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Summary
Developmental processes in complex animals are direc-
ted by a hardwired genomic regulatory code, the ultimate
function of which is to set up a progression of transcrip-
tional regulatory states in space and time. The code
specifies the gene regulatory networks (GRNs) that
underlie allmajor developmental events. Models of GRNs
are required for analysis, for experimental manipulation
and, most fundamentally, for comprehension of how
GRNs work. To model GRNs requires knowledge of both
their overall structure, which depends upon linkage
amongst regulatory genes, and the modular building
blocksofwhichGRNsareheirarchically constructed. The
building blocks consist of basic transcriptional control
processes executed by one or a few functionally linked
genes. We show how the functions of several such
buildingblockscanbeconsidered inmathematical terms,
and discuss resolution of GRNs by both ‘‘top down’’ and
‘‘bottom up’’ approaches. BioEssays 24:1118–1129,
2002. � 2002 Wiley Periodicals, Inc.

Introduction

This article reviews the role of modeling in understanding

animal genetic regulatory networks (GRNs). For reviews of

modeling prokaryotic GRNs, see Refs. 1,2. Why focus on

animal GRNs? Because ultimately, all species-specific char-

acteristics must be explicable at the level of genetically

inherited information. Given the remarkable commonality of

protein families in the animal kingdom, we must conclude that

the morphological differences between animal species arise

primarily through differential regulation of genes and their

products, and that the information for this differential regulation

must be encoded in the inherited DNA (see Davidson, Ref. 3,

for in-depth discussion). Herewe consider theuseof computer

modeling as an aid to unraveling and quantifying this process.

What follows will be primarily focused on transcriptional

regulatory networks.

Unraveling cellular processes is usually complicated by the

experimental difficulty of identifying all the interactions that

take place in vivo and, equally difficult, measuring the kinetic

parameters associated with in vivo biochemical, biomechani-

cal, or electrophysiological interactions.GRNsoffer significant

advantages in this respect, as follows.

* Whole genome sequencing can, in principle (though not yet

in practice), identify all potential macromolecular players

(since they must ultimately be encoded in DNA).

* Large-scale technologies for gene discovery (arrayed

mRNA expression assays, parallel quantitative PCR

measurement of the effects of perturbations, DNA-

sequence searching algorithms) are currently better

developed for general use than their proteomic counter-

parts.

* GRN models ultimately lead to DNA-specific predictions

such as the existence of putative binding sites for trans-

cription factors hypothesized to regulate a downstream

gene. Such predictions can be experimentally validated or

falsified in straightforward ways.

* Transcription and translation are usually much slower

thanmany protein–protein and enzymatic reactions. Thus,

in GRN-based models, it is frequently possible to model

these faster reactions as instantaneous events and the

interactions that govern their activity as switches (of

the type ‘‘if <condition>then<outcome>’’). This abstrac-

tion often permits large-scale GRN models of cellular

processes.

Developmental GRNs, as they are encoded in animal

genomes, are of course a product of evolution. They are not

organized according to laws of parsimony, and they are not

particularly streamlined. They have been assembled during

evolution by addition of novel regulatory linkages to preexist-

ing regulatory linkages; they are a mosaic of old and new

features.(4) Robustness and fail-safe mechanisms that

ensure stability of given states of expression are prominent

features of the GRN structures that evolution has produced,

as shown for example in the sea urchin endomesodermal

GRN that we and our colleagues recently reported.(5) All this

means is that the structure of a developmental GRN is likely to
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be very different indeed from that of an easily intuited

enzymatic pathway, or a neatly designed, maximally efficient

logic circuit.

In the following, we review some mathematical descrip-

tions of basic transcriptional regulatory processes that are

useful as computational building blocks for modeling GRNs.

The examples are focused on single genes and smallmodular

network subelements consisting of several genes linked in

simple regulatory circuits. But real-life GRNs for develop-

mental processes are large and intricate, relative to these

network building blocks. Adequate models for developmental

GRNsmust be anchored in sufficient biological information so

that the overall structure of the GRN can be derived. Here we

(1) provide a brief overview of the experimental technologies,

and data-processing techniques commonly used for unravel-

ing GRNs, (2) review the theoretical framework for GRN

modeling, (3) present some putative GRN building blocks,

and (4) outline arguments in favor of a two-pronged approach

to reverse engineering GRNs (starting with a coarse-grained

picture of a system and iteratively increasing the resolution,

and building the network from the bottom up by first searching

for elementary building blocks, then combinations of these,

and so on).

Reverse engineering GRNs

In contrast to forward engineering, i.e., building new systems,

‘‘reverse engineering’’ is concerned with unraveling the

operational principles underlying existing systems. It is used

widely in engineering to understand competitors’ products

(see for example http://www.chipworks.com/FAQ.htm). Ne-

cessary components of such understanding are:

* A parts list (for instance, as revealed by large-scale gene

expression assays).

