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Direct numerical simulation has been performed to explore the turbulence near a freely
deformable interface in a counter–current air–water flow, at a shear Reynolds number
Re? = 171. The deformations of the interface fall in the range of capillary waves of waves-
lope ak = 0.01, and very small phase speed-to-friction velocity ratio, c/u?. The results
for the gas side are compared to open–channel flow data at the same shear Reynolds
number, placing emphasis upon the influence of the waves in the interfacial viscosity–
affected region, and away from it in the outer core flow. Comparison shows a similarity
in the distribution of the turbulence intensities near the interface, confirming that for the
range of flow conditions considered, the lighter phase perceives the interface like a flexi-
ble solid surface, at least in the limit of non–breaking waves. Overall, in a time–averaged
sense, the interfacial motion affects the turbulence in the near–interface region; the most
pertinent effect is a general dampening of the turbulent fluctuating field which, in turn,
leads to a reduction in the interfacial dissipation. Furthermore, the turbulence is found
to be less anisotropic at the interface than at the wall. This is confirmed by the analysis
of the pressure–rate-of-strain tensor, where the effect of interfacial motion is shown to
decrease the pressure–strain correlation in the direction normal to the interface and in
the spanwise direction. The analysis of the turbulent kinetic energy and Reynolds stress
budgets reveals that the interface deformations mainly affect the so-called boundary term
involving the redistribution of energy, i.e. by the action of pressure, turbulent fluctua-
tions and molecular viscosity, and the dissipation terms, leaving the production terms
almost unchanged. The non–zero value of the turbulent kinetic energy at the interface,
together with the reduced dissipation, implies that the turbulent activity persists near the
interface and contributes to accelerating the turbulent transfer mechanisms. Away from
the interface, the decomposition of the fluctuating velocity gradient tensor demonstrates
that the fluctuating rate-of-strain and rate-of-rotation at the interface influence the flow
throughout the boundary layer more vigorously. The study also reveals the streaky struc-
ture over the deformable interface to be less organized than over a rigid wall. However,
the elongation of the streaks does not seem to be much affected by the interfacial motion.
A simple qualitative analysis of the quasi–streamwise vortices using different eduction
techniques shows that the interfacial turbulent structures do not change with a change
of boundary conditions.

† Corresponding author. Email: lakehal@iet.mavt.ethz.ch; Phone: +41 1 632 4613
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1. Introduction

The fundamental mechanisms controlling heat and mass transfer across gas–liquid
interfaces play a central role in the modelling of contacting multi–component systems.
Whether the process is purely diffusive, such as soluble gas absorption, or involving
condensation–induced suction, the exchange process is generally dominated by interfacial
shear and/or turbulence. From a practical viewpoint, the subject is equally important to
nuclear and chemical engineering, and to environmental problems. For example, a good
understanding of interfacial exchange processes is essential for the thermal hydraulics
of the class of nuclear power plants resorting to passive emergency cooling systems. Of
primary importance in this case is to understand the behaviour of the steam–air mixtures
vented into the containment pools. On a much larger scale, more specifically in marine
climatology, quantifying the rate of mass transfer through absorption of carbon dioxide
by the oceans is important, as well as the impact of aerosol production and transport
from surface wave breaking (Melville 1996). The interest in this field is to properly relate
the transfer mechanisms to the imposed interfacial shear, and the way this shear scales
with the turbulence structure.

Progress towards a sufficient understanding of the various types of gas–liquid exchanges
has been hindered by obvious difficulties with measurements and computer simulations.
Turbulence near deformable interfaces separating immiscible phases has received less
attention than for wall–bounded flows. Recent developments in measuring technology
contributed to advancing knowledge in this field (Jaehne et al. 1987; Rashidi & Banerjee
1990; Komori et al. 1993a; Kumar et al. 1998), but there are still many non–clarified issues
regarding the way molecular and turbulent transport processes interact with the transfer
mechanisms. This is particularly crucial in the non–wall–bounded flow context, where
deformable interfaces are synonymous with surface velocity fluctuations and surface wave
generation.

Relating the mass transfer process to the interfacial turbulence structure has been
approached mainly via two classes of model, i.e. the surface renewal theory (Higbie 1935),
and the eddy diffusivity concept. For instance, experimental evidence for correlations
between the mass transfer rate and the surface renewal motion was demonstrated in
most of the experiments dealing with wind–driven turbulence at air–water wavy interfaces
(Jaehne et al. 1984; Coantic 1986; Komori et al. 1993a). The presence of interfacial waves
was also found to further enhance the exchange processes (Jaehne et al. 1987), because
part of the energy gained by the waves through the action of the wind is transferred to
near–interface turbulence.

