained by calculating
the averages and the variances of the Xis at t from p.X ; t/, stochastic simulation provides information on
individual behaviors.

Gibson and Bruck (2000) have proposed various improvements of the Gillespie algorithm directed at
reducing the computational complexity of the procedure. Morton-Firth and Bray (1998, 1999) discuss
another algorithm that is more ef� cient at simulating systems with a large number of reactions. The
algorithm does so by following individual molecules over time, and storing the way they combine into
complexes that can have multiple phosphorylration, methylation, and other activation states. The algorithm,
which is particularly suitable for simulating signal transduction pathways, has been implemented in the
simulator StochSim.

Stochastic simulation has been used by McAdams and Arkin to analyze the interactions controlling the
expression of a single prokaryotic gene (McAdams and Arkin, 1997) (see also Barkai and Leibler [1999]).
In particular, they investigate how the time interval between the activation of one gene and the regulatory
action of its product on another gene, the so-called switching delay, is affected by the stochastic nature of
the transcription initiation intervals and the numbers of protein molecules produced per transcript. Using
parameter values that approximate those for the expression of the cro gene from the PR promotor in phage
¸, they � nd that the protein is produced in sharp bursts occurring at random time intervals, leading to strong
� uctuations in switching delays. Interestingly, this may provide an explanation of phenotypic variations
in isogenic populations, when it is assumed that the variations arise from switching mechanisms which
decide between alternative developmental paths depending on the effective concentrations of competitive
regulatory proteins.

The above hypothesis has been pursued in later work, which investigates the in� uence of � uctuations
in the rate of gene expression on the choice between lytic and lysogenic growth in phage ¸ (Arkin
et al., 1998). The predicted fraction of infected cells selecting the lysogenic pathway, at different infection
levels, is consistent with experimental observations. The predictions of the models have been shown to be
relatively insensitive to changes in the translation rate, protein dimerization rates, and protein degradation
rates. However, they are somewhat sensitive to the transcription rate and quite sensitive to the average
number of proteins per mRNA transcript (Gibson and Bruck, 1998).

Stochastic simulation results in closer approximations to the molecular reality of gene regulation, but
its use is not always evident. In the � rst place, the approach requires detailed knowledge of the reaction
mechanisms to be available, including estimates of the probability density function p.¿; ½/. Moreover,
stochastic simulation is costly, due to the large number of simulations that need to be carried out to
calculate an approximate value of p.x; t/ and due to the large number of reactions that need to be traced
in each of these simulations. Whether the costs always balance the expected bene� ts depends on the level
of granularity at which one wishes to study regulatory processes. On a larger time-scale, stochastic effects
may level out, so that continuous and deterministic models form a good approximation (see Gillespie
[2000] for a discussion).
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11. RULE-BASED FORMALISMS

The model formalisms discussed so far, whether they are continuous or discrete, static or dynamic,
deterministic or stochastic, all use a restricted notion of state. In fact, the state of a regulatory system is
equated with the concentration or the number of molecules of proteins, mRNAs, metabolites, and other
species at a certain time-point. Knowledge-based or rule-based simulation formalisms, developed in the
� eld of arti� cial intelligence, permit a richer variety of knowledge about the system to be expressed in a
single formalism. For instance, the logical and physical structure of a gene—such as the relative position
of the regulatory sites at which transcription is initiated, prevented, and aborted—can be conveniently
represented in the rule-based approach.

Basically, rule-based formalisms consist of two components, a set of facts and a set of rules, that are
stored in a knowledge base (Hayes-Roth et al., 1983). Facts express knowledge about the objects of a
regulatory system. Each object is described by properties that take their value from well-de� ned domains.
The objects are usually structured in a hierarchy of classes. For example, the class DNA-Sequence could
be de� ned as consisting of objects with properties that include topology and strandedness . A speci� c
DNA sequence might have the value circular for topology and single-stranded for strandedness .
The class DNA-Sequence could be de� ned as a subclass of the class Sequences . Other objects of interest
in a regulatory system include RNAs, proteins, cells and cell boundaries, but also experimental conditions
and processes like transcription, splicing, and translation. The rules in the knowledge base consist of two
parts, a condition part and an action part. The condition part expresses conditions in terms of properties of
objects, while the action part operates upon the objects, e.g., by changing a property of an existing object.
An example of a rule describing the conditions under which conditions DNA polymerase I will bind to
bacterial DNA, adapted from Brutlag et al. (1991) and Galper et al. (1993), is

IF (AND (temperature-range of Exp-conditions is 0-to-45)
(ionic-strength-range of Exp-conditions is 0.001-to-.3)
(pH-range of Exp-conditions is 6.0-to-9.5))

THEN (activity of DNA-polymerase-I is DNA-binding)

Rule-based simulation consists of the repeated process of matching the facts in the knowledge base
against the condition parts of the rules and carrying out the action part of the rules whose conditions are
satis� ed. A control strategy determines the order in which the rules are evaluated and resolves the con� icts
that arise when several rules match at the same time. Control strategies vary from random selection to
complicated priority schemes, for instance, procedures that take into account estimates of the a priori
probability that a rule will � re. Rule-based simulation can be used in a forward-chaining or backward-
chaining mode. In the case of forward chaining, sketched above, one deduces all facts implied by the
set of rules and the initial facts in the knowledge base. In the case of backward chaining, the facts are
conclusions to be explained and simulation proceeds in the reverse direction. The facts are recursively
matched against the action parts of the rules in order to � nd all possible combinations of facts that can
lead to the conclusions.

