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Pendulum set description

Description of the pendulum setup in this section refers mostly to the control problems. For
connection, interface and explanation on how are the signals measured and transferred to the
PC refer to the ‘Installation & Commissioning’ manual.

As shown in Figure 1 the pendulum setup consists of a cart moving along the 1 [m] length
track. The cart has a shaft, to which two freely hanging pendulums are attached. The cart can
move back and forth causing the pendulums to swing.

Pendulum arms

Centre point

Sprocketwheel ¥/  / /.

Motor Mounting
Plate

Arm fixing screw

\_Ribbon cable
Adjustable feet

Fig. 1: Digital Pendulum Mechanical Unit.
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adjustment bolts

The movement of the cart is caused by pulling the belt in two directions by the motor attached
at the end of the rail. Applying voltage to the DC motor we control the force, with which the
cart is pulled. The value of the force depends on the value of the control voltage. That voltage
is our control signal. The two variables that are read from the pendulum through the encoders
are the pendulum position (angle) and the cart position on the rail. The controller’s task will
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be to change the DC motor voltage depending on these two variables, in such a way that the
desired control task is fulfilled (stabilizing in upright position, swinging or crane control).
Figure 2 presents how the control system is organised.
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Fig. 2: Pendulum control system.

In order to design any control algorithms one must understand the physical background
behind the process and carry out identification experiments. The next section explains the
modelling process of the pendulum.

33-936-1V71 5



BFeedback

Feedback Instruments Limited

PENDULUM MODEL DIGITAL PENDULUM
Control Experiments

Pendulum model

Every control project starts with plant modelling, so as much information as possible is given
about the process itself. The mechanical model of the pendulum is presented in Figure 3.

Fig. 3: Pendulum phenomenological model.

The phenomenological model of the pendulum is nonlinear, that means that at least one of the
states (x and its derivative or # and its derivative) is an argument of a nonlinear function. Such
a model to be presented as a transfer function (a form of linear plant dynamics’ representation
used in control engineering) has to be linearised.

Summing the forces working on the pendulum and cart system and the moments we obtain
the following nonlinear equations of motion:

(m+ M)x + bx + ml@ cos@ —mlO* sind = F, (1)
 +ml*)6 — mglsin @ + mlicos@ + do = 0. )
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Very often control algorithms are tested on such nonlinear models. However for the purpose
of controller design the models are linearised and presented in the form of transfer functions.
Such a linear equivalent of the nonlinear model is valid only for small deviations of the state
values from their nominal value. Such a nominal value is often called the equilibrium point.
The pendulum has two of these, one is when 6 = 0 (inverted pendulum) and the other when 6
= 1 (hanging freely — crane control).

The inverted pendulum is an unstable system, which in terms of behaviour means that the
plant left without any controller reaches an unwanted, very often destructive state. Thus for
such plants it is useful to carry out simulation tests on the models before approaching the real
plant.

To complete the model given by motion equations (1) and (2), we must introduce the value of
all parameters. The following table gives the values of the parameters:

Table 1. Pendulum parameters

(- Parameter Value 0\
g- gravity 9.81 m/s?
I- pole lenght 0.36t0 0.4 m
- depending on the configuration
M- cart mass 2.4 kg
m- pole mass 0.23 kg
L about 0.099 kg-m?
I- moment of interia of the pole - depends on the configuration
b - cart friction coefficient 9.81 m/s
: o although negligible,necessary
\d - pendulum damping coefficient in the model- 0.005 Nsm/rad )

Two of the things have to be kept in mind when designing the controllers. Both the cart
position and the control signal are bounded in real time application. The bound for the control
signal is set to [-2.5V .. +2.5V] and the generated force magnitude of around [-20.0N ..
+20.0N]. The cart position is physically bounded by the rail length and is equal to [-0.5m ..
+0.5m].

The pendulum is a SIMO plant — single input multiple output (Figure 4). The model described
by (1),(2) is still missing the translation between the force F and the actual control signal,
which is the control voltage « that we supply with the PC control card. Assuming the relation
between the control voltage » and the generated cart velocity is linear, we might add the
velocity vector generated by the motor to the model and ignore the F vector, or translate the

33-936-1V71 7



BFeedback

Feedback Instruments Limited

PENDULUM MODEL DIGITAL PENDULUM
Control Experiments

control voltage u to the generated force F under the assumption that constant voltage will
cause the cart to move with constant velocity:

du
F=k, 2, 3)
dt
where kj, — is the gain between the u voltage derivative and the F force. However one must
remember that derivative introduction in models especially in Simulink may cause simulation
problems.