The advancement in computer technology and numerical methods has made it possi-
ble to investigate flows involving non–flat boundaries using Direct Numerical Simulation
(DNS) and Large–Eddy Simulation (LES). For example, Maass & Schumann (1994) re-
sorted to finite difference DNS to investigate the flow structure over stationary, high
amplitude-to-wavelength ratio (a/λ = 0.05) sinusoidal waves, and observed large separa-
tion regions downstream of the wave crests. De Angelis et al. (1997) employed pseudo–
spectral DNS for the flow over a wavy wall with a/λ = 0.025 and 0.05, and reported
significant effects of the wavy boundary on the turbulence statistics and the mean flow.
Cherukat et al. (1998), performing spectral–element DNS of the flow over stationary sinu-
soidal waves with a/λ = 0.05 confirmed the modification of the mean flow only; the local
turbulence appeared to be less influenced when rescaled with the increased (effective)
friction velocity. With their LES study of flow over a wavy wall up to a/λ = 0.1, Henn
& Sykes (1999) were able to reproduce most of the flow features observed in moderate
high–Re experiments. DNS studies dealing with non–stationary sinusoidal waves are very
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rare, except for the work of Sullivan et al. (2000). Their high amplitude waves (ak = 0.1)
were found to significantly influence the mean flow and turbulence characteristics. More-
over, they observed that in comparison to stationary waves, slow moving waves increase
the form drag, whereas fast moving waves decrease it.

DNS studies devoted to the analysis of turbulence at interfaces, involving two–phase
flows, have been relatively few. Some early important work was presented with regard
to the turbulence structure near free surfaces with and without shear (Lam & Baner-
jee 1992; Komori et al. 1993b; Lombardi et al. 1996). Because of its relative simplicity,
stratified gas–liquid flow has been the best suited configuration to investigate the under-
lying physics at the interface. The DNS–based study of Lombardi et al. (1996) centered
around a flat interface configuration, where gas and liquid were coupled through con-
tinuity of velocity and stress jump conditions at the interface. The authors found that
turbulence characteristics on the gas side are quite similar to those at the wall. This led
them to conclude that in some two–phase flow problems, depending on the density ratio
between the phases, the lighter phase might look at the interface like a solid surface. De
Angelis (1998) extended the research of Lombardi et al. (1996) to non–flat interfaces by
considering stratified flow with a freely deformable interface in the capillary wave regime.

Following the work of Lombardi et al. (1996) and De Angelis (1998), the present inves-
tigation aims at analyzing in great detail the interfacial sublayer, with emphasis on the
gas side because of the presumed analogy between near–wall and near–interface turbu-
lence. The issue is approached by means of a global analysis of the energy budgets and
the interfacial turbulence structure obtained from a rigorous DNS of a sheared air–water
flow with a freely deformable interface, within the capillary wave regime. One objective
here is to analyze turbulent flow on the gas side and discuss the wave–induced mecha-
nisms influencing the flow. In fact, the major effect expected from interface deformation
in the presence of shear is the extra transverse motion superimposed on the mean flow,
and its associated energy, in the direction normal to the interface. The final objective
is to exploit the outcoming data to develop suitable near–interface turbulence models
useful for practical applications, for example by incorporating them into interface track-
ing methods, where the topology and dynamics of the interface are directly computed.
In contrast to the two–fluid formalism, direct interface tracking algorithms may lead to
situations where the interface is perceived like a solid surface to one of the phases, a
conjecture to which the employed eddy diffusivity type of models need to conform.

The paper is structured as follows: the problem under consideration and the numerical
procedure are described in Section 2. The characteristics of the waves are discussed in
Section 3. The flow statistics are presented in Section 4, together with the data obtained
by repeating the open–channel flow numerical experiment of Lam & Banerjee (1992). In
Section 5, the budgets for the turbulent kinetic energy and for the Reynolds stresses are
discussed, and the main differences relative to open–channel flow data are highlighted.
The mechanisms behind turbulence interaction with the deformable interface are treated
in Section 6. The flow structure is qualitatively analyzed in Section 7 by use of three
different eduction techniques. Finally, conclusions are drawn in Section 8.

2. Numerical Method
The configuration of the two–phase flow investigated here is sketched in figure 1, where

the flow in each subdomain is driven by a constant pressure gradient. The reference
quantities used throughout the paper for normalization are the effective shear velocity u?,
defined by u? =

√
τint/ρ, where τint represents the shear stress at the interface, the half-

depth of each computational domain h, and the kinematic viscosity ν. It is important to
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Figure 1. Sketch of the simulated problem. The elevation of the waves has been amplified by
a factor 5.

note that at the beginning of the simulation, when the interface is still flat, the interfacial
shear balances exactly the imposed mean pressure gradient, so that u? corresponds to
the shear velocity uτ . As the interfacial waves start to develop, part of the energy is
transferred into form drag leading to a reduction of the interfacial shear, i.e. u? < uτ (see
Section 6.1). The shear-based Reynolds number, defined by Re? = u?2h/ν, with u? taken
at the initial stage of the simulation, is 171 in both phases. Moreover, the nondimensional
time is defined by t+ = t ν/u2