Meyers and Friedland have applied rule-based simulation techniques to model ¸ phage growth con-
trol (Meyers and Friedland, 1984). They have performed simulations to study the decision between
the lytic and lysogenic pathway for wild-type ¸ phage and several single and double mutants. Their
simulations produced correct results, except in two cases in which the assumption of deterministic be-
havior proved deleterious. The ¸ phage example is also used by Shimada and colleagues (Shimada
et al., 1995), a novel aspect of their work being that the regulation process is considered on two levels
of abstraction. The system uses rule-based simulation for the “noncritical” parts of the decision be-
tween the lytic and lysogenic pathway and a qualitative phase-space analysis of rate equations for the
“critical” parts.

The major advantage of rule-based formalisms, their capability to deal with a richer variety of biological
knowledge in an intuitive way, is counteracted by dif� culties in maintaining the consistency of a (revised)
knowledge base and the problem to incorporate quantitative information. Although attempts have been
made to integrate symbolic and numerical knowledge into a single formalism, for instance in the genetic
grammar underlying the Metabolica system developed by Hofestädt and colleagues (Hofestädt, 1993;
Hofestädt and Meineke, 1995), it remains true that in this respect rule-based formalisms cannot compete
with the continuous formalisms discussed in previous sections.
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12. CONCLUSIONS

The formalisms discussed in this review allow genetic regulatory systems to be modeled in quite different
ways. In Table 1 the different approaches are compared on a number of dimensions, such as whether
the models are discrete or continuous, static or dynamic, deterministic or stochastic, and qualitative or
quantitative. In addition, the approaches are compared with respect to the level of granularity on which
they describe regulatory processes. Apart from constraining the capability of the models to answer certain
biological questions, the level of granularity to a large extent determines the amount of computer power
required to simulate a regulatory network.

Until recently, modeling and simulation studies have predominantly used deterministic, coarse- to
average-grained models, such as logical models and simple differential equation models. Although quanti-
tative models have been used, the conclusions drawn from them have been mostly qualitative. This situation
can be explained by two major dif� culties hampering the modeling and simulation of genetic regulatory
networks. In the � rst place, the biochemical reaction mechanisms underlying regulatory interactions are
usually not known or are incompletely known. This means that detailed kinetic models cannot be built
and more approximate models are needed. In the second place, quantitative information on kinetic param-
eters and molecular concentrations is only seldom available. As a consequence, traditional methods for
numerical analysis are dif� cult to apply.

Not surprisingly, the few modeling and simulation studies using � ne-grained, quantitative, and stochastic
models have been restricted to regulatory networks of small size and modest complexity that have been
well-characterized already by experimental means. For such model systems, the paradigm example being
phage ¸ discussed in Section 6, we do have detailed knowledge on regulatory mechanisms and at least
partial quantitative information. Besides a lack of relevant information to build models and test predictions,
the use of � ne-grained, stochastic models is also hampered by the inherent computational complexity of the
simulation problems. The expression of a single eukaryotic gene may involve a dozen of transcription factors
interacting in complex ways (Arnone and Davidson, 1997; Yuh et al., 1998). Each of these transcription
factors may be modi� ed by many other proteins, thus giving rise to large and complex networks of
interactions.

It can be reasonably expected that at least some of the problems mentioned above will be considerably
relieved in the near future. The emergence of new experimental techniques, along with the development
of databases and other infrastructural provisions giving access to published and unpublished experimental
data, promise to relieve the data bottleneck. Together with the continuing increase of computer power, this
might allow hitherto impractical approaches to modeling and simulation to be tried.

