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Modeling transcriptional

regulatory networks

Hamid Bolouri'’?* and Eric H. Davidson?

Summary

Developmental processes in complex animals are direc-
ted by a hardwired genomic regulatory code, the ultimate
function of which is to set up a progression of transcrip-
tional regulatory states in space and time. The code
specifies the gene regulatory networks (GRNs) that
underlie all major developmental events. Models of GRNs
are required for analysis, for experimental manipulation
and, most fundamentally, for comprehension of how
GRNs work. To model GRNs requires knowledge of both
their overall structure, which depends upon linkage
amongst regulatory genes, and the modular building
blocks of which GRNs are heirarchically constructed. The
building blocks consist of basic transcriptional control
processes executed by one or a few functionally linked
genes. We show how the functions of several such
building blocks can be considered in mathematical terms,
and discuss resolution of GRNs by both “top down’’ and
“bottom up” approaches. BioEssays 24:1118-1129,
2002. © 2002 Wiley Periodicals, Inc.

Introduction

This article reviews the role of modeling in understanding
animal genetic regulatory networks (GRNs). For reviews of
modeling prokaryotic GRNs, see Refs. 1,2. Why focus on
animal GRNs? Because ultimately, all species-specific char-
acteristics must be explicable at the level of genetically
inherited information. Given the remarkable commonality of
protein families in the animal kingdom, we must conclude that
the morphological differences between animal species arise
primarily through differential regulation of genes and their
products, and that the information for this differential regulation
must be encoded in the inherited DNA (see Davidson, Ref. 3,
forin-depth discussion). Here we consider the use of computer
modeling as an aid to unraveling and quantifying this process.
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What follows will be primarily focused on transcriptional
regulatory networks.

Unraveling cellular processes is usually complicated by the
experimental difficulty of identifying all the interactions that
take place in vivo and, equally difficult, measuring the kinetic
parameters associated with in vivo biochemical, biomechani-
cal, or electrophysiological interactions. GRNs offer significant
advantages in this respect, as follows.

e Whole genome sequencing can, in principle (though not yet
in practice), identify all potential macromolecular players
(since they must ultimately be encoded in DNA).

e Large-scale technologies for gene discovery (arrayed
mRNA expression assays, parallel quantitative PCR
measurement of the effects of perturbations, DNA-
sequence searching algorithms) are currently better
developed for general use than their proteomic counter-
parts.

e GRN models ultimately lead to DNA-specific predictions
such as the existence of putative binding sites for trans-
cription factors hypothesized to regulate a downstream
gene. Such predictions can be experimentally validated or
falsified in straightforward ways.

e Transcription and translation are usually much slower
than many protein—protein and enzymatic reactions. Thus,
in GRN-based models, it is frequently possible to model
these faster reactions as instantaneous events and the
interactions that govern their activity as switches (of
the type “if <condition>then<outcome>"). This abstrac-
tion often permits large-scale GRN models of cellular
processes.

Developmental GRNs, as they are encoded in animal
genomes, are of course a product of evolution. They are not
organized according to laws of parsimony, and they are not
particularly streamlined. They have been assembled during
evolution by addition of novel regulatory linkages to preexist-
ing regulatory linkages; they are a mosaic of old and new
features.*” Robustness and fail-safe mechanisms that
ensure stability of given states of expression are prominent
features of the GRN structures that evolution has produced,
as shown for example in the sea urchin endomesodermal
GRN that we and our colleagues recently reported.® All this
means is that the structure of a developmental GRN is likely to
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be very different indeed from that of an easily intuited
enzymatic pathway, or a neatly designed, maximally efficient
logic circuit.

In the following, we review some mathematical descrip-
tions of basic transcriptional regulatory processes that are
useful as computational building blocks for modeling GRNs.
The examples are focused on single genes and small modular
network subelements consisting of several genes linked in
simple regulatory circuits. But real-life GRNs for develop-
mental processes are large and intricate, relative to these
network building blocks. Adequate models for developmental
GRNs must be anchored in sufficient biological information so
that the overall structure of the GRN can be derived. Here we
(1) provide a brief overview of the experimental technologies,
and data-processing techniques commonly used for unravel-
ing GRNs, (2) review the theoretical framework for GRN
modeling, (3) present some putative GRN building blocks,
and (4) outline arguments in favor of a two-pronged approach
to reverse engineering GRNs (starting with a coarse-grained
picture of a system and iteratively increasing the resolution,
and building the network from the bottom up by first searching
for elementary building blocks, then combinations of these,
and so on).

