ChE 140B

Chemical Reaction Engineering

http://www.chemengr.ucsb.edu/~ceweb/courses/che140b/index.html

Enrollment code: 05173

Meeting Time: Tuesdays, Thursdays 9:30–10:45 a.m.
Engineering 2, Room 1519

Instructor: Professor Brad Chmelka
Office: Rm. 3327, Engineering II
Phone: (805) 893-3673
Fax: (805) 893-4731
E-mail: bradc@engineering.ucsb.edu
Office Hours: Flexible or by appointment

Teaching Assistant: Jeffrey Gopez
Office: MRL 2027
E-mail: gopez@umail.ucsb.edu
Office Hours: Mondays 1:30–3:30 p.m.
Engineering 2, Room 3201

Text: “Elements of Chemical Reaction Engineering”

Grading:

Homework Assignments: 25%
Mid-term Examination: 30%
Final Examination (Tues., Dec. 6, 8-11 a.m.): 45%

100%
ChE 140B

Chemical Reaction Engineering

Course Content

Objective: To provide and extend a basic understanding of chemical reaction engineering principles, with emphases on heterogeneous reaction processes and associated reactor designs.

The course will cover:

(1) Chemical Reaction Kinetics
 • Thermodynamic considerations
 • Reaction rate expressions: temperature, composition dependences
 • Catalytic reaction mechanisms

(2) Heterogeneous Catalysis and Reactions at Surfaces
 • Chemical and physical adsorption/desorption
 • Surface reactions and catalysis
 • Mass transport effects
 • Non-isothermal effects

(3) Design of ChemicalReactors
 • Non-isothermal conditions and reactors, safety
 • Non-ideal flow behaviors and considerations

(4) Chemical Reaction Engineering Applications
 • Petroleum refining, chemical processing, pharmaceutical manufacture, biochemical processes, environmental engineering, etc.
ChE 140B

Chemical Reaction Engineering

Instructor: Professor Brad Chmelka

Suggested References

Primary Text:

1. H.S. Fogler
 Elements of Chemical Reaction Engineering

Supplemental texts (available in main library or from Professor Chmelka)

2. L.D. Schmidt
 The Engineering of Chemical Reactions
 Oxford, 2005

3. R.I. Masel
 Chemical Kinetics and Catalysis
 Wiley-Interscience, 2001

4. I. Chorkendorff, J.W. Niemantsverdriet
 Concepts of Modern Catalysis and Kinetics
 Wiley-VCH, 2003

5. J.M. Thomas, W.J. Thomas
 Principles and Practice of Heterogeneous Catalysis
 VCH, 2005

6. C.H. Bartholomew, R.J. Farrauto
 Fundamentals of Industrial Catalytic Processes
7. H.F. Rase
 Handbook of Commercial Catalysts: Heterogeneous Catalysts
 CRC Press, 2000

8. H.H. Lee
 Heterogeneous Reactor Design
 Butterworth, 1985

9. C.G. Hill
 Chemical Engineering Kinetics and Reactor Design
 Wiley, 1977

10. J.M. Smith
 Chemical Engineering Kinetics

11. J.J. Carberry
 Chemical and Catalytic Reaction Engineering
 McGraw-Hill, 1976

12. J.B. Butt
 Reaction Kinetics and Reactor Design
 Prentice-Hall, 1980

13. R. Hughes
 Deactivation of Catalysts
 Academic Press, 1984

14. O. Levenspiel
 Chemical Reaction Engineering
 Wiley, 1972

15. R.B. Bird, W.E. Stewart, and E.N. Lightfoot
 Transport Phenomena
 Wiley, 1960
ChE 140B

Problem-Solving Strategies & Requirements

1. Draw a picture of the problem or system in question (e.g., a schematic diagram, flow chart, graph, etc.)

2. If the problem is complicated, first break it into smaller portions.

3. Consider carefully what you're being asked. Identify key concepts/ideas.

4. Identify the knowns & unknowns → Assign them ‘variable’ labels and translate them into mathematical relationships.

5. State clearly all assumptions. These often help simplify the problem, but need to be made critically and be justifiable.

6. Be systematic and thorough. Include written descriptions of your reasoning and page/text references to supporting information.

7. Work in algebraic form, substituting numbers (always with units) only at end. Do the dependences make physical sense? Are the units correct? Be careful.

8. Review your work for correctness.

9. Indicate numerical answers clearly by underlining or boxing final values.

10. Express written explanatory answers in complete sentences.

11. IMPORTANT: All submitted work must have a neat, professional appearance. This is essential for clear communication and reflects directly on the credibility of your results.
 - The pages should be stapled in the upper lefthand corner, with lines made using rulers or straight edges, neat organization, legible writing, and without extensive cross-outs or messy erasures. (Scrap paper or pages torn from notebooks are not acceptable.)
 - Below standard work will be subject to a 50% reduction in points before grading.
 - E-mail correspondence must be professional in content and format.