. ®
Pendulum —X_>

Fig. 4: Pendulum model

Exercise 1 — Nonlinear model !5

Introduction

For the initial exercise the user has been provided with the pendulum model described
by equations (1) and (2). The model shown in Figure 4 can be opened in Simulink -
‘pendmod_nonlin.mdl’.

Task

For the beginning the user is advised to check the responses of such model in the
situation where zero u voltage is applied. You can change the value of the 6, (theta0 —
initial pendulum angle) and see how the pendulum responds.

Exemplary results and comments

Two of the values of the angles 8, are particularly interesting (6, = 0, 6, = m). First,
which is an equilibrium point for which small disturbance for an open loop system will
cause the pendulum to fall down, swing and finally settle down in 6, = n. The small
disturbance can be introduced by small initial angle selection, for example 6,= 0.001.
The second 8, = & is an equilibrium in which the pendulum will always settle when no
F force is applied.

The results for initial , value of 8,= 0.001, are presented in Figure 5. Because of the
friction forces the pendulum swings until it settles in )= m.
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Perndulurm angle and cart position
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Fig. 5: Pendulum model results for §,= 0.001.
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Model linearization

To carry out model dynamics analysis for open loop' systems like Bode plots, poles and zeros
maps, Nyquist plots, root locus (for closed loop” systems only) the model has to be linearised.
Linearization of a given phenomenological model can be done for the pendulum and in the
given equations (1) and (2) we could substitute the nonlinear functions (sine and cosine) with
their linear equivalent. Such a linearization in a working point is done with Taylor
approximation of the nonlinear functions. For small angle deviations in an equilibrium point
of § = 0 (inverted pendulum) we can assume that the following functions can be linearised:

sind = 6, 4)
cosf =1, Q)
0> =0. (6)

Thus the motion equations (1) and (2) take the form:

(m+M)%+bx+mld =F, (7
A +ml*)0 —mgl +mlx + dd = 0. (8)

One must remember that the equations (7) and (8) will only be valid for & = 0. For the
position where 8 = 7 (crane control) the following substitutions have to be made:

sind = -6, ©)
c‘(;se =-1, (10)
0 =0. an
Thus the motion equations (1) and (2) take the form:
(m+ M) +bx—mld =F, (12)
A +mil*)0 +mgld — mik +dO =0. (13)

Linear model of the pendulum, just as the nonlinear has one input — force F, and two outputs
which are the 6 angle and the cart position x (Figure 4). However in the inverted pendulum
task we are mostly interested in the 0 angle stabilization thus we may treat the cart position as

! Open loop system — the plant without a controller
2 Closed loop system — the plant and controller in negative feedback loop, see “Control” section for
more information.
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an uncontrolled output. With one input F and one output & two linear models in the form of
transfer functions can be obtained, each for small deviations of the & angle form two
equilibrium points of 6 = [0, n]. Remember that the translation between the control voltage
and the force should be added (equation 3).

Exercise 2 — Linear models Y\

Introduction

Two of the linear models described by the equations (7),(8) and (12),(13) have been
created. (The user is advised to transform (7),(8) and (12),(13) into transfer function
form on his own). One must remember that both of these transfer functions resemble
the behaviour of the real plant only for small deviations of the 8 angle. The models
‘pendmod_lin_stable.mdl’ and ‘pendmod lin_unstable.mdl’ hold the appropriate
transfer functions:

(14)

O(s s
G(s) = () _ S >
F(s) dy;-s’+d,-s"+d s +d,

For both of these models the denominators’ parameters’ signs will differ. The x
position output is calculated based upon the output of the G(s) transfer function, which
is 0. For the stable transfer function, that is the representation of the pendulum
behaviour in the surrounding of the = 7, an offset of o., = 7 has to be added to the
output of the transfer function. That is our initial condition.

x - 1
S
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U
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=
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Fig. 6: Example of linear Simulink model.