? in wall units, or by tls = t U0/h in large-scale units, where
U0 is the mean streamwise velocity. With these reference quantities (u?, ν/u2

?, h), the
nondimensional Navier–Stokes equations for the incompressible, isothermal, Newtonian
fluids flowing in the two subdomains are

∇ · −→̃u = 0 (2.1)

∂
−→̃
u

∂t
+−→̃

u · ∇−→̃u = −∇p̃ +
1

Re?
∇

2−→̃
u (2.2)

where −→̃u is the velocity vector, made nondimensional by the reference velocity u?, and
p̃ is the dynamic pressure normalized by ρu2

?.
In the absence of mass transfer, the gas and liquid phases are explicitly coupled at

the interface by the continuity of velocities and shear stresses. The interfacial jump
conditions, see for example Delhaye (1974), can be expressed, in nondimensional form as
follows 

1
Re?

((τ
L
− τ

G
) · −→n ) · −→n + p̃G − p̃L + 1

We∇ · −→n − 1
Fr f = 0

((τ
L
− τ

G
) · −→n ) · −→ti = 0 , i = 1, 2

−→̃
u G = 1

R
−→̃
u L

(2.3)

where the subscripts L and G stand for liquid and gas respectively, τ is the viscous stress
tensor, f measures the vertical displacement of the interface with respect to the mid
plane, −→n and −→

ti are the normal and the two tangential unit vectors, respectively, and
R =

√
ρL/ρG is the parameter measuring the density ratio. The Weber (We) and Froude
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(Fr) numbers are defined as

We =
ρL h u2

?L

σ
, Fr =

u2
?L

ρL

g h (ρL − ρG)
(2.4)

where σ stands for the surface tension coefficient. At the outer boundaries, free–slip
boundary conditions are employed in order to avoid turbulence generation other than in
the interface region.

The interface motion is computed by solving a pure advection equation for the vertical
elevation of the interface, denoted here by f(−→x , t):

∂f

∂t
+−→̃

u · ∇f = 0 (2.5)

In contrast to the interface tracking method, this approach, known as the boundary fitting
method, cannot be extended to strong topological changes of the interface that might lead
to the inclusion of one phase into the other, such as fragmentation and wave breaking
(Lakehal et al. 2002). For this reason, parameters such as the Weber and Froude number
were carefully selected. On the basis of scaling arguments, these nondimensional numbers
were set equal to We = 4.8 × 10−3 and Fr = 8.7 × 10−5 in order to limit the elevation
amplitude and steepness to the range of capillary waves.

At each time step, the distorted physical domain was mapped onto a rectangular
parallelepiped on which the Navier–Stokes equations were solved using a pseudo–spectral
technique. Details of the numerical method and the mapping procedure can be found in
De Angelis et al. (1997). The dimensions of the computational domain are 4πh×2πh×2h,
with h = 0.02 m. The computational domain for each phase was 1074 × 537 × 171 wall
units in the streamwise, spanwise and normal directions respectively, with a resolution of
64 × 64 × 65, which had been proven satisfactory in the work of Fulgosi et al. (2001).

The density ratio between the two phases was such that R = 29.9, corresponding to
air–water flows at atmospheric pressure and at roughly 320 K. This parameter may be
interpreted as an indicator of the degree of dynamic coupling between the phases. In fact,
by virtue of the nondimensional velocity continuity condition

−→̃
u G =

1
R
−→̃
u L , (2.6)

R can be thought of as a measure indicating the inter–phase momentum transfer. For
example, the limiting case of R → ∞ reduces to a wall–flow–like conjecture, in which
case the inter–phase coupling is minimum. In contrast, the other limiting case of R → 1
reflects a “uniform medium” situation.

3. Characteristics of the Waves
The topology of the waves developing over a deformable free surface manifests itself

in various forms depending on the intensity of the interfacial shear stress caused by
the nature of the underlying turbulence. The action of this shear is balanced by two
stabilizing factors: one due to gravity and one caused by surface tension (Brocchini &
Peregrine 2001).