Reverse engineering GRNs

In contrast to forward engineering, i.e., building new systems,
“reverse engineering” is concerned with unraveling the
operational principles underlying existing systems. It is used
widely in engineering to understand competitors’ products
(see for example http://www.chipworks.com/FAQ.htm). Ne-
cessary components of such understanding are:

e A parts list (for instance, as revealed by large-scale gene
expression assays).

e An understanding of the characteristics of the parts (as
described in protein and gene databases, for example
http://www.brenda.uni-koeln.de/).

e A map of how the parts fit together (as in “pathway”
databases, see for example http://us.expasy.org/cgi-bin/
search-biochem-index).

o A description of the outcome of the interactions among the
parts. For a static structure, such as a house, this means
understanding the utility of walls, rooms, stairs, doors,
windows, etc. Most systems of interest, however, are
dynamic; that is, they dissipate energy and carry out work.
In such systems, in addition to the static structure, one
needs to understand the dynamic behavior of the system as
a function of the interactions of its component parts. Thus,
to reverse engineer a car, we would need to understand
not only the significance of the chassis and wheels, but
also the dynamic behavior of the car as a function of fuel
combustion, torque transmission, steering, etc. As hinted at

in this example, a key aspect to understanding the
dynamics of large-scale systems is the hierarchical division
of a system into smaller modules with distinct functionality.
Engineered systems are invariably built from hierarchical
groupings of such modules and we expect the same will be
true for GRNs. We will return to this issue at the end of this
paper.

Methodologies and tools for unraveling GRNs
Methodologies, experimental technologies and data proces-
sing techniques for unraveling GRNs have been widely
discussed.®~19 Here, we present a brief overview merely
to provide a context for the modeling issues that form the focus
of the rest of this paper. Typically, the reverse engineering of
a GRN will involve the following.

e Gene discovery through arrayed gene expression assays.
The aim here is to discover the members of a network
and to group these together in crudely defined cate-
gories. Typically, time-course-of-expression profiles (in
both wild-type and disturbed cells), the functional nature of
the protein products, and the spatial domains of expression
of genes are used to form clusters of putative linkage
groups.

e Regulatory linkage analysis. Typically, the activity of an
upstream gene is disrupted (e.g., using RNAi, dominant
negative, morpholino, or engrailed technologies), and/or
ectopic expression is induced, in order to identify down-
stream regulated genes. In addition to identifying transcrip-
tion factor target genes, regulatory linkage analysis can
reveal whether regulatory inputs incident on a gene are
required in combination (logical and) or individually (logical
or), and whether they activate (logical imply) or repress
(logical inversion, or not) the expression of the regulated
gene (regulatory logic is discussed in Figs. 1-3). Thus,
linkage analysis can provide both the connectivity structure
of a GRN and a logical description of the interactions
between genes.

e Prediction and experimental verification of transcription
factor binding sites on cis-regulatory DNA. Assuming trans-
criptional regulation, the linkage map established in the
preceding step indicates what binding sites may be ex-
pected to exist. Here, the aim is to verify the existence of
specific stretches of regulatory DNA sequence as the
binding site for each incident transcription factor. This is
typically performed by experimental cis-regulatory ana-
lysis, increasingly with the aid of statistical sequence
searching such as comparison of putative regulatory
sequences of evolutionarily close species. An additional
outcome of such analysis may be the discovery of
multiple binding sites for some transcription factors. This
has implications about the dynamics of the interaction
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Figure 1. A three-step model of gene regulation. For
simplicity, a gene (G) with a single ubiquitous transcriptional
activator (U) is presented. Az Diagrammatic representation of
the circuit in terms of the constituent components (left), and the
processes involved (right). In this simple model, all the many
processes and molecules involved in gene expression are
reduced to just three steps. The top process stands for all the
complex events that control the transcription and loss of
nuclear RNA. Similarly, the multi-step processes that generate
and degrade mRNA and the protein product of the gene (P)
are summarized as single steps. B: Derivation of the relation-
ship between transcription factor concentration and its oc-
cupancy (fractional saturation) on its target DNA binding site.
ka, kg association and dissociation rates of U and its DNA-
binding site. Kgiss is the corresponding equilibrium dissocia-
tion constant. U m DNA represents the bound U-DNA com-
plex. Note that this commonly used formulation of occupancy
includes the assumption that the concentration of U is high
enough that the amount of unbound U is approximately equal to
total U. €= The three equations of the model. The latter two
steps are presented as simple linear processes. The first
process (nuclear RNA production) is intrinsically a non-linear
function of the concentration of U. k; and kg represent the rates
of mRNA and protein production respectively. ky's represent
degradation rates. “S” stands for activator strength, a measure
of the efficiency with which a given complex activates
transcription. D: At steady state, P is proportional to the
fractional saturation of U, and a non-linear function of U
concentration. The implications of this are discussed in Figs. 2
and 3.

of that factor with its target gene(s), as discussed in
Figs 2 and 3.

e Measurement of kinetic data. A GRN with a given con-
nectivity and set of logical interactions can exhibit multiple
behaviors depending on the kinetic parameters (see
examples in Fig. 4). Frequently, which behavior is most
likely can be guessed by the context of the GRN and
verified/falsified experimentally. Otherwise, it is necessary
to measure kinetic data such as transcription factor asso-
ciation/dissociation rates, the rates of transcription and
translation, and mRNA and protein degradation rates. In
addition, it may be pertinent to characterize upstream cel-
lular processes such as diffusion and transport, or electrical
and mechanical interactions in order to explain the overall
behavior of interest.