* An understanding of the characteristics of the parts (as

described in protein and gene databases, for example

http://www.brenda.uni-koeln.de/).

* A map of how the parts fit together (as in ‘‘pathway’’

databases, see for example http://us.expasy.org/cgi-bin/

search-biochem-index).

* A description of the outcome of the interactions among the

parts. For a static structure, such as a house, this means

understanding the utility of walls, rooms, stairs, doors,

windows, etc. Most systems of interest, however, are

dynamic; that is, they dissipate energy and carry out work.

In such systems, in addition to the static structure, one

needs to understand thedynamic behavior of the systemas

a function of the interactions of its component parts. Thus,

to reverse engineer a car, we would need to understand

not only the significance of the chassis and wheels, but

also the dynamic behavior of the car as a function of fuel

combustion, torque transmission, steering, etc. Ashintedat

in this example, a key aspect to understanding the

dynamics of large-scale systems is the hierarchical division

of a system into smaller modules with distinct functionality.

Engineered systems are invariably built from hierarchical

groupings of suchmodules and we expect the same will be

true for GRNs. We will return to this issue at the end of this

paper.

Methodologies and tools for unraveling GRNs

Methodologies, experimental technologies and data proces-

sing techniques for unraveling GRNs have been widely

discussed.(1,6–10) Here, we present a brief overview merely

to provide a context for themodeling issues that form the focus

of the rest of this paper. Typically, the reverse engineering of

a GRN will involve the following.

* Gene discovery through arrayed gene expression assays.

The aim here is to discover the members of a network

and to group these together in crudely defined cate-

gories. Typically, time-course-of-expression profiles (in

both wild-type and disturbed cells), the functional nature of

the protein products, and the spatial domains of expression

of genes are used to form clusters of putative linkage

groups.

* Regulatory linkage analysis. Typically, the activity of an

upstream gene is disrupted (e.g., using RNAi, dominant

negative, morpholino, or engrailed technologies), and/or

ectopic expression is induced, in order to identify down-

stream regulated genes. In addition to identifying transcrip-

tion factor target genes, regulatory linkage analysis can

reveal whether regulatory inputs incident on a gene are

required in combination (logical and) or individually (logical

or), and whether they activate (logical imply) or repress

(logical inversion, or not) the expression of the regulated

gene (regulatory logic is discussed in Figs. 1–3). Thus,

linkage analysis can provide both the connectivity structure

of a GRN and a logical description of the interactions

between genes.

* Prediction and experimental verification of transcription

factor binding sites on cis-regulatoryDNA.Assuming trans-

criptional regulation, the linkage map established in the

preceding step indicates what binding sites may be ex-

pected to exist. Here, the aim is to verify the existence of

specific stretches of regulatory DNA sequence as the

binding site for each incident transcription factor. This is

typically performed by experimental cis-regulatory ana-

lysis, increasingly with the aid of statistical sequence

searching such as comparison of putative regulatory

sequences of evolutionarily close species. An additional

outcome of such analysis may be the discovery of

multiple binding sites for some transcription factors. This

has implications about the dynamics of the interaction
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of that factor with its target gene(s), as discussed in

Figs 2 and 3.

* Measurement of kinetic data. A GRN with a given con-

nectivity and set of logical interactions can exhibit multiple

behaviors depending on the kinetic parameters (see

examples in Fig. 4). Frequently, which behavior is most

likely can be guessed by the context of the GRN and

verified/falsified experimentally. Otherwise, it is necessary

to measure kinetic data such as transcription factor asso-

ciation/dissociation rates, the rates of transcription and

translation, and mRNA and protein degradation rates. In

addition, it may be pertinent to characterize upstream cel-

lular processes such as diffusion and transport, or electrical

and mechanical interactions in order to explain the overall

behavior of interest.

* Network modeling and simulation. At each of the above

steps, computer modeling and simulation can be used

to explore how well the relationships discovered ex-

plain features of the cellular process of interest. Models

can reveal contradictions in our understanding, and can aid

in posing experimentally falsifiable questions (hypothesis

formulation). For example, we may ask whether the dis-

covered families of genes are sufficient to explain a be-

havior of interest; alternatively, we may ask whether the

structure of the network constrains its behavior to certain

classes, or we may build a model of the revealed gene

interactions and ask whether the resulting behavior faith-

fully reflects all experimental observations.