In the air–water wave literature, it is customary to characterize the wave motion us-
ing the second moments of the joint probability density of the surface displacement
P (f(−→x1), f(−→x2)). In particular, the covariance of the instantaneous nondimensional sur-
face displacement

Z(−→r ) = f(−→x , t0)f(−→x +−→r , t0) , (3.1)
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Figure 2. Time spectra of the wave amplitude. (a) Linear scale, (b) Log-Log scale.

and the covariance of the nondimensional surface displacement at a fixed location as a
function of time

Z(t) = f(−→x , t0)f(−→x , t0 + t) (3.2)

The other useful wave–characterizing quantity, defined in terms of the covariance of the
surface displacement (3.1), is the two-dimensional wave spectrum

Ψ(−→k ) = (2π)−2

∫
Z(−→r )e−i

−→
k ·−→r d−→r (3.3)

It is important to note that, since the wave number k is here defined in the dimensional
space, Ψ has the dimension of [L2], leading to the following definition of the saturation
spectrum of the wave displacement

B(−→k ) = |−→k |2 Ψ(−→k ) (3.4)

The reader is referred to the book of Phillips (1977) and to Phillips (1985) for further
exhaustive theoretical details. The maximum wave amplitude observed in the present
simulation was about 0.25 mm, and the maximum waveslope ak (amplitude a times
wavelength k) never exceeded ak = 0.01. The time spectra of the nondimensional wave
elevation delivered by the DNS is shown in figure 2. The left panel is presented in linear
scale whereas the right one is in a log-log scale. The spectrum was obtained over a time
interval of ∆tls = 350 large-scale nondimensional time units. The peak value is reached
at tls = 20, in agreement with the measurements of McCready & Hanratty (1985), and
indicates the frequency of the dominating wave. The equilibrium range is well represented
in the time spectrum, covering a range of events larger than that of the peak. At the
high frequencies, the straight line portion in figure 2(b) indicates that the small–scale
dynamical effects induced by the waves cannot be expected to become important since
they cannot grow in time. The estimation of the peak frequency has direct implications in
modelling the mass transfer coefficient, as postulated by McCready & Hanratty (1985).

The covariance of the surface displacement as a function of time and the saturation
spectra of the wave displacement are shown in figures 3(a) and 3(b), respectively. The
covariance shows the waves to reach a steady state over the time interval considered in the
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Figure 3. (a) Covariance at a fixed point on the interface (auto–correlation) as a function of
the nondimensional time. (b) Saturation spectra at the beginning and the end of the simulation.

simulation. In fact, the growth of the waves under the influence of the wind shear cannot
continue indefinitely because it is limited by several dissipation effects. In spectral terms,
this means that in the wave spectrum there is an upper limit of the spectral density
imposed by these dissipation phenomena. The range of wave numbers over which this
occurs is called the saturation range (Phillips 1977). The saturation spectra are plotted
in figure 3(b) at two different times during the computation: at the beginning (tls = 0)
and at the end (tls = 350) of the time interval over which the statistics were performed.
The results clearly show that the waves have not changed their properties in the course
of the 350 large-scale time units.

4. Analysis of the Turbulent Field
As it is customary in DNS, statistical analysis of the data was performed by averaging

the collected flow database over the two homogeneous directions (i.e. x–y plane average)
and in time. For the type of flow considered here, this procedure can be reliable only if
the collected database covers a sufficiently large time interval over which the wave field
does not change its properties. In this case, the impact of the interfacial motion can be
inferred in an average sense. This applies to the flow over the freely deformable interface
since the characteristics of the waves have been shown in Section 3 to remain invariant
in time. After statistically stationary conditions were reached, the flow database was
collected over 350 large-scale time units (19500 time steps) with a frequency of sampling
of ∆tls = 0.04, which corresponds roughly to twice the large–eddy turnover time of the
flow. The stratified flow data have then been compared to the open–channel flow results
obtained by repeating the numerical experiment of Lam & Banerjee (1992). The flow
database in this case was collected over 240 large-scale time units (13500 time steps).

Because the wave dynamics induces extra motion in the vertical direction of the flow,
the velocity field may be thought of as superposition of mean, coherent and non–coherent
(turbulent) contributions, i.e.

ũi = Ui + uw
i + ui (4.1)
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Figure 4. Profiles of the mean streamwise velocity.

where Ui is the mean velocity (i.e. averaged over time and the two horizontal directions),
uw

i is the flow component induced by the orbital motion, and ui is the superimposed
turbulent fluctuation. This suggests that, in order to analyze the non–coherent turbulent
fluctuating field in stratified flow, it is necessary to separate it from the coherent field,
uw

i . Also, the wave component is removed in the vertical direction only because the other
two components (in the plane tangential to the interface) are negligible, i.e. of the order
10−4. This has been achieved by removing the grid velocity ug

3 from the vertical velocity
component, i.e. uw

3 = ug
3, leading to a zero value of ũ3 at the interface.

Most of the following results are presented using a logarithmic scale for the abscissa
z+ = u?z/ν in order to better appreciate the changes very close to the interface.