e Network modeling and simulation. At each of the above
steps, computer modeling and simulation can be used
to explore how well the relationships discovered ex-
plain features of the cellular process of interest. Models
can reveal contradictions in our understanding, and can aid
in posing experimentally falsifiable questions (hypothesis
formulation). For example, we may ask whether the dis-
covered families of genes are sufficient to explain a be-
havior of interest; alternatively, we may ask whether the
structure of the network constrains its behavior to certain
classes, or we may build a model of the revealed gene
interactions and ask whether the resulting behavior faith-
fully reflects all experimental observations.

The choice of modeling formalism
Allmodeling is an abstraction of reality. The only exact model
of any system is the system itself. So, when we set out to
build a model of a system (here a GRN), we must make a
choice about the level of detail and type of features that the
model should represent. To a large extent, this is dictated
by the characteristics of the system being studied, the type
of experimental data available, and the type of questions
that we wish to address through modeling. For example,
phenomenological electrophysiological models are widely
used to study the electrical activity of neuronal and cardiac
cells without any explicit modeling of the underlying mole-
cular mechanisms. At the other extreme, studies of systems
of small numbers of molecules usually require stochastic
models where the probability of each molecular interaction
is computed from Gibbs Free Energy considerations (for
examples of stochastic models and related modeling theory,
see Refs. 11,12. For an early example of the application
of phenomenological modeling to genetic networks, see
Ref. 13). In between these extremes, lies a plethora of
modeling formalisms.

Eukaryotic gene regulation is a complex process in-
volving a very large number of physical, mechanical, and
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Figure 2. A simple model of a hypothetical gene with just two activators. In this example, both activators are necessary for transcription
initiation. Az Top, schematic diagram; bottom, the effect of the two activators on steady-state protein expression level, shown on the corners
of a unit (Boolean) cube; discussed below in conjunction with (C—E). Bz Three-stage model of the gene (cf. Fig. 1). S1 and S2 are the
activation strengths of the corresponding transcription factors. They could be combined into a single value for the overall strength of the U1-
U2 complex. For given levels of U1 and U2 (i.e., at steady state), the concentration of the protein (P) is proportional to the product of the two
fractional saturations and may be approximated by a Boolean logic and function. Such a function is visualized in the bottom drawing in (A).
Consider a unit cube whose vertex coordinates in the (x,y) direction represent the four Boolean (all or none) combinations of the
concentrations of U1 and U2. Let the z-axis represent the Boolean values of the protein product P (P = 0 in the lower cube face,and P =1 in
the upper cube face). We can then use a three-digit index to mark each vertex (here, blue digits for (U1,U2) values and green for P). The
corners marked represent Boolean and functionality (contrast with Fig. 3A which presents the corresponding case for a Boolean or function).
The same four points (representing Boolean and) are marked on the plots in (C—E). Note how they coincide with the extrema of each plotted
surface. C: The steady-state value of P as a function of U1 and U2 fractional saturations. Dz The steady-state value of P as a function of the
concentrations of U1 and U2. Note the non-linear characteristic of the graph. If the transcription factors have multiple binding sites,
multimerize, and/or interact with each other cooperatively, the steady state level of P behaves like a threshold function of the concentrations
of U1 and U2, as illustrated in E. Note how, for most values of U1 and U2, P4 has a value close to zero or one (i.e., P is approximately

Boolean).

chemical interactions. In Fig. 1, we present a highly abstract,
minimally simple, ODE-based model of transcriptional
gene regulation for a “cartoon” gene with just one transcrip-
tional regulator (symbolically illustrated in Fig. 1A). As
summarized in Fig. 1B, the entire process is abstracted into
three steps: (1) regulation of transcriptional activation by one
or more transcription factors, (2) mRNA production/decay,
and (3) protein synthesis/decay. For simplicity, the latter two
steps are modeled as linear processes. However, the first
process is intrinsically a nonlinear function of the concentra-
tion of the activating transcription factor (see Fig. 1B and its
caption for an explanation). At steady state, concentration of
the protein product of the modeled gene is proportional to
the fractional saturation (occupancy) of the activating trans-
cription factor on its DNA-binding site (see Fig. 1D for an
explanation).

The relationship between models based on Ordinary Dif-
ferential Equations (ODEs), continuous algebraic equations,
and Boolean logic is explored and presented in more detail
in the “cartoon” or “toy” examples shown in Figs 2 and 3.
The cartoon gene of Fig. 2 has just two activating transcrip-
tion factors, both of which are necessary for initiation of
transcription. By contrast, the gene modeled in Fig. 3 has two
inputs each of which is sufficient for transcription. See figure
captions for details. The figures illustrate the simple manner
in which the steady-state response of a gene to its regulatory
factors can be modeled as an algebraic function of the
occupancies of the regulatory factors. Boolean models may
be viewed as discrete versions of these algebraic represen-
tations.