The choice of modeling formalism

All modeling is an abstraction of reality. The only exact model

of any system is the system itself. So, when we set out to

build a model of a system (here a GRN), we must make a

choice about the level of detail and type of features that the

model should represent. To a large extent, this is dictated

by the characteristics of the system being studied, the type

of experimental data available, and the type of questions

that we wish to address through modeling. For example,

phenomenological electrophysiological models are widely

used to study the electrical activity of neuronal and cardiac

cells without any explicit modeling of the underlying mole-

cular mechanisms. At the other extreme, studies of systems

of small numbers of molecules usually require stochastic

models where the probability of each molecular interaction

is computed from Gibbs Free Energy considerations (for

examples of stochastic models and related modeling theory,

see Refs. 11,12. For an early example of the application

of phenomenological modeling to genetic networks, see

Ref. 13). In between these extremes, lies a plethora of

modeling formalisms.

Eukaryotic gene regulation is a complex process in-

volving a very large number of physical, mechanical, and

Figure 1. A three-step model of gene regulation. For

simplicity, a gene (G) with a single ubiquitous transcriptional

activator (U) is presented. A: Diagrammatic representation of

the circuit in terms of the constituent components (left), and the

processes involved (right). In this simple model, all the many

processes and molecules involved in gene expression are

reduced to just three steps. The top process stands for all the

complex events that control the transcription and loss of

nuclear RNA. Similarly, the multi-step processes that generate

and degrade mRNA and the protein product of the gene (P)

are summarized as single steps. B: Derivation of the relation-

ship between transcription factor concentration and its oc-

cupancy (fractional saturation) on its target DNA binding site.

ka, kd association and dissociation rates of U and its DNA-

binding site. Kdiss is the corresponding equilibrium dissocia-

tion constant. U DNA represents the bound U–DNA com-

plex. Note that this commonly used formulation of occupancy

includes the assumption that the concentration of U is high

enough that the amount of unboundU is approximately equal to

total U. C: The three equations of the model. The latter two

steps are presented as simple linear processes. The first

process (nuclear RNA production) is intrinsically a non-linear

function of the concentration of U. kt and ks represent the rates

of mRNA and protein production respectively. kd’s represent

degradation rates. ‘‘S’’ stands for activator strength, a measure

of the efficiency with which a given complex activates

transcription. D: At steady state, P is proportional to the

fractional saturation of U, and a non-linear function of U

concentration. The implications of this are discussed in Figs. 2

and 3.
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chemical interactions. In Fig. 1, we present a highly abstract,

minimally simple, ODE-based model of transcriptional

gene regulation for a ‘‘cartoon’’ gene with just one transcrip-

tional regulator (symbolically illustrated in Fig. 1A). As

summarized in Fig. 1B, the entire process is abstracted into

three steps: (1) regulation of transcriptional activation by one

or more transcription factors, (2) mRNA production/decay,

and (3) protein synthesis/decay. For simplicity, the latter two

steps are modeled as linear processes. However, the first

process is intrinsically a nonlinear function of the concentra-

tion of the activating transcription factor (see Fig. 1B and its

caption for an explanation). At steady state, concentration of

the protein product of the modeled gene is proportional to

the fractional saturation (occupancy) of the activating trans-

cription factor on its DNA-binding site (see Fig. 1D for an

explanation).

The relationship between models based on Ordinary Dif-

ferential Equations (ODEs), continuous algebraic equations,

and Boolean logic is explored and presented in more detail

in the ‘‘cartoon’’ or ‘‘toy’’ examples shown in Figs 2 and 3.

The cartoon gene of Fig. 2 has just two activating transcrip-

tion factors, both of which are necessary for initiation of

transcription. By contrast, the genemodeled in Fig. 3 has two

inputs each of which is sufficient for transcription. See figure

captions for details. The figures illustrate the simple manner

in which the steady-state response of a gene to its regulatory

factors can be modeled as an algebraic function of the

occupancies of the regulatory factors. Boolean models may

be viewed as discrete versions of these algebraic represen-

tations.

For our studies of GRNs underlying sea urchin embryonic

development,(5,14–17) we have found a mixture of Boolean

Figure 2. A simple model of a hypothetical gene with just two activators. In this example, both activators are necessary for transcription

initiation.A:Top, schematic diagram;bottom, theeffect of the twoactivators on steady-state protein expression level, shownon the corners

of a unit (Boolean) cube; discussed below in conjunction with (C–E). B: Three-stage model of the gene (cf. Fig. 1). S1 and S2 are the

activation strengths of the corresponding transcription factors. They could be combined into a single value for the overall strength of theU1-

U2 complex. For given levels of U1 andU2 (i.e., at steady state), the concentration of the protein (P) is proportional to the product of the two

fractional saturations and may be approximated by a Boolean logic and function. Such a function is visualized in the bottom drawing in (A).