4.1. Velocity Field
Figure 4 shows the profiles of the mean streamwise velocity for flow over the deformable
interface (referred to as FDI) and for the open channel (OCH). DNS results obtained
by Hu & Sandham (2001) for closed–channel flow at Reτ = 180 are also included for
comparison. The profiles are practically the same starting from z+ = 10, but below,
while both the wall–bounded flows converge towards zero at the wall, the velocity in
the FDI case has a finite value at the interface, corresponding to 2% of the maximum
velocity. The root–mean–square (RMS) profiles of the velocity fluctuations are presented
in figure 5. The behaviour is almost identical, but again, because of different boundary
conditions, the RMS values of u and v in the FDI case do not start from the same value at
the interface/wall. At this stage, the results presented in this section suggest that there
is an “apparent similarity” between wall–turbulence and near–interfacial turbulence. In
reality, although small in magnitude, differences do exist and manifest themselves in very
subtle ways.

The effect of filtering the wave-induced motion from the vertical velocity component
has also been investigated, and the results are reported in figure 6, comparing the RMS
of w̃ − ww (filtered) to the RMS of w̃ (unfiltered), referred to as FDI–1 and FDI–2,
respectively. The comparison highlights the influence of the wave dynamics on the velocity
fluctuating field, although, compared to the maximum value, the RMS of w̃ is small.

Another persuasive indication that the interfacial deformation acts on the velocity
field can be provided by examining the variation of the components of the fluctuating
rate-of-strain tensor

sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(4.2)
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The analysis, discussed in the context of figure 7, indicates that the most affected com-
ponents are the off-diagonal ones, i.e. s12, s13 and s23. The lower values of s13 and s23

in the FDI case provide evidence that the impact of the interface dynamics on the turbu-
lence at the interface is to reduce the rate-of-deformation of the fluid in the near–interface
region z+ < 12. The implications of this result are better measured by looking at the
off-diagonal components of the viscous dissipation tensor

εij = 2ν sikskj (4.3)

plotted in figure 8, together with ε = 1/2 εii, the dissipation of the turbulent kinetic
energy. The analysis shows that the off-diagonal components of εij are weakened in the
FDI case, in particular ε12 (because of the significant difference in s23); this applies also
to ε. Thus, it can be concluded that the effect of the interfacial deformations on the
near–interfacial turbulence leads to general dampening of the turbulent fluctuating field.
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s23.
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Figure 8. Profiles of the off-diagonal components of the dissipation tensor. Lines and symbols
are used to identify FDI and OCH, respectively. ( ) and (◦), ε12; (−·−) and (�), ε13; (−−−)
and (4), ε23; (···) and (∗), ε.

4.2. Vorticity Field

The aim of this section is to evaluate the influence of the interfacial deformations on
the flow field away from the interface. Emphasis will be placed upon the modification of
the quasi–streamwise vortices. Although the current knowledge on wall–flow structures
prompted by DNS is richer than ever, questions regarding certain aspects of the energy
transfer and regeneration mechanisms near the wall are still open. The lack of consensus
is even more acute as to which of the streamwise velocity streaks or quasi–streamwise
vortices are directly implicated in the turbulence self-sustaining mechanisms (Jimenez &
Pinelli 1999; Schoppa & Hussain 2002). This latter mechanism, in particular, has long
been associated with the dynamics of the quasi–streamwise vortices oriented in the flow
direction (Banerjee 1992). Pairs of these quasi–streamwise vortices neighboring the wall
are known to be directly linked to the formation of the streaky structure of the velocity
field through two types of events: ejections and sweeps. These two flow events are also
known to result from the interaction between the quasi–streamwise vortices (see figure
9). The streaky structure pattern consists in the alternation between regions of low and
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high speed fluid; high–speed regions are associated with low–shear stress regions, and
vice versa.

Some preliminary information about the phenomenon of generation of quasi–streamwise
vortices have been inferred from the analisys of the fluctuating vorticity field. For in-
stance, it is known that the main contributor to changes of ωx is ωz

dU
dz , which can be

interpreted as the tilting of a vortex with component ωz in the streamwise direction.
Figure 10 shows the variation of the RMS of the three components of the vorticity vector
for the FDI and OCH cases. Since dU/dz is almost equal in both configurations, and no
substantial differences occur in the variation of ωz, it can be argued that the orientation
of the quasi–streamwise vortices is not affected by the interfacial motion, at least in an
average sense. Further, the influence of the interfacial deformation on the core flow can
also be discussed by examining the behaviour of the fluctuating velocity gradient tensor,
decomposed as

∂ui

∂xj
= sij + rij (4.4)

where sij is the fluctuating rate-of-strain tensor (symmetric) defined in (4.2), and rij is
the fluctuating rate-of-rotation tensor (skew-symmetric), defined as

rij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
(4.5)

Of particular interest in evaluating the rate-of-deformation/rotation of the fluid, is the
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Figure 11. Profiles of the auto–correlation function between the < rijrij > and < sijsij > at
the interface/wall and that in the bulk flow. Lines and symbols are used to identify FDI and
OCH, respectively. ( ) and (◦), Corr(rij); (·····) and (�), Corr(sij).