For our studies of GRNs underlying sea urchin embryonic
development,®'4~1" we have found a mixture of Boolean
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Figure 3. Model of a hypothetical gene with just two activators. In this example, each activator can independently cause transcription
initiation, and for simplicity we assume that each transcription factor is capable of driving the gene at the maximal rate. A: Schematic
diagrams using the representation styles introduced in Fig. 2. Top: To avoid confusion, we usually indicate the logical interactions between
bound transcription factors, just below the line representing regulatory DNA (for further examples, see Refs. 15—-17). Bottom: Boolean cube
representation, as in Fig. 2A. B: Three-stage model and steady-state equation for the protein product. In this case, the steady-state level of
the protein product is proportional to union of the fractional saturations of the two regulators. The union represents the three cases where
each regulator is active alone, and when both are active together. Since the algebraic sum of two variables covers their overlap (U1 and
U2 both active) twice, the product is subtracted once from the sum in the equations. The relationship is illustrated graphically in (C—E).
C: lllustration of the steady-state value of P as a function of U1 and U2 fractional saturations. Dz The relationship between steady-state level
of Pand U1, U2 concentrations. E: If we assume cooperative scenarios such as those discussed in Fig. 2E, then P behaves like a threshold

(E)

(i.e., discrete) and algebraic (i.e., continuous) logic most useful
because changes in protein concentrations occur on a much
faster timescale than successive developmental states. As
discussed later in this paper (see Fig. 4), the use of ODEs
necessitates the introduction of a large number of parameters
for which experimental values are often not available. Thus,
following Ockham’s Razor (law of parsimony), we use the
representation with the fewest number of free parameters. As
discussed in Ref. 17, this formalism results in the same type
of grammar tree as that used by structured programming
languages and so can represent any and all regulatory inter-
actions (so long as the relevant experimental data is
available!).

The choice of modeling formalism and its implications
are explored further in Figs. 4 and 5. Consider a hypothetical
single-gene negative feedback circuit. Such a circuit can

exhibit two classes of behavior: constant steady-state, or
oscillation. Suppose experimental data indicates that the
gene oscillates. Figure 4 shows some possible logical and
ODE-based models of the circuit. A major issue in using
ODE-based models is the form of equations used. Note that all
four ODE models in Fig. 4 are highly abstract. Each equation
summarizes the phenomenological behavior of a large
number of biochemical/mechanical/physical steps. None of
the equations correspond to actual biochemical reactions, so
the use of Michaelis—Menten and other rate laws is purely
symbolic.