Task

The user is advised to compare the responses of the linear and nonlinear pendulum
models in open loop system (no controller). Also with the use of Matlab the Bode
diagrams, zeros and poles maps can be drawn to carry out initial dynamic response
analysis of the pendulum. In the transfer function form of the model the initial
condition is equal 0 thus in order to see the linear model response we have to stimulate
it with a control voltage pulse to see the reaction.
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Exemplary results and comments

The dynamic response of the unstable transfer function will be different from the
nonlinear system. Distorted by small voltage # impulse will not settle in the equilibrium
0 = &. The transfer function is valid for small deflections of @ thus it is unstable and the
response grows to infinity without any control action.

The other transfer function valid for small deviations of § but for an equilibrium of
6 = r will behave similarly to the nonlinear model around the point § = 7.

Model identification

The phenomenology analysis delivers a model that we ‘think’ fits the pendulum the best.
However we know that it is just some approximation. We might have made mistakes
analysing the phenomenology — wrong model structure choice, or could choose wrong
parameters’ values. To have an adequate model we could tune the phenomenological model.
Because of the fact that it is nonlinear, the identification and tuning of that model can be a
very difficult task (gradient methods). To simplify the identification, modelling and control
the control algorithms will be designed based upon the dynamics of the linear models. They
will be tested however on the nonlinear model and plant. Furthermore the identified models
will be discrete as such models are obtained in the course of the Least Mean Square
identification methods implemented in Matlab. Any of the continuous models can also be
transformed for the comparison purpose into the discrete form. The obtained discrete models
can be also transformed into continuous equivalent.

The plant identification theory is very broad and solves numerous problems. In the
identification experiments of the linear pendulum models it is convenient however to use the
identification Matlab tool.

Before any model identification procedures of the pendulum setup will be carried out we have
to describe, through a simple real time simulation, the character of the dead zone. The dead
zone is a nonlinearity, which could influence the model validity. Because of the static friction
forces with infinitesimally small values of the control signal the cart will not move.
Furthermore the static friction force may not be symmetrical. We can compensate that by
simply adding additional voltage offset value. What is the value of that offset that we have to
add is the outcome of the exercise 3.
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Exercise 3 — Static friction compensation Y\

Introduction

Since the control signal is the voltage that we supply the dead zone value will be
expressed in volts. As explained it will be different for two movement directions. It has
to be identified because the pendulum motor belt can be set up differently by the user
and thus cause different static friction forces. The friction identification can be carried
out with ‘PendulumFriction.mdl’. In the simulation the control voltage is increased
until the cart moves in the positive direction. The cart is stopped. Then the control is
decreased until the cart moves into the negative direction. The voltage values for which
the cart begins to move are these offset values.

Task
According to the ‘Installation & Commissioning’ manual run the friction identification
simulation on the pendulum.

Exemplary results and comments

The results will be presented in displays. You can correct the friction compensation
value in all simulations the ‘Friction Compensation’ block (Figure 7 and 8), which is
placed in the ‘Feedback DAC’ block. However if the result will strongly differ form 0.1
[V] it may appear to be biased by other nonlinearities and should be discarded.

Eoaml
— 7T

Friction Compensation

Fig. 7: Friction compensation block

E Function Block Parameters: Friction Compensation

linear [maszk)

Parameters
Friction Compensation M agnitude in Megative Direction
K
Friction Compensation Magnitude in Positive Direction

K

oK Cancel | Help Lpply |

Fig. 8: Friction compensation block menu (double click the block to open).
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With the static friction identification carried out we can try to identify the first dynamic model
of the pendulum. Although the most interesting signal relation is the one between the control
signal u and the angle 8 we can first try to identify the linear model between the control signal
u and the cart position x. That model will be used for first PID controller design and tests in
the “Pendulum control” section.

There are few important things that the control system designer has to keep in mind when
carrying out an identification experiment:

= Stability problem — if the plant that is identified is unstable, the identification
has to be carried out with a working controller, which introduces additional
problems that will be discussed further on. If the plant is stable and does not
have to work with a controller the identification is much simpler.