second invariant (Q) of the velocity gradient tensor, defined as

Q = −1
2

[tr(r2) + tr(s2)] =
1
2

(rijrij − sijsij) (4.6)

Since Q vanishes at the wall, it cannot be directly used in the present context to estimate
the influence on the fluid deformation/strain of the interfacial dynamics. However, useful
information can be inferred by analyzing separate contributions of rijrij and sijsij in
terms of auto–correlation functions between their values at the interface/wall and in the
bulk region. The auto–correlation functions have been defined as

Corr(rij) =
< rijrij > (0) < rijrij > (z)

< rijrij >rms (0) < rijrij >rms (z)
(4.7)

and

Corr(sij) =
< sijsij > (0) < sijsij > (z)

< sijsij >rms (0) < sijsij >rms (z)
(4.8)

where < rijrij > (0) stands for the value of the space-averaged (x–y) component at
the interface/wall, and < rijrij > (z) for the values along the direction normal to the
interface/wall; the same applies to < sijsij >. Figure 11, comparing the auto–correlation
functions Corr(rij) and Corr(sij), shows that these are both stronger in the FDI flow
configuration than in OCH. A close inspection of the plot reveals that, for the FDI case,
the location where the rotation overcomes the strain is 10 wall units earlier than for
OCH. This result reflects the fact that the interface affects the evolution of the flow field
throughout the entire boundary layer, in contrast to a rigid wall.

4.3. Pressure Field

In the vicinity of the wall, pressure fluctuations, p, are a direct measure of the surface
excitation force, and are closely linked to flow unsteadiness. The generation of pressure
fluctuations in a turbulent boundary layer is coupled to the dynamics of the instantaneous
velocity field throughout the entire layer. This coupling is expressed in terms of the



DNS of turbulence with deformable air–water interface 13

0.1 1 10 100
z

+

0.5

1

1.5

2

2.5

3

R
M

S 
(p

)

Figure 12. Profiles of the RMS pressure fluctuation, p. Lines and symbols are used to identify
FDI and OCH, respectively.

following Poisson equation

1
ρ
∇2p = −2

∂Ui

∂xj

∂uj

∂xi
− ∂2

∂xi∂xj

(
uiuj − uiuj

)
(4.9)

which embodies a dependency on the interaction between the fluctuating velocity field
and the mean shear as well as on the non–linear interaction of the velocity fluctuations
with themselves. Moreover, since the instantaneous gradients of the pressure fluctua-
tions are equal to the flux of vorticity from the wall, the wall–pressure fluctuations are
intimately related to the vorticity fluctuations and the organization of the turbulent
structures within the boundary layer (Robinson 1991). Figure 12 shows the variations in
the fluctuating pressure in the direction normal to the interface/wall. It is readily appar-
ent that the freely deformable interface is associated with a higher level of near–interface
pressure fluctuations, which is maintained across the entire viscous sublayer and above
(z+ ≈ 20). In the OCH case, the RMS of the pressure at the wall is around 1.7, which
agrees fairly well with the channel flow data of Kim et al. (1987). In the FDI case, the
interfacial RMS pressure value is around 2.3, which can be interpreted as resulting from
the formation of local pressure gradients promoted by the alternation of “hills” and “val-
leys” developing over the deformable interface. In Section 4.1, it has been shown that the
impact of the interfacial motion on the velocity field results in a reduction in the near–
interfacial dissipation, via a reduction in the deformations induced by the fluctuating
strain, sij ; i.e. the fluctuating velocity gradients in the direction normal to the interface
are reduced compared to those at the wall. The larger values of the RMS of pressure in
the near–interface region are then in accord with the observed dampening of the turbu-
lent fluctuating field; in fact this is required by conservation of the pressure–rate-of-strain
term in equation (5.3).

5. Energy Budget Equations
5.1. Turbulent Kinetic Energy Budget

The transport equations for the turbulent kinetic energy (TKE), k = 1/2 (u2 + v2 +w2),
can be derived from the Navier–Stokes equations. For incompressible turbulent flow the
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Figure 13. Terms in the budget for the TKE in wall units. Lines and symbols are used to
identify FDI and OCH, respectively. ( ) and (◦), dissipation; (−−−) and (+), production;
(·····) and (×), pressure diffusion; (−·−) and (�), turbulent diffusion; (−·· −) and (∗), viscous
diffusion.

transport equation is given by

Dk

Dt
= − uiuj

∂Ui

∂xj︸ ︷︷ ︸
Production

− 1
ρ

∂

∂xi
pui︸ ︷︷ ︸

Press. Diff.

− 1
2

∂

∂xj
uiuiuj︸ ︷︷ ︸

Turb. Transp.

+
1
2
ν

∂2

∂x2
j

uiui︸ ︷︷ ︸
V isc. Diff.