Consider a unit cube whose vertex coordinates in the (x,y) direction represent the four Boolean (all or none) combinations of the

concentrations of U1 andU2. Let the z-axis represent the Boolean values of the protein product P (P¼ 0 in the lower cube face, andP¼ 1 in

the upper cube face). We can then use a three-digit index to mark each vertex (here, blue digits for (U1,U2) values and green for P). The

cornersmarked representBooleanand functionality (contrastwithFig. 3Awhichpresents thecorresponding case for aBooleanor function).

The same four points (representingBooleanand) aremarked on the plots in (C–E). Note how they coincidewith the extrema of each plotted

surface.C:The steady-state value of P as a function of U1 andU2 fractional saturations.D: The steady-state value of P as a function of the

concentrations of U1 and U2. Note the non-linear characteristic of the graph. If the transcription factors have multiple binding sites,

multimerize, and/or interact with each other cooperatively, the steady state level of P behaves like a threshold function of the concentrations

of U1 and U2, as illustrated in E. Note how, for most values of U1 and U2, Pss has a value close to zero or one (i.e., P is approximately

Boolean).
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(i.e., discrete) andalgebraic (i.e., continuous) logicmost useful

because changes in protein concentrations occur on a much

faster timescale than successive developmental states. As

discussed later in this paper (see Fig. 4), the use of ODEs

necessitates the introduction of a large number of parameters

for which experimental values are often not available. Thus,

following Ockham’s Razor (law of parsimony), we use the

representation with the fewest number of free parameters. As

discussed in Ref. 17, this formalism results in the same type

of grammar tree as that used by structured programming

languages and so can represent any and all regulatory inter-

actions (so long as the relevant experimental data is

available!).

The choice of modeling formalism and its implications

are explored further in Figs. 4 and 5. Consider a hypothetical

single-gene negative feedback circuit. Such a circuit can

exhibit two classes of behavior: constant steady-state, or

oscillation. Suppose experimental data indicates that the

gene oscillates. Figure 4 shows some possible logical and

ODE-based models of the circuit. A major issue in using

ODE-basedmodels is the form of equations used. Note that all

four ODE models in Fig. 4 are highly abstract. Each equation

summarizes the phenomenological behavior of a large

number of biochemical/mechanical/physical steps. None of

the equations correspond to actual biochemical reactions, so

the use of Michaelis–Menten and other rate laws is purely

symbolic.

Nonetheless, as illustrated in Fig. 4 and discussed in the

caption, each modeling formalism implies a specific set of

constraints on themodel parameters. Because themodels are

mathematical abstractions, it is very important to interpret

the biological/biochemical implications of these constraints

Figure 3. Model of a hypothetical gene with just two activators. In this example, each activator can independently cause transcription

initiation, and for simplicity we assume that each transcription factor is capable of driving the gene at the maximal rate. A: Schematic

diagrams using the representation styles introduced in Fig. 2. Top: To avoid confusion, we usually indicate the logical interactions between

bound transcription factors, just below the line representing regulatoryDNA (for further examples, seeRefs. 15–17). Bottom:Boolean cube

representation, as in Fig. 2A.B: Three-stagemodel and steady-state equation for the protein product. In this case, the steady-state level of

the protein product is proportional to union of the fractional saturations of the two regulators. The union represents the three cases where

each regulator is active alone, and when both are active together. Since the algebraic sum of two variables covers their overlap (U1 and

U2 both active) twice, the product is subtracted once from the sum in the equations. The relationship is illustrated graphically in (C–E).

C: Illustration of the steady-state valueof Pas a function ofU1andU2 fractional saturations.D:The relationship between steady-state level
of P andU1, U2 concentrations.E: If we assume cooperative scenarios such as those discussed in Fig. 2E, thenP behaves like a threshold
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Figure 4. Models of a hypothetical single-gene oscillator where a gene’s protein product represses its own transcription. The oscillator is

activated/inactivated by a ubiquitous factor (U). Because of its extreme structural simplicity, we explore the behavior of this circuit as an

example of the utility and limitations of differentmodeling formalisms.A:ABoolean logicmodel, in which themodeled variables can only be

either fully active or fully inactive (binary). The model is described verbally (as in a computer program) by the ‘‘if

<condition>then<outcome>’’ statements within the { } brackets, and using symbolic-logic shorthand (on the right-hand side). The symbol