= Structure choice — a very important aspect of the identification. For the linear
models it comes down to the numerator and denominator order choice of the
transfer function. It applies both for the continuous and discrete systems.
As far as the discrete models are concerned the structures are also divided in
terms of the error term description: ARX, ARMAX, OE, BJ.

= Sampling time — the sampling time choice is important both for the
identification and control. It cannot be to short nor can it be too long. Too short
sampling time might influence the identification quality because of the
quantization effect introduced by the AD. Furthermore the shorter the sampling
time the faster the software and hardware has to be and more memory is
needed. However short sampling time will allow for aliasing effect elimination
and thus anti aliasing filters* will not have to be introduced. Long sampling
times will not allow for including all of the dynamics.

= Excitation signal — for the linear models the excitation choice is simple. Very
often designers use white noise however in industrial application it is often
disallowed. It is attractive however because of the fact that it holds very broad
frequency content thus the whole dynamics of the plant can be identified. If the
dynamics are not to complex several sinusoids with different frequencies can
be summed to produce a satisfactory excitation signal.

= [dentification method — usually two methods are being used, the Least Mean
Square (LMS) method and the Instrumental Variable method. The LMS
method is the most popular and implemented in Matlab. The method minimizes
the error between the model and plant output. The optimal model parameters,
for which the square of the error is minimal is the result of the identification.

? More information about these structures can be obtained during the System Identification courses.
* These are the basics of the Digital Signal Processing course. For more insight the user is asked to
study more on signal processing and digital control.
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Cart model identification

The following exercise includes all of the mentioned facts and provides an identification
experiment, which results in a discrete model of the moving cart due to the control voltage
application. At this point the pendulum is ignored, its movement is treated as a distortion. It
would be best to immobilize the pendulum to reduce the disturbance.

Exercise 4 — First model identification =

Introduction

All of the control real time simulations are carried out with a sampling time of 7Ts =
0.001 [s]. In the identification experiments the sampling time varies. For the
identification the Matlab identification interface is used. Here the sampling time is set
to Is = 0.05 [s].

The identification experiment is carried out with the ‘Cartldent.mdl’. The excitation
signal is composed of several sinusoids. The experiment lasts 20 seconds, two signals
are collected in a form of vectors and are available in the Workspace.

Task

Carry out the identification experiment, collect the data. With the use of Matlab
identification interface (type ‘dent’ at the command line - the identification interface
will open (Figure 9)) identify a discrete model.

B ident: Untitled M=
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I == |
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EE ez L
Data Viewws
Ta To
Workspace | [ LTI ‘dewer
Trazh “aliclation Data
Cormpiling ...

Mocdel Views
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Fig. 9: Matlab identification interface.
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Upload the signals for the identification from Workspace. For simplicity assign the
input output data to the # and y vectors:

u = simout(:,3);
y = simout(-, 1),

Make sure you specify the proper sampling time in the ident Data Import interface.
Select the start time to be 0. To identify a parametric model select the proper structure
of the model (e.g. OFE 2 4 1 ). Press ‘estimate’. You can check the quality of the
response of the identified model by the step response analysis, transient response, pole
and zeros map, frequency response and model residuals.

Exemplary results and comments

The step response of the identified system can be similar to the one presented in Figure
10. If the model is transferred into Workspace it can be compared against the discrete
equivalent of the continuous transfer function. In order to obtain the discrete form use
the ‘c2d” command. Make sure you specify the proper sampling time.

Step responze

Model step response

0.5

u} 05 1 15 2
time [sec]

Fig. 10: Step response of the model.

Compare the step responses or bode plots of the two systems (‘step’ and ‘bode’
commands). You can also transform the discrete models into continuous equivalent
with the means of ‘d2¢’ command.

The obtained model is used in the first PID control exercise.
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Crane identification

Similar identification experiment can be carried out when identifying the transfer function
between the control voltage # and the pendulum angle 6. As presented in the ‘Model
linearization’ section two linear models can be identified. First which holds for small
deviations of angle 6 around the 6 = 0 point, and the other when # = 7. In this section the
crane function of the pendulum is considered, thus 6 = 7.