Nonetheless, as illustrated in Fig. 4 and discussed in the
caption, each modeling formalism implies a specific set of
constraints on the model parameters. Because the models are
mathematical abstractions, it is very important to interpret
the biological/biochemical implications of these constraints
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Figure 4. Models of a hypothetical single-gene oscillator where a gene’s protein product represses its own transcription. The oscillator is
activated/inactivated by a ubiquitous factor (U). Because of its extreme structural simplicity, we explore the behavior of this circuit as an
example of the utility and limitations of different modeling formalisms. Az A Boolean logic model, in which the modeled variables can only be
either fully active or fully inactive (binary). The model is described verbally (as in a computer program) by the *if
<condition>then<outcome>" statements within the { } brackets, and using symbolic-logic shorthand (on the right-hand side). The symbol
—indicates logical inversion (not). The symbol @ indicates a logical and (a Boolean operator which returns high (active) if both conditions are
true (high)). The shorthand (t-5t) indicates a delay of 6t applied to the preceding variable (in this case mRNA). The top shorthand statement
canbereadas “mRNA level equals (U) and (not(P))”. Thus U activates the circuit. If U is low/inactive, no expression takes place. If U is high/
active, mRNA levels oscillate because the mRNA level is always the opposite of its own value some time earlier. The above Boolean model
will oscillate so long as the delay 6t is greater than zero. The period of oscillations (the length of time between expression peaks) equals 25t.
3t here includes the rise and fall times of the concentrations of all the intermediate molecular species involved. In our minimal Boolean
model, the values of U, mRNA and P (the protein product of the gene) change instantly and the delay between changes in mRNA and P is
modeled as a separate statement for simplicity. We could instead model the delay between mRNA and P changes by assigning each
variable a finite rise and fall time (as is done in electronic circuit simulators). Because these rise and fall times are not known for most genes,
we have lumped all of them into one term, thus simplifying the model. But our single parameter now stands for a mixture of several and its
value does not reveal much about the modeled system. This is a basic, often unavoidable, trade-off in modeling. In general, delays
determine when the “condition” in an “If <condition>then<outcome>" statement becomes true. Changes in assumed rise/fall times can
result in radically different network behaviors. Electronic circuit designers spend considerable effort to ensure their circuits are robust to
unavoidable manufacturing variations in the rise/fall times of their circuit elements. Such robustness may also be expected in developmental
GRNs, which must progress through specific states at specific times and in specific cells, and cannot therefore vary with random variations
in reaction kinetics. One implication of this observation is that robust developmental processes can be modeled with Boolean and algebraic
logic without explicit formulation of the reaction kinetics. B: The same circuit modeled using an algebraic (continuous logic) formalism: the
variables are now continuous valued, and the interaction functions not limited to those specified in Boolean logic. Here the Boolean and
functionis replaced with an algebraic multiplication. The powers “n” and “m” allow the modeler to give the interaction function smoother (low
n, m values) or sharper, more threshold-like characteristics (higher n, m). The repressive effect of P on mRNA is modeled with a simple
subtraction (causing the mRNA value to decrease in proportion to P, as P increases). Note, however, that the interaction and repression
functions could be defined by any number of other algebraic formulae, so long as they are well behaved. For example, instead of (1—P), the
repression of mMRNA by P could be modeled as (1—P)/(1 + P). This model reveals a circuit characteristic not apparent in the Boolean model:
itis possible for Pand mRNA to “hover” at P = mRNA = 0.5. This state is highly unstable. Random noise would normally drive the circuit out
of this state. However, the existence of this meta stable steady state can be significant; for example it is widely used in microelectronics to
implement very sensitive amplifiers for reading the contents of computer memory “chips”. For oscillatory behavior, we need to avoid the
preceding scenario. For this, the delay between mRNA and P must be non-negligible, and the repressive action of P on the gene must be
non-linear. Thus, we see that an algebraic (continuous logic) model involves a larger number of parameters and interaction functions to be
defined, but also can reveal more of the dynamical range of behaviors that may be exhibited by a circuit. In practice, lack of appropriate data
forthe choice of interaction functions and parameters limits the utility of this modeling formalism. However, such models have the advantage
that, by normalizing all variables to the range 0—1, it is straightforward to mix this continuous notation with the Boolean notation
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correctly. For example, for the Boolean model (Fig. 4A), the
assumed total delay between changes in mRNA and protein
levels equals half the period of oscillation. However, it would be
wrong to imagine that this constraint implies a limit on the time
it takes for mRNA molecules to be transcribed, modified,
transported to the cytoplasm and translated. The reason is that
we could equally have formulated the model based on a delay
between protein level and the resulting change in transcribed
mRNA level. In that case, we might have concluded (equally
incorrectly) that there is a limit on the time it takes for trans-
cription initiation, RNA elongation, and mRNA editing. In fact,
all we can conclude from the Boolean model is that the sum of
all non-linearities (including delays) in the modeled circuit must
equal the period of oscillation.

The Boolean model of Fig. 4A has only one parameter: the
mRNA-—protein level delay. ODE-based models introduce
many more parameters (10 in Fig. 4F), thus requiring even
more careful interpretation. Some examples are discussed in
the caption to Fig. 4.

Figure 4 is by no means a comprehensive list of all the
modeling formalisms that could be usefully employed. Notab-
ly, stochastic!""'? and multi-valued logic(*® models are not

discussed. Stochastic frameworks may prove essential for
modeling situations involving few molecules or where diversity
generation is important (e.g., in the immune system). Multi-
valued logic offers a useful balance between model complexity
and representation / analysis powers.

Modeling gene regulation during development

Developmental genetic regulatory models are distinguished
by the need for multicellular representation of gene activity.
At any given developmental stage, cells within each territory
will share the same set of active genetic regulatory interac-
tions. Cells in different territories will have different gene
activities. We visualize the set of gene interactions specific
to a particular cell type at a particular time as the “View
From the Nucleus” (VFN) of that cell type.® By contrast, the
set of all gene interactions (in all cell types and at all
developmental stages) constitutes the “View From the
Genome” (VFG). From a modeling and simulation point of
view, each VFN is a specific subset of the genes and
interactions represented in the VFG. During simulation, each
cell inherits the entire genome (i.e., the VFG), but its gene

Figure 4. (Continued)