: indicates logical inversion (not). The symbol* indicatesa logical and (aBooleanoperatorwhich returns high (active) if both conditionsare

true (high)). The shorthand (t-dt) indicates a delay of dt applied to the preceding variable (in this casemRNA). The top shorthand statement

canbe readas ‘‘mRNA level equals (U) and (not(P))’’. ThusUactivates the circuit. If U is low/inactive, no expression takes place. If U is high/

active,mRNA levels oscillate because themRNA level is always the opposite of its own value some time earlier. The aboveBooleanmodel

will oscillate so long as the delay dt is greater than zero. The period of oscillations (the length of time between expression peaks) equals 2dt.
dt here includes the rise and fall times of the concentrations of all the intermediate molecular species involved. In our minimal Boolean

model, the values of U, mRNA and P (the protein product of the gene) change instantly and the delay between changes in mRNA and P is

modeled as a separate statement for simplicity. We could instead model the delay between mRNA and P changes by assigning each

variable a finite rise and fall time (as is done in electronic circuit simulators). Because these rise and fall times are not known formost genes,

we have lumped all of them into one term, thus simplifying the model. But our single parameter now stands for a mixture of several and its

value does not reveal much about the modeled system. This is a basic, often unavoidable, trade-off in modeling. In general, delays

determine when the ‘‘condition’’ in an ‘‘If <condition>then<outcome>’’ statement becomes true. Changes in assumed rise/fall times can

result in radically different network behaviors. Electronic circuit designers spend considerable effort to ensure their circuits are robust to

unavoidablemanufacturing variations in the rise/fall timesof their circuit elements.Such robustnessmayalsobeexpected in developmental

GRNs, whichmust progress through specific states at specific times and in specific cells, and cannot therefore vary with random variations

in reaction kinetics. One implication of this observation is that robust developmental processes can bemodeledwith Boolean and algebraic

logic without explicit formulation of the reaction kinetics.B: The same circuit modeled using an algebraic (continuous logic) formalism: the

variables are now continuous valued, and the interaction functions not limited to those specified in Boolean logic. Here the Boolean and

function is replacedwith analgebraicmultiplication. Thepowers ‘‘n’’ and ‘‘m’’ allow themodeler to give the interaction functionsmoother (low

n, m values) or sharper, more threshold-like characteristics (higher n, m). The repressive effect of P on mRNA is modeled with a simple

subtraction (causing the mRNA value to decrease in proportion to P, as P increases). Note, however, that the interaction and repression

functions could be defined by any number of other algebraic formulae, so long as they are well behaved. For example, instead of (1�P), the

repression ofmRNAbyP could bemodeled as (1�P)/(1þP). Thismodel reveals a circuit characteristic not apparent in theBooleanmodel:

it is possible for P andmRNA to ‘‘hover’’ at P¼mRNA¼ 0.5. This state is highly unstable. Randomnoisewould normally drive the circuit out

of this state. However, the existence of this meta stable steady state can be significant; for example it is widely used in microelectronics to

implement very sensitive amplifiers for reading the contents of computer memory ‘‘chips’’. For oscillatory behavior, we need to avoid the

preceding scenario. For this, the delay between mRNA and P must be non-negligible, and the repressive action of P on the gene must be

non-linear. Thus, we see that an algebraic (continuous logic) model involves a larger number of parameters and interaction functions to be

defined, but also can revealmore of the dynamical range of behaviors thatmay be exhibited by a circuit. In practice, lack of appropriate data

for the choiceof interaction functionsandparameters limits theutility of thismodeling formalism.However, suchmodels have theadvantage

that, by normalizing all variables to the range 0–1, it is straightforward to mix this continuous notation with the Boolean notation
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correctly. For example, for the Boolean model (Fig. 4A), the

assumed total delay between changes in mRNA and protein

levels equals half the periodof oscillation.However, it wouldbe

wrong to imagine that this constraint implies a limit on the time

it takes for mRNA molecules to be transcribed, modified,

transported to the cytoplasmand translated. The reason is that

we could equally have formulated the model based on a delay

between protein level and the resulting change in transcribed

mRNA level. In that case, we might have concluded (equally

incorrectly) that there is a limit on the time it takes for trans-

cription initiation, RNA elongation, and mRNA editing. In fact,

all we can conclude from the Boolean model is that the sum of

all non-linearities (including delays) in themodeled circuitmust

equal the period of oscillation.

The Boolean model of Fig. 4A has only one parameter: the

mRNA–protein level delay. ODE-based models introduce

many more parameters (10 in Fig. 4F), thus requiring even

more careful interpretation. Some examples are discussed in

the caption to Fig. 4.

Figure 4 is by no means a comprehensive list of all the

modeling formalisms that could be usefully employed. Notab-

ly, stochastic(11,12) and multi-valued logic(18) models are not

discussed. Stochastic frameworks may prove essential for

modeling situations involving fewmolecules or where diversity

generation is important (e.g., in the immune system). Multi-

valued logic offers a useful balance betweenmodel complexity

and representation / analysis powers.

