Semiconductors

Materials that are neither metallic nor insulator.
Elemental Semiconductors: Si, Ge

S1 dominates IC industry: >99% 1s Si based devices)
Compound Semiconductors

— III-V semiconductors : GaAs (most widely used
compound semiconductor), InSb, InP

— II-VI semiconductors: CdS, ZnSe, ZnO
Alloy Semiconductors: HgCdTe, Al Ga,_, As, GaAs P,




Semiconductors
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Semiconductor Models — Bonding Model

» Lines represent shared
valence electron

» Circle represent the
core of Semiconductor
(e.g., Si atom)

» Visualization of a
vacancy point defect

» Breaking of an atom-
to-atom bond and
freeing of an electron

http://www.play-hookey.com/semiconductors/basicstructure.html




Review: Molecular Orbitals by linear combination of atomic orbitals

Quantum mechanics
Enengy .
& Schrodinger’s eqn.
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www.chembio.uoguelph.ca/educmat/ chm729/band/basic2.jpg




Semiconductor Models — Energy Band Model

Anti-Bonding Oroitals

4B

Bonding Criitals
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» Energy states bunch up into “bands” and energy states are so close to each
other in energy that they are approximately continuous.

» Depending on the energy difference between the bonding and antobonding
orbitals a gap opens up between the bands corresponding to the bonding and
antibonding orbitals where there are no allowed energy levels

www.chembio.uoguelph.ca/educmat/ chm729/band/basic2.jpg



Energy Band Model
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Band gaps of common semiconductors

Periodic table and semiconductors
Group Group Group Group Group
IIB IIIA IVA VA VIA R
1
- 1s
2 5 6
252p B C
3 13 14 15 16
3s3p Al Si P S
4 30 31 32 33 34
4s3d4p Zn Ga Ge As Se
5 48 49 50 51 52
5s4dSp Cd In Sn Sb Te
Element IV compound  III-V compound 11I-VI compound V-VI compound
Si(1.11) SiC (2.86 for AlP (2.85), GaP (2.26), ZnS (3.6), CdS PbS (0.37),
@ structure) InP (1.28) (2.42) PbSe (0.27),
’ PbTe (0.29)
Ge (0.67) AlAs (2.16), GaAs (1.43), ZnSe (2.7), CdSe
InAs (0.36), (1.73),
AlSb (1.6), GaSb (0.7), ZnTe (2.25), CdTe
InSb (0.18) (1.58) ~
t Energy gap in electronvolts (eV).




The difference between insulators, semiconductors,
and metals in the band theory framework

_EV
conduction Few electrons ~ e 2kT
band Thermal excitation

of electrons is easy

Eg ae
Eg
valence
band
Insulator Semiconductor Metal

Gap 1s very wide thermal excitation 1s || No or very narrow
~ 8 eV for SiO, easy kT~0.026 eV gap

~5 ¢V for diamond ||~ 1.12 eV for Si




Charge carriers and intrinsic semiconductor
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Doping and Dopants: Manipulating Charge Carrier
Densities in Semiconductors — n-type doping
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Doping and Dopants: Manipulating Charge Carrier
Densities in Semiconductors — p-type doping
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New hole is created here

http://www .play-hookey.com/semiconductors/basicstructure.html




Visualization of Doping using the energy band model
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Dopant-site Binding Energies.

Donors | Es | Acceptors | Eg |
Sb 0.039 ev B 0.045 eV
r 0.044 ev Al 0.057 eV
As 0.049 ev Ga 0.065 eV

In 0.16 eV

.~ Common Silicon Dopants. Arrows indicate the most widely employed dopants.

Donors (Electron-increasing Dopants)

Acceptors (Hole-increasing Dopants)

P«
As
Sb

Column V
elements

B«
Ga
In
Al

Column 11
elements




Density of States

» We talked about formation of bands but did not yet analyze
how the allowed states are distributed in energy.

» From quantum mechanics, g(E)dE: # of states cm™ in the
range E & E+dE; g(E) has units of cm> eV-!