described in (A). C: Same model as (A) and (B), represented with a delay-differential equation (after Ref. 22). Differential equation models
have the advantage that the modeled interactions can take the form of “pseudo chemical reactions” (where the rate of change of a productis
modeled as the algebraic difference between the rates of its production and degradation). Here the rate of mRNA transcription is increased
in direct proportion (V) to the ubiquitous activator. It is decreased by a function of P that mimics the occupancy of P on its target cis-
regulatory binding site and the effectiveness with which bound P inactivates transcription. The power “n” on the P occupancy function
models the degree of non-linearity of the effect of P on transcription. With this formalism, we discover an additional property of the circuit:
irrespective of the value of t, true oscillations require that the repressive effect of P on mRNA transcription be non-linear withn > 1. Alinear
repression function, such as (1—P) can only produce damped oscillations (where the amplitude of successive peaks increases indefinitely,
ordecreases to zero over time). See (D) for example damped oscillations. Dz Although all of the above models require a finite delay between
mRNA and P, oscillatory behavior can also be obtained without explicit delays. The simplest such model is shown in (D). As the mRNA and
protein degradation rates (V47 and Vo) are reduced to zero, the oscillations of the model approach constant amplitude. Although this model
is attractive for its simplicity, it has the undesirable property that its variables cannot represent concentrations or activity levels since they
must take negative values for oscillations to occur. One can assume a 2" set of variables P’ =P + Cp and MRNA’ = mRNA -+ Crgna SUch
that P" and mRNA'’ are always positive; but it is difficult to explain such a transformation biologically. Ez Another two-equation model that
oscillates without an explicit delay term. This model has the advantage that its variables are always positive and can therefore represent
concentrations or activity levels. The model here is based on a mechanism proposed in Ref. 23. Instead of delay, the rate of change of P has
two thresholds: one for when P is decreasing, and another for when P is increasing (this is due to the two non-linear functions highlighted in
red and green). The outcome is similar to (C) in that P follows the mRNA level with a time lag (with additional non-linearity). Comparison of
(C) and (E) provides a cautionary lesson in interpreting such phenomenological models too literally. Both models generate oscillatory
behavior. But the most distinct feature of (C), the requirement for an explicit delay term between mRNA and P, is absent in (E). This apparent
contradiction is just because it is possible to model the same phenomenon using very different mathematical approximations. The
processes modeled as delay in (C), are represented by non-linear interactions in (E). Neither model is more right or wrong than the other;
and neither should be interpreted too literally. Ultimately, both models lead to the same observation: oscillations in these abstract networks
require non-linear regulatory interactions. F: As with the delay-based models, the phenomenological interactions in (E) cannot be ascribed
to specific molecular processes. The simplest model whose terms could be interpreted as concentrations is shown in (F). The first equation
models transcription of nuclear RNA (nRNA). The repression of transcription by P is modeled using a “non-competitive inhibition” type
formalism. The second and third equations model mRNA and protein production/decay. Even though (F) is a massive simplification of the
many molecular processes involved, it nonetheless “boasts” 10 “kinetic” parameters (shown in lavender). To have any confidence in the
model as a reflection of the modeled network, it is necessary to estimate these parameter values and demonstrate that the model is

insensitive to all plausible variations in parameter estimates.
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expression state is the VFN inherited from its parent cell
type. This VFN may then be modified through intracellular
and intercellular interactions.

In our NetBuilder (http://strc.herts.ac.uk/bio/maria/Net-
Builder/) network capture and simulation software,” we use
the convention that inactive genes (and their outputs) in VFNs
are either shown in light gray, or omitted from the view, but the
position and connectivity of all genes remains the same as
represented by the VFG. Figure 7B shows an example VFG;
while Fig. 7C shows two VFNs of the same network. See Refs.
5,6,14 for more examples.

Putative building blocks of animal GRNs

We suspect that animal GRNs are modular in structure in that
there is an enumerably small set of GRN “building blocks” from
which larger GRNs are constructed. As with engineered
systems, it is likely that larger modules will be hierarchically
built up from combinations of smaller ones. Thus, at the top of

the hierarchy, there can be a very wide variety of large GRN
modules, while at the bottom of the hierarchy, the number of
small building blocks can be limited. For example, consider
the different ways in which a gene may regulate its own
activity. Mechanistically, there are only two possibilities:
enhancement, or repression. Depending on kinetic parameter
values (e.g., association/dissociation constants), each of
these can lead to just a few canonical forms of behavior. A
self-enhancing feedback loop (also known as positive feed-
back or auto-regulation) can:

e amplify the effect of an incident regulatory input such as an
intrinsic, cell-specific factor, or an intercellular signal;

e rapidly drive the expression level of an activated gene;

e maintain gene expression in response to a transient acti-
vating signal.