Modeling gene regulation during development

Developmental genetic regulatory models are distinguished

by the need for multicellular representation of gene activity.

At any given developmental stage, cells within each territory

will share the same set of active genetic regulatory interac-

tions. Cells in different territories will have different gene

activities. We visualize the set of gene interactions specific

to a particular cell type at a particular time as the ‘‘View

From the Nucleus’’ (VFN) of that cell type.(6) By contrast, the

set of all gene interactions (in all cell types and at all

developmental stages) constitutes the ‘‘View From the

Genome’’ (VFG). From a modeling and simulation point of

view, each VFN is a specific subset of the genes and

interactions represented in the VFG. During simulation, each

cell inherits the entire genome (i.e., the VFG), but its gene

Figure 4. (Continued )

described in (A).C: Samemodel as (A) and (B), represented with a delay-differential equation (after Ref. 22). Differential equationmodels

have theadvantage that themodeled interactions can take the formof ‘‘pseudochemical reactions’’ (where the rateof changeof a product is

modeled as the algebraic difference between the rates of its production and degradation). Here the rate of mRNA transcription is increased

in direct proportion (Vu) to the ubiquitous activator. It is decreased by a function of P that mimics the occupancy of P on its target cis-

regulatory binding site and the effectiveness with which bound P inactivates transcription. The power ‘‘n’’ on the P occupancy function

models the degree of non-linearity of the effect of P on transcription. With this formalism, we discover an additional property of the circuit:

irrespective of the value of dt, true oscillations require that the repressive effect of P onmRNA transcription be non-linear with n>1. A linear

repression function, such as (1�P) can only produce damped oscillations (where the amplitude of successive peaks increases indefinitely,

or decreases to zeroover time). See (D) for exampledampedoscillations.D:Althoughall of the abovemodels require a finite delay between

mRNA and P, oscillatory behavior can also be obtainedwithout explicit delays. The simplest suchmodel is shown in (D). As themRNA and

protein degradation rates (Vd1 andVd2) are reduced to zero, the oscillations of themodel approach constant amplitude. Although thismodel

is attractive for its simplicity, it has the undesirable property that its variables cannot represent concentrations or activity levels since they

must take negative values for oscillations to occur. One can assume a 2nd set of variables P0 ¼PþCp andmRNA0 ¼mRNAþCmRNA such

that P0 and mRNA0 are always positive; but it is difficult to explain such a transformation biologically. E: Another two-equation model that

oscillates without an explicit delay term. This model has the advantage that its variables are always positive and can therefore represent

concentrations or activity levels. Themodel here is basedon amechanismproposed inRef. 23. Instead of delay, the rate of changeof P has

two thresholds: one for when P is decreasing, and another for when P is increasing (this is due to the two non-linear functions highlighted in

red and green). The outcome is similar to (C) in that P follows the mRNA level with a time lag (with additional non-linearity). Comparison of

(C) and (E) provides a cautionary lesson in interpreting such phenomenological models too literally. Both models generate oscillatory

behavior. But themost distinct feature of (C), the requirement for an explicit delay termbetweenmRNAandP, is absent in (E). This apparent

contradiction is just because it is possible to model the same phenomenon using very different mathematical approximations. The

processes modeled as delay in (C), are represented by non-linear interactions in (E). Neither model is more right or wrong than the other;

and neither should be interpreted too literally. Ultimately, bothmodels lead to the same observation: oscillations in these abstract networks

require non-linear regulatory interactions.F:Aswith the delay-basedmodels, the phenomenological interactions in (E) cannot be ascribed

to specificmolecular processes. The simplestmodel whose terms could be interpreted as concentrations is shown in (F). The first equation

models transcription of nuclear RNA (nRNA). The repression of transcription by P is modeled using a ‘‘non-competitive inhibition’’ type

formalism. The second and third equations model mRNA and protein production/decay. Even though (F) is a massive simplification of the

many molecular processes involved, it nonetheless ‘‘boasts’’ 10 ‘‘kinetic’’ parameters (shown in lavender). To have any confidence in the

model as a reflection of the modeled network, it is necessary to estimate these parameter values and demonstrate that the model is

insensitive to all plausible variations in parameter estimates.
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expression state is the VFN inherited from its parent cell

type. This VFN may then be modified through intracellular

and intercellular interactions.

In our NetBuilder (http://strc.herts.ac.uk/bio/maria/Net-

Builder/) network capture and simulation software,(7) we use

the convention that inactive genes (and their outputs) in VFNs

are either shown in light gray, or omitted from the view, but the

position and connectivity of all genes remains the same as

represented by the VFG. Figure 7B shows an example VFG;

while Fig. 7C shows twoVFNs of the same network. SeeRefs.