Exercise 5 — Crane linear model identification =~

Introduction

The crane linear discrete model can be identified in the same way as the cart model. For
the identification the Matlab identification interface is used. The identification
experiment is carried out with the ‘Craneldent.mdl’. The excitation signal is composed
of several sinusoids. The experiment lasts 20 seconds, two signals are collected in a
form of vectors and are available in the Workspace. The sampling time is set at 7s =
0.05 [s].

Task
Carry out the identification experiment, collect the data. Upload the signals for the
identification from Workspace. For simplicity assign the input output data to the » and
Y vectors:

u = simout(:,3), y = simout(:,2),

With the use of Matlab identification interface identify a discrete model.

Upload the signals for the identification from Workspace. Make sure you specify the
proper sampling time. Select the proper structure of the model (e.g. OE 2 6-{or
higher} 1). Press ‘estimate’. You can check the quality of the response of the identified
model by the step response analysis, transient response, pole and zeros map, frequency
response and model residuals.

Exemplary results and comments
The response of the model is compared to the pendulum output in Figure 11. If the
model is transferred into Workspace it can be compared against the discrete equivalent

of the continuous transfer function (14). In order to obtain the discrete form use the
‘c2d’ command. Make sure you specify the proper sampling time.

33-936-1V71 17



BFeedback

Feedback Instruments Limited

PENDULUM MODEL DIGITAL PENDULUM
Control Experiments

The models you obtain may strongly depend on the mounting of the belt, and the way
all the bolts are screwed.

Step response
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Fig. 11: Identified model and pendulum response to excitation.
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Inverted pendulum identification

Inverted pendulum model identification is a difficult task mainly for one aspect — stability.
The inverted pendulum is unstable and has to be identified with a running, stabilizing
controller’ — closed loop identification®. The controller introduces output noise and control
signal correlation, which leads to model corruption. This correlation can be broken by
introducing additional excitation signal, which is added to the control signal u (Figure 12).

If the power of the signal 7 is substantial comparing to the » noise power the proper model
should be identified.

r(t)

desired t
Yoeusea (1) >

e(t), 0 & (9

Controller Plant

c
T_

Fig. 12: Unstable system identification.

Such approach will only allow for the linear model identification of the transfer function
between the voltage control signal # and the pendulum angle 6, for small deviations of the
angle around the equilibrium point of § = 0.

More intelligent identification methods should be applied for complete nonlinear pendulum
model identification (gradient methods).

Exercise 6 — Inverted pendulum linear model identification M

Introduction

The inverted pendulum linear discrete model can be identified only with a controller.
This is a major difference comparing to the previous exercises. For this identification
task the Matlab identification interface is used. The identification experiment is carried
out with the ‘InvPendldent.mdl’. The excitation signal is composed of several
sinusoids. The experiment lasts 20 seconds, two signals are collected in a form of
vectors and are available in the Workspace.

> The pendulum control aspect is explained in the *Pendulum Control’ section.
® Closed loop system identification is a broad topic and more advanced users are advised to refer to
identification literature to get more insight.
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It is IMPORTANT that before the identification experiment is started, you place the

cart in the ZERO position and settle the pendulum in the bottom vertical position,
0=rm.

Task
Carry out the identification experiment, collect the data. The pendulum response to the

excitation will be as presented in Figure 13.

Pendulum response

Fendulum response

o 2 4 G g 10 12 14 16 12 20 22 24 26 28 a0
time [sec]

Fig. 13: Pendulum response.

Make sure that for the model identification you will use the data from the time when
the pendulum is in the upright position. As shown on the plot it is safe to use data from
the 10" second of the experiment. With the use of Matlab identification interface
identify a discrete model.

Upload the signals for the identification from Workspace. Make sure you specify the
proper sampling time 7s = 0.01 [s]. Select the proper structure of the model (e.g. 2 6 1).
Press ‘estimate’. You can check the quality of the response of the identified model by
the step response analysis, transient response, pole and zeros map, frequency response
and model residuals.
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Exemplary results and comments

The response of the identified system can be as presented in Figure 14. If the model is
transferred into Workspace it can be compared against the discrete equivalent of the
continuous transfer function (14). In order to obtain the discrete form use the ‘c2d’
command. Make sure you specify the proper sampling time.

The obtained model will be used in the ‘Pendulum Control’ section for the controller
design.

Model and plant response
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Fig. 14: Inverted pendulum model vs. plant response.
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