Similarly, self-repression (negative feedback) by a gene
may:
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Figure 5. Putative intracellular transcriptional positive feedback lock-on switches. Az Single gene with autocatalytic feedback. The gene
is initially activated by one or more regulatory factors (in early development, the activator may be maternal). Once activated, the gene
remains maximally active because its protein product is a transcriptional enhancer of itself. B: Simulated gene expression (protein
concentration) level as a function of activator concentration for a gene without positive feedback (i.e., circuit and equations equivalent to
Fig. 1). €z As (B) but with autocatalytic feedback (i.e., the circuit shown in A). Note the threshold-like response curve. This is an example of a
system feature brought into focus through simulation. While this observation may be obvious in the current toy model, it serves to illustrate
the explanatory utility of simulation. In larger-scale models, similar insights can be much easier to arrive at through modeling and simulation
than through “thought experiments” with box and arrow diagrams Dz Example of an intracellular positive feedback lock-on switch involving
more than one gene. Here driver and driven activate each other, forming a two-gene positive feedback loop. Ez Simulation of expression
profiles of the two genes over time. The driver gene is the one that receives an initial activating input. Note how the activity of the second
(driven) gene closely follows that of the first. In this example, the activator signal (shown in blue) is only “on” very briefly at the beginning of
the simulation, but is enough to trigger the positive feedback loop between the genes such that their expression levels rise on to saturation
even though the activator is no longer present. Once activated, the genes remain on (presumably until one or more dominant repressors
(not shown) disrupt the feedback).
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Figure 6. Putative intercellular positive feedback loops
implementing a “Community Effect.”("® Az Schematic wiring
diagram showing the necessary interactions between genes in
three cells. Note that the genetic network in all three cells is
identical, and signaling only takes place between neighboring
cells. The blue genes are in a positive feedback loop with their
counterparts in neighboring cells (through the ligand—receptor
interactions symbolically represented by double chevrons). The
green genes are upstream activators of the blue genes. As with
the circuits in Fig. 5, there is a threshold below which the
activator signal cannot trigger the circuit on, but any signal level
above this value is enough for activation. For the illustrative
simulation resultsin (B), we have specified the extreme condition
where only the green genein cell 1 is active, and that at only 10%
of its maximal rate (green curve). Nonetheless, as the graphs
show, the downstream genes in all three cells are activated to
near their maximal rates due to the intercellular positive feed-
back loops. Note that cell 3, which is farthest from cell 1, receives
the effect of the activatorin cell 1 only via cell 2, and as a result is
activated slightly later but approaches near maximal expression
levels nonetheless. Note also how the gene in cell 2 has a slightly
sharper expression profile because it receives positive feedback
from two neighboring cells (whereas cells 1 and 2 have only one
neighbor each). In Fig. 5E, the activator signal was turned on
maximally, but only for a brief moment. Here, the activator gene
is turned on at a low level but left on indefinitely. In both cases,
even an activation signal that is both low-level (but above
threshold) and short-duration is enough to drive the genes in the
loop to saturation expression levels.

e limit the rate of expression of the gene to a fixed steady-
state level; or
e cause the expression level of the gene to oscillate.

Itis straight-forward to construct combinations of the above
behaviors by mixing positive and negative feedback. For
instance, one may imagine a gene that expresses at a fixed
level in response to very small or transient extracellular
changes. Such a gene might use autoregulation to amplify the
signal and self-repression to produce a predetermined level of
expression once an input has been detected.

Figures 5—7 describe some example putative GRN building
blocks that we have come across while reverse engineering a
GRN that operates very early on during the development of
sea urchin embryos.®'® These include examples of:

e Single and two-gene positive feedback loops that appear to
be used as a means of ensuring the unidirectional progress
of developmental processes (Fig. 5).

o Positive feedback (community effect, Ref. 19) between
genes in different cells, mediated by complex signaling
pathways (Fig. 6). These appear to be used in develop-
ment to ensure that all cells within a territory adopt the same
fate.

e Repression gene cascades, which appear to be used to
define sharp spatial boundaries between cells of different
future territories (Fig. 7).

The use of modeling to explore the dynamics of each of
the above putative building blocks is discussed in the ac-
companying figure captions. Needless to say, the putative
building blocks presented in these figures represent a small
proportion of the likely total number that must be utilized in
animal GRNs. We hope readers of this article will seek, find,
and present many more in future.

Discussion

As discussed earlier and illustrated in Fig. 4, abstract models
have relatively few parameters and so, on the one hand, it is
easy to explore their behavior and build models with them. On
the other hand, the parameters they do have are combinations
of many factors. In contrast, more detailed models suffer from
an explosion in the number of their parameters; as a com-
parison of Fig. 4A and F reveals. As illustrated in cartoon form
in Fig. 8, alarge number of parameters can make it very difficult
to compare alternative models. Paradoxically, the opposite
can also be true. The network structure of cellular processes is
sometimes so intricately defined as to make their behavior
largely independent of parameter values, see for example
Refs. 20,21.
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Figure 7. Anexample putative circuit block for defining sharp spatial boundaries. Suppose gene1 is differentially expressed in two groups
of cells. Az The simplest circuit for boundary definition between the two cell types would involve gene1 directly activating other genes. If, for
simplicity, we model all genes with the same kinetic equations and parameters, then gene2 expression will closely follow gene 1 expression,
as shown in the simulation results below. Bz Activation through a double-repression cascade (top: “View from the Genome,” bottom:
simulated gene expression profiles). Again, all genes are modeled with the same kinetics. Lifting a repression can result in a sharper rise in
activity for the downstream gene, thus allowing greater control of its expression. This is due to the possible “priming” role of ubiquitous
activators (black arrows). The effect is like locking down (repressing) a catapult while it is loaded (acted on by ubiquitous activators), then
suddenly releasing the lock (lifting the repression). €z lllustration of how the repressor cascade can lead to differential expression in
neighboring cells. Top, “Views From the Nuclei” of two cells in which activatoris differentially regulated. Gray text and lines indicate inactive
network components in a cell. Bottom, simulated expression curves for the gene 2 protein in the two cell types. Cell 2 has inherited a higher
concentration of an activating factor than cell 1. As with the circuits in Figs 5—6, there is a concentration threshold below which the acti-
vating factor cannot trigger the target gene (see E). In cell 1, activator concentration is below this threshold and hence gene1 is not active.
Theresultis activation of the Repressor(lavender) gene (by the ubiquitous driver, black arrow) and repression of gene2(green). Incell 2, the
situation is reversed and geneZ2 is repressed (after a brief small transient while the repressor gene turns on). Dz Direct activation of one
gene by another has no distinct activation/inactivation threshold and results in a fairly smooth direct relationship between activator
concentration and geneZ2 activity. Ez In contrast, the activator—response curve of a repression cascade has a distinct activation threshold
(blue arrow) due to the highly non-linear dependence of gene2 expression on activator level. When the activator is an asymmetrically
distributed factor, such a repression cascade will define a sharp gene-expression boundary between cells with factor concentrations just
below and just above the threshold.