5,6,14 for more examples.

Putative building blocks of animal GRNs

We suspect that animal GRNs are modular in structure in that

there is anenumerably small set ofGRN ‘‘buildingblocks’’ from

which larger GRNs are constructed. As with engineered

systems, it is likely that larger modules will be hierarchically

built up from combinations of smaller ones. Thus, at the top of

the hierarchy, there can be a very wide variety of large GRN

modules, while at the bottom of the hierarchy, the number of

small building blocks can be limited. For example, consider

the different ways in which a gene may regulate its own

activity. Mechanistically, there are only two possibilities:

enhancement, or repression. Depending on kinetic parameter

values (e.g., association/dissociation constants), each of

these can lead to just a few canonical forms of behavior. A

self-enhancing feedback loop (also known as positive feed-

back or auto-regulation) can:

* amplify the effect of an incident regulatory input such as an

intrinsic, cell-specific factor, or an intercellular signal;

* rapidly drive the expression level of an activated gene;

* maintain gene expression in response to a transient acti-

vating signal.

Similarly, self-repression (negative feedback) by a gene

may:

Figure 5. Putative intracellular transcriptional positive feedback lock-on switches.A:Single gene with autocatalytic feedback. The gene

is initially activated by one or more regulatory factors (in early development, the activator may be maternal). Once activated, the gene

remains maximally active because its protein product is a transcriptional enhancer of itself. B: Simulated gene expression (protein

concentration) level as a function of activator concentration for a gene without positive feedback (i.e., circuit and equations equivalent to

Fig. 1).C:As (B) butwith autocatalytic feedback (i.e., the circuit shown inA). Note the threshold-like response curve. This is an example of a

system feature brought into focus through simulation. While this observationmay be obvious in the current toy model, it serves to illustrate

the explanatory utility of simulation. In larger-scalemodels, similar insights can bemuch easier to arrive at throughmodeling and simulation

than through ‘‘thought experiments’’ with box and arrow diagramsD:Example of an intracellular positive feedback lock-on switch involving

more than one gene. Here driver and driven activate each other, forming a two-gene positive feedback loop. E: Simulation of expression

profiles of the two genes over time. The driver gene is the one that receives an initial activating input. Note how the activity of the second

(driven) gene closely follows that of the first. In this example, the activator signal (shown in blue) is only ‘‘on’’ very briefly at the beginning of

the simulation, but is enough to trigger the positive feedback loop between the genes such that their expression levels rise on to saturation

even though the activator is no longer present. Once activated, the genes remain on (presumably until one or more dominant repressors

(not shown) disrupt the feedback).
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* limit the rate of expression of the gene to a fixed steady-

state level; or

* cause the expression level of the gene to oscillate.

It is straight-forward to construct combinations of the above

behaviors by mixing positive and negative feedback. For

instance, one may imagine a gene that expresses at a fixed

level in response to very small or transient extracellular

changes. Such a genemight use autoregulation to amplify the

signal and self-repression to produce a predetermined level of

expression once an input has been detected.

Figures5–7describe someexampleputativeGRNbuilding

blocks that we have come across while reverse engineering a

GRN that operates very early on during the development of

sea urchin embryos.(5,14) These include examples of:

* Single and two-gene positive feedback loops that appear to

be used as ameans of ensuring the unidirectional progress

of developmental processes (Fig. 5).

* Positive feedback (community effect, Ref. 19) between

genes in different cells, mediated by complex signaling

pathways (Fig. 6). These appear to be used in develop-

ment to ensure that all cellswithin a territory adopt the same

fate.

* Repression gene cascades, which appear to be used to

define sharp spatial boundaries between cells of different

future territories (Fig. 7).

The use of modeling to explore the dynamics of each of

the above putative building blocks is discussed in the ac-

companying figure captions. Needless to say, the putative

building blocks presented in these figures represent a small

proportion of the likely total number that must be utilized in

animal GRNs. We hope readers of this article will seek, find,

and present many more in future.

Discussion

As discussed earlier and illustrated in Fig. 4, abstract models

have relatively few parameters and so, on the one hand, it is

easy to explore their behavior and build models with them. On

the other hand, the parameters they do have are combinations

of many factors. In contrast, more detailed models suffer from

an explosion in the number of their parameters; as a com-

parison of Fig. 4A and F reveals. As illustrated in cartoon form

inFig. 8, a largenumberof parameters canmake it verydifficult

to compare alternative models. Paradoxically, the opposite

can also be true. The network structure of cellular processes is

sometimes so intricately defined as to make their behavior

largely independent of parameter values, see for example

Refs. 20,21.