Table 1. Summary of Properties of Different Modeling Formalisms: Directed Graphs (DG),
Bayesian Networks (BYN), Boolean Networks (BNN), Generalized Logical Networks (GLN),
Nonlinear Differential Equations (NLDE), Piecewise-Linear Differential Equations (PLDE),

Partial Differential Equations (PDE), Stochastic Master Equations (SME), and
Rule-Base Formalisms (R)

Static (s), Discrete (d), Deterministic (d), Qualitative (ql), Coarse (c), average (a),
dynamic (d) continuous (c) stochastic (s) quantitative (qn) � ne (f) grained

DG s d ql c
BYN sa d,c s qn c
BNN d d d ql c
GLN d d d ql a
NLDE d c d qn a,f
PLDE d c d ql,qnc a
QDE d d d ql a,f
PDE d cb d qn a,f
SME d d s qn f
R d d d ql a,f

aGeneralization to dynamic Boolean networks is possible.
bSpatial dimension is often discretized.
cQualitative analysis of models is possible.
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Functional genomics has yielded experimental techniques allowing interactions between genes and gene
products to be elucidated in a large-scale manner. An example is the use of cDNA microarrays to monitor
protein–DNA interactions (Ren et al., 2000; Iyer et al., 2001). Key contributions to the study of protein–
protein interactions have been made by mass spectrometric protein identi� cation and by the yeast two-
hybrid system (Pandey and Mann, 2000; Tucker et al., 2001; Zhu and Snyder, 2001). Increasing knowledge
on the molecular mechanisms underlying gene regulation will eventually allow regulatory systems to be
modeled on a � ner level of granularity than is currently possible.

Other techniques will promote the use of quantitative models of gene regulation. For example, the ability
to synthesize regulatory networks in vivo, as described by Becskei and Serrano (2000), Elowitz and Leiber
(2000) and Gardner et al. (2000), might facilitate the direct measurement of model parameters. Although
the expression pro� les provided by cDNA microarrays, oligonucleotide chips, and other tools to measure
the evolution of the state of a cell are currently effectively qualitative in nature, expected improvements in
the (re)production and the statistical interpretation of the measurements may allow veritable quantitative
approaches to take hold. The use of quantitative models permits larger systems to be studied at higher
precision (Koshland, 1998; Maddox, 1992).

The above-mentioned advances in biology and computer technology may bring us nearer to what seems
to be the ultimate goal of modeling and simulation efforts: to study the behavior of entire prokaryotic
or even eukaryotic organisms in silico. That is, the use of models that integrate gene regulation with
metabolism, signal transduction, replication and repair, and a variety of other cellular processes. Several
initiatives to achieve this have been launched in recent years, including the simulation of a virtual cell
using the E-CELL or initial cell environments (Tomita et al., 1999; Tomita, 2001; Loew and Schaff, 2001),
the simulation of the development of the Drosophila embryo in the framework of the Virtual Drosophila
project (Kitano et al., 1997), and the analysis of metabolic networks in E. coli and H. in� uenzae (Edwards
and Palsson, 2000; Schilling et al., 2000; Schilling and Palsson, 2000).

Even if computer technology would develop to the point that whole cells and organisms can be simulated
on the molecular level, by tracing hundreds of thousands of reactions occurring in parallel, such brute-force
strategies are not guaranteed to yield insight into the functioning of living systems. In fact, it may be far from
straightfoward to � nd meaningful patterns in the masses of data generated by whole-cell simulations. As
an alternative, one could focus on smaller subsystems � rst, that is, start with modules that can be studied in
relative isolation because they are loosely connected through regulatory interactions or act on different time-
scales. In a second step, the analysis of the individual modules could be supplemented by an investigation
of the interactions between the modules, possibly on a more abstract and hence computationally less
demanding level. The modular organization of genetic regulatory networks has been put forward in studies
of Drosophila segmentation (von Dassow et al., 2000) and � ower morphogenesis in Arabidopsis (Mendoza
et al., 1999) (see also Hartwell et al. [1999] and Thieffry and Romero [1999]).

The overall picture that is emerging may thus not show a big super model covering all aspects of cellular
dynamics in great detail, but rather a hierarchy of models accounting for different aspects of the cell on
different levels of abstraction. Switching from one level to another, one can follow up an analysis of the
global regulatory structure of the system by an in-depth look at the � ne structure of a regulatory module.
Whereas, for the � rst problem, coarse-grained models of the type discussed in Sections 3, 5, or 7 may be
suf� cient, the latter problem may require detailed models of the form encountered in Sections 6 and 10.

One of the consequences of this view is the emphasis it puts on modeling, a task that has received less
systematic attention than simulation thus far. The construction of the right model for the job, describing
relevant aspects of the system on the desired level of granularity, demands methods for computer-supported
modeling that are only in the process of emerging. Two burgeoning approaches towards computer-supported
modeling have been encountered in this paper. On the one hand, models can be composed from knowledge
on regulatory interactions stored in databases and knowledge bases, as illustrated in Section 8. On the
other hand, models can be induced from expression data by methods like those discussed in Sections 2, 4,
and 7. Each of these approaches has its merits, but neither of them seems suf� cient in itself. Rather, it can
be expected that a combination of the two approaches, exploiting a wide range of structural and functional
information on regulatory networks, will be most effective.

Eventually, these efforts might result in computer-supported modeling environments (de Jong and Rip,
1997; Thieffry et al., 1998) that integrate a variety of experimental and computational tools to assist the
biologist in unraveling the structure and functioning of genetic regulatory networks.
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