Density of states in the conduction band

o
g(E)=— J2m (E—E,)

gk_(l:'] el

¢ (E) Density of states in the valence band

= (]

m* s
gv(E) = 71_223 \/2mh(E_Ev)




Fermi Distribution, Fermi Energy, and Fermi Level

» What is the probability that an electronic state with
energy E 1s occupied?
» Answer: Probability is given by Fermi-Dirac Distribution

1

F(E)= 14 o EEr )T

» E. 1s a parameter called the Fermi Energy. It is the
chemical potential (1) of the electrons in the semiconductor.

» By definition if E=E probability of occupation is V5.

» Comes from a statistical mechanics calculation. Assuming
Pauli exclusion principle, it 1s the most probable distribution
~on the condition that the total system energy 1s given.




Fermi-Dirac Distribution

F(E)
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Fermi level in an intrinsic semiconductor at T=0 K
is in the middle of the band gap

n= [ f(E)g.(E)dE

EV

p= [(1-f(E))g,(E)dE

E bottom




Calculation of Charge Carrier Concentrations in
Semiconductors

* /200 1/2 _
n= «/E(m;sz d c{n where N = E-E,
T°h 1+ E.

\/E (m: kT )3/2 Fermi integral of order 1/2

. 3/2
N = 2( 27om, kT ) <+ “Effective” density of conduction band states

2 E —FE
p=N,—F, (n.')|where n,'=——-=*
\/; 1/2 F F EF




Charge Carrier Concentrations in
Semiconductors — Simplified Expressions

» When E_ is away from the band edges (most cases)
E +3kT <E. <E, —3kT

» the expressions for n and p simplify to
= Nce(EF—Ec )/ kT

(E,~Ep )/ kT

p=Ne

» For intrinsic semiconductor E, the Fermi level for
intrinsic semiconductor is close to the midgap and

E—E )/kT E —-FE. )/ kT
n:p:nl:Nce(Z c) :Nve(v z)




Charge Carrier Concentrations in
Semiconductors — Simplified Expressions

» Intrinsic carrier concentration, n,

—E, /kT —E_./kT
ne ' =Ne"

l
e : —Nve( V)

I

2 —~(E,—E, )/ kT _
n>=NNe = 'n, =,/N,N_e

~E, /2kT

» Simplified expressions for n and p in terms of n, and E;.

o Er=E )/ kT

i 2
p=n o(EEp )/ KT = hp=n
i

n=n




Intrinsic carrier concentration vs T in Si, Ge, and GaAs
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Carrier distributions as a function of E position

Energy band
diagram

-

Density
of states

Occupancy
factors

(c) E.. below midgap

- e e e e .o

Carrier
distributions

—lb

g, (E)f(E)

g, ()1 - f(E)]

————




Carrier Concentration in doped Materials:
Manipulating E; and n and p by doping

» Consider a semiconductor with donor density Np.

» Since E-E1s small almost all donors and acceptors will be
ionized at room T. Charge neutrality requires that

qp—qn+gN} =0
p—n+qN, =0

2 . : : :
» NP = N, and elimination of p results in a quadratic equation for n

2
n

' _ 2 2 _
7’—n+ND—O = n"—=Nyn—n; =0

2 2

N, =10"=10*" ecm™ >>n, =10"cm™(at roomT )

2 n
n=&+\/(&) +nl.2 =>n=N, =) p=Nl
D




Carrier Concentration in doped Materials:
Manipulating E; and n and p by doping

Arguments are similar for a p-type semiconductor and
the result 1s 2

p=N, and n=——
“Power of doping”’: We can manipulate carrier
concentrations by manipulating dopant concentrations.

Processing implications: Need very pure material (ppb)

N =5x10% cm™

1

N, or N,=10"-10*cm™




Intrinsic Fermi level E,

n=puy
Nce(El.—Ec)/kT _ Nve(Ev—El.)/kT

3/2

E +E kT N E +E kT m,
E,=———"+—In| — |[=————+—1n —;
2 2 | N, 2 2 |\ m,
m*
g BB 3, f:] _
2 4 \mn ) At room T this term
/ 1s 0.012 eV for S1

This term 1s 0.56 eV for Si

» In an intrinsic semiconductor E.=E. is ~ (@ midgap




Dependence of E; on dopant concentration

n=N, = n o Br =B /AT
n-type N
E.—E =kT lr{—D)
n,
p=N, = n ol BiEr /KT
p-type

n.

1

E_E =iT zn(&)




Dependence of E; on dopant concentration
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T dependence of n and p
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