The reverse-engineering methodology outlined earlier
address the above conundrum by seeking to identify para-
meter correlations before parameter values are considered.
This is achieved by resolving the network structure first,
then identifying the types of interaction between the nodes
in the network, and only then considering the dynamic effects
of parameter values. The particularity of a given large GRN
does not lie in the specific set of small GRN modules of
which it is composed. These building blocks are utilized over
and over again in diverse GRNs that accomplish different
developmental tasks, such as building different parts of the
body. The particularity of large GRNs is to be found at the

highest level of their organization, and this is what is made
explicit in the network structure. There are probably a very
large number of different large GRNs because there is a
very large number of different ways that a limited set of
elemental modular mechanisms can be linked together. This
is the GRN feature that underlies the diversity of develop-
mental process, and this is also why the primary task in GRN
analysis is to resolve the network structure and its link-
ages. A useful complementary approach may be to first
identify minimal complexity building blocks, then search
for larger blocks using these minimal blocks, and so on hier-
archically. The combination of these top-down and bottom-up
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Figure 8. Cartoon illustration of the “curse of dimensionality,” Models are usually developed to mimic some experimentally observed
feature of a system. Forinstance, for the oscillator modelsin Fig. 4, one may be interested in matching the period of oscillations of the models
to a set of experimental expression profiles. The models in Fig. 4 have between one and ten parameters. For simplicity, consider a model
with just one parameter P4 (e.g. model (A) in Fig. 4, where the only parameter is 6t). The graph in (A) represents one possible scenario in
which P affects the behavior of the model in a simple, easily predictable way. Once the regulatory gene linkages have been identified (the
network connectivity is determined) and model interactions (equations) defined, one may search for the value of P4 that results in model
behavior most closely matching experimental data. Az For the simple scenario, one need only start with a random guess for the value of P (a
random location along the P4 axis in the figure) and iteratively change P in the direction that increases the goodness of fit to data.
Unfortunately, things are frequently not so simple. B: Represents a more usual scenario. Here, the optimal fit of P, to experimental data lies
atthe peak of one of several local optima. Starting from a random value for P4, itis now necessary to look not just for the nearest peak, but for
the highestor broadestpeak (i.e., the best fit to data or the least sensitive to variations in P1). This requires considerably more computation.
C,D: lllustration of the increasing difficulty of searching multi-dimensional spaces. Same scenario as above, but now for a hypothetical
model with two parameters (for example parameters 6t and n in the model in Fig. 4C). The goodness of fit of the model (e.g., the difference
between experimentally measured and model oscillation periods) is plotted as a function of the values of the two parameters. Coloring
denotes the degree of match between model behavior and experimental data. The figures can be viewed as “contour maps” of the goodness
of fitlandscape. (C) Is analogous to (A), while (D) is analogous to (B). The colored areas in (C) and (D) are roughly the same size; but, starting
from a random estimate of P1, P2 values (e.g., the black cross), itis much harder to find the maroon-colored peak in (D). In (C), one can start
from any random position (e.g., black cross) and find the maroon area (best fit) by simply climbing up the local contour gradient (green
arrow). This strategy does not work in (D). Instead of climbing up the local gradient (green arrow), one needs to identify the direction towards
the highest peak (blue arrow). Put another way, correlations between the effects of parameters on system behavior give the colored areain
(D) a concave characteristic, so that—unlike (C)—it is not possible to find the optimum parameter fit by simply climbing up the local gradient.
Thus, the parameter search problem becomes considerably more difficult as the number of dimensions (number of parameters to be
estimated) increases. One solution to this problem is to guide the search by identifying some of the dependencies (correlations) between
parameter values prior to any search. This can be done for instance, by first identifying the connectivity structure of a network (what
interactions exist) before quantifying the nature of the interactions, as embodied in our reverse-engineering methodology (see text).
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