Figure 6. Putative intercellular positive feedback loops

implementing a ‘‘Community Effect.’’(19) A: Schematic wiring

diagram showing the necessary interactions between genes in

three cells. Note that the genetic network in all three cells is

identical, and signaling only takes place between neighboring

cells. The blue genes are in a positive feedback loop with their

counterparts in neighboring cells (through the ligand–receptor

interactions symbolically represented by double chevrons). The

green genes are upstream activators of the blue genes. As with

the circuits in Fig. 5, there is a threshold below which the

activator signal cannot trigger the circuit on, but any signal level

above this value is enough for activation. For the illustrative

simulationresults in (B),wehavespecified theextremecondition

where only the greengene in cell 1 is active, and that at only 10%

of its maximal rate (green curve). Nonetheless, as the graphs

show, the downstream genes in all three cells are activated to

near their maximal rates due to the intercellular positive feed-

back loops.Note that cell 3,which is farthest fromcell 1, receives

the effect of the activator in cell 1 only via cell 2, and as a result is

activated slightly later but approaches nearmaximal expression

levelsnonetheless.Notealsohow thegene incell 2hasaslightly

sharperexpression profile because it receivespositive feedback

from two neighboring cells (whereas cells 1 and 2 have only one

neighbor each). In Fig. 5E, the activator signal was turned on

maximally, but only for a brief moment. Here, the activator gene

is turned on at a low level but left on indefinitely. In both cases,

even an activation signal that is both low-level (but above

threshold) and short-duration is enough to drive the genes in the

loop to saturation expression levels.
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The reverse-engineering methodology outlined earlier

address the above conundrum by seeking to identify para-

meter correlations before parameter values are considered.

This is achieved by resolving the network structure first,

then identifying the types of interaction between the nodes

in the network, and only then considering the dynamic effects

of parameter values. The particularity of a given large GRN

does not lie in the specific set of small GRN modules of

which it is composed. These building blocks are utilized over

and over again in diverse GRNs that accomplish different

developmental tasks, such as building different parts of the

body. The particularity of large GRNs is to be found at the

highest level of their organization, and this is what is made

explicit in the network structure. There are probably a very

large number of different large GRNs because there is a

very large number of different ways that a limited set of

elemental modular mechanisms can be linked together. This

is the GRN feature that underlies the diversity of develop-

mental process, and this is also why the primary task in GRN

analysis is to resolve the network structure and its link-

ages. A useful complementary approach may be to first

identify minimal complexity building blocks, then search

for larger blocks using these minimal blocks, and so on hier-

archically. The combination of these top-downand bottom-up

Figure 7. Anexample putative circuit block for defining sharp spatial boundaries. Supposegene1 is differentially expressed in twogroups

of cells.A: The simplest circuit for boundary definition between the two cell types would involve gene1 directly activating other genes. If, for

simplicity, wemodel all geneswith the samekinetic equations and parameters, then gene2expressionwill closely followgene1 expression,

as shown in the simulation results below. B: Activation through a double-repression cascade (top: ‘‘View from the Genome,’’ bottom:

simulated gene expression profiles). Again, all genes aremodeled with the same kinetics. Lifting a repression can result in a sharper rise in

activity for the downstream gene, thus allowing greater control of its expression. This is due to the possible ‘‘priming’’ role of ubiquitous

activators (black arrows). The effect is like locking down (repressing) a catapult while it is loaded (acted on by ubiquitous activators), then

suddenly releasing the lock (lifting the repression). C: Illustration of how the repressor cascade can lead to differential expression in

neighboring cells. Top, ‘‘ViewsFrom theNuclei’’ of two cells inwhich activator is differentially regulated.Gray text and lines indicate inactive

network components in a cell. Bottom, simulated expression curves for the gene 2 protein in the two cell types. Cell 2 has inherited a higher

concentration of an activating factor than cell 1. As with the circuits in Figs 5–6, there is a concentration threshold below which the acti-

vating factor cannot trigger the target gene (see E). In cell 1, activator concentration is below this threshold and hence gene1 is not active.

The result is activation of theRepressor (lavender)gene (by theubiquitousdriver, blackarrow) and repressionofgene2 (green). In cell 2, the

situation is reversed and gene2 is repressed (after a brief small transient while the repressor gene turns on). D: Direct activation of one

gene by another has no distinct activation/inactivation threshold and results in a fairly smooth direct relationship between activator

concentration and gene2 activity. E: In contrast, the activator–response curve of a repression cascade has a distinct activation threshold

(blue arrow) due to the highly non-linear dependence of gene2 expression on activator level. When the activator is an asymmetrically

distributed factor, such a repression cascade will define a sharp gene-expression boundary between cells with factor concentrations just

below and just above the threshold.
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strategies offers exciting opportunities in reverse-engineer-

ing GRNs.
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