− ν
∂ui

∂xj

∂ui

∂xj︸ ︷︷ ︸
Dissipation

(5.1)

where D/Dt is the substantial derivative. The analysis below follows the approach used
by Mansour et al. (1988). Figure 13 compares the terms on the right-hand-side of equation
(5.1) for FDI and OCH cases. The only significant difference can be observed close to the
interface, where both viscous diffusion and dissipation rates are smaller in the FDI case.
This is due to the previously observed dampening effect of the turbulent field caused
by interfacial motion. It is interesting to note that even in the presence of a deformable
interface the dissipation rate close to the interface is balanced entirely by the viscous
diffusion, exactly as in the case of a rigid wall.

5.2. Reynolds Stress Budget
The transport equations for the Reynolds stresses are also derived from the Navier–Stokes
equations. For incompressible turbulent flow the generic transport equation is given by

D

Dt
uiuj = −

(
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)
︸ ︷︷ ︸

Production

− 1
ρ

(
ui

∂p

∂xj
+ uj

∂p

∂xi

)
︸ ︷︷ ︸

Press. Diff.

− ∂

∂xk
uiujuk︸ ︷︷ ︸

Turb. Transp.

+ ν
∂2

∂x2
k

uiuj︸ ︷︷ ︸
V isc. Diff.

− 2ν
∂ui

∂xk

∂uj

∂xk︸ ︷︷ ︸
Dissipation

(5.2)

It is important to note that the pressure diffusion term provides both a source of energy
and a mechanism to redistribute it. This term, also called velocity–pressure–gradient
tensor and denoted by Πij , can be decomposed into a redistributive part and a transport
part as follows

Πij =
p

ρ

(
∂ui

∂xj
+

∂uj

∂xi

)
− ∂

∂xk

[
p

ρ
(ui δjk + uj δik)

]
= Rij −

∂

∂xk
Tijk , (5.3)
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Figure 14. Profiles of the pressure–strain correlation. Lines and symbols are used to identify
FDI and OCH, respectively. ( ) and (◦), streamwise direction; (−−−) and (+), spanwise
direction; (−·−) and (∗), vertical direction.

where δij indicates the Kronecker delta. Rij , the pressure–rate-of-strain tensor, serves to
redistribute energy among the Reynolds stresses promoting isotropy of turbulence. Tijk,
the pressure–transport term, constitutes the source of kinetic energy due to pressure
transport. As discussed in Section 4.3, due to the homogeneity of the flow in the stream-
wise and spanwise directions, the transport equation for uv reduces to Π12 − ε12 = 0.
The reduction of ε12 near the interface (see figure 8) is therefore counterbalanced by an
increase in Π12 through the pressure.

By virtue of continuity, the trace of Rij is zero, and consequently this term vanishes
in the transport equation of the turbulent kinetic energy (5.1). Each term of the trace of
Rij is used to define the pressure–strain correlation

PSi =
1
ρ

p
∂ui

∂xi
, i = 1, 2, 3 (5.4)

A positive value of PSi implies a transfer of energy into component i from the other
components, and vice versa.

Figure 14 shows the profiles of the pressure–strain correlation. In both OCH and FDI
cases, the streamwise component, PS1, transfers energy into the spanwise (PS2) and
the normal (PS3) components. What is remarkable is that this effect is less pronounced
for FDI, meaning that the streamwise component loses less energy than in the channel
flow. Hence, the deformable boundary reduces the interface-normal component less than
the solid boundary does. The reduced values of PS2 and PS3 occur as R22 and R33

are smaller in the flow over a deformable interface than near the wall. This leads to the
conclusion that near–interface turbulence is more isotropic than near–wall turbulence.

The intercomponent energy transfer near a boundary (described by the pressure–strain
correlation) can be further explained by considering the presence of two types of effect
when the surface is approached: a viscous effect that reduces the turbulence intensities,
and a wall–blocking effect that amplifies the tangential turbulence intensities. The latter
event is referred to as splat; a local region of stagnation flow resulting from impingement
on a solid boundary (Perot & Moin 1995). As it cannot penetrate the boundary the fluid
turns and moves parallel to it, yielding a transfer of energy from the normal velocity
component to the tangential components and an enhancement of tangential turbulence.
The proximity of a vortical structure close to the boundary produces vorticity of op-
posite sign, which can be ejected away by the primary vortex. This scenario, known as
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Figure 15. Terms in the budget for uu in wall units. Lines and symbols are used to identify
FDI and OCH, respectively. ( ) and (4), production; (−−−) and (◦), dissipation; (−·· −)
and (�), viscous diffusion; (·····) and (∗), pressure diffusion; (−·−) and (+), turbulent diffusion.
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Figure 16. Terms in the budget for vv in wall units. Lines and symbols are used to identify FDI
and OCH, respectively. ( ) and (∗), dissipation; (−·· −) and (+), pressure diffusion; (−−−)
and (4), turbulent diffusion; (−·−) and (◦), viscous diffusion.

antisplats, can be regarded as the counterpart of the splat event which explains the en-
ergy redistribution between PSi components. This clearly shows that interfacial motion
weakens the role of splats.

A comparison between the budgets of the normal stress component, uu, is presented in
figure 15. In the vicinity of the interface (z+ < 10), turbulent transport, viscous diffusion,
and dissipation are smaller in absolute value in FDI than in OCH, while production and
pressure diffusion remain unchanged. Close to the interface the dissipation is entirely
balanced by the viscous diffusion. The budgets for vv are presented in figure 16. Again,
viscous diffusion, pressure diffusion, and dissipation are smaller in absolute value in FDI
than in OCH, whereas turbulent transport remains unchanged. In the spanwise direction
there is no production, and close to the interface the dissipation is balanced by viscous
diffusion, whereas up to z+ > 10 the dissipation is entirely balanced by the pressure
diffusion term. Figure 17 compares the budgets for the interface/wall normal component
ww. In the viscous sublayer no substantial differences can be seen, indicating that the
interfacial motion very close to the interface does not affect the balance. However, in the
buffer region, 20 < z+ < 40, pressure diffusion, turbulent transport, and dissipation (the
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Figure 17. Terms in the budget for ww in wall units. Lines and symbols are used to identify
FDI and OCH, respectively. ( ) and (∗), dissipation; (−· · −) and (+), pressure diffusion;
(−−−) and (4), turbulent diffusion; (−·−) and (◦), viscous diffusion.
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Figure 18. Terms in the budget for uw in wall units. Lines and symbols are used to identify
FDI and OCH, respectively. ( ) and (4), production; (−−−) and (◦), dissipation; (−·· −)
and (�), viscous diffusion; (·····) and (∗), pressure diffusion; (−·−) and (+), turbulent diffusion.

former is not very evident in a logarithmic plot) are more pronounced in FDI than in the
OCH case. In the normal direction there is no production either, and the only important
source of energy is the pressure diffusion term, which is balanced by turbulent transport
and dissipation. A comparison of budgets for the shear stress uw, plotted in figure 18,
indicates that in both cases the production is balanced by the pressure diffusion term.
Viscous diffusion, dissipation, and production remain unchanged in the viscous sublayer,
whereas pressure diffusion and turbulent transport are slightly smaller at the deformable
interface.

In summary, it can be concluded that the interfacial motion affects the flow in the
viscous layer through a reduction of the viscous mechanisms (i.e. dissipation and viscous
diffusion) and a reduction of the flux of Reynolds stresses (i.e. turbulent transport).
The production mechanisms including pressure diffusion, however, remain unchanged.
This confirms the role of the interface deformation in reducing most of the gradients
of turbulent correlations (i.e. the terms requiring modelling in equation (5.2)) as the
interface is approached.
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Figure 19. Profiles of the shear stress −uw. Lines and symbols are used to identify FDI and
OCH, respectively.

6. Turbulence/Interface Interaction Mechanisms
6.1. Drag at the Sheared Deformable Interface

Of fundamental interest in turbulent two–phase flow research is a better understanding
of the interaction between turbulence and the neighboring deformable interface. More
precisely, identifying the various mechanisms through which interfaces affect turbulence is
the key to understanding the subsequent processes of inter–phase heat and mass transfer,
which is the ultimate goal of this work. The turbulence/interface interaction mechanisms
induced by the interfacial shear and their relationship to interfacial drag are examined
first. The near–interface/wall distributions of the shear stress, −uw, are compared in
figure 19. The comparison shows that the peak value is smaller in the two–phase flow,
indicating that there is a small drag reduction due to interfacial dynamics. This is due to
the fact that the form drag, even if very small, u?/uτ = 0.986, takes energy away from the
flow and thus the shear decreases. This result is consistent with the observation that drag
reduction can be obtained over adaptive and flexible walls (e.g. compliant coating) rather
than rigid walls (Choi 2001). This also suggests that statistically stationary capillary
waves may similarly lead to drag reduction, even if by a smaller amount.

A more detailed view of the mechanisms by which the shear stress can be lowered
in intensity by interfacial dynamics is provided by the quadrant analysis (Kim et al.
1987; Soldati & Banerjee 1998). This analysis quantifies the possible combinations of u
and w in terms of physical flow events. Figure 20 displays the fractional contribution of
each event to the shear stress −uw for both FDI and OCH cases studied. Although first
and third quadrant events are favorable to drag reduction, their contribution is actually
smaller than the other quadrant events. Sweep events in channel flow are dominant close
to the wall, whereas away from the wall ejection events dominate. The crossover point is
located at z+ = 12. For the FDI case the variation of quadrant events is small. All the
events seem to be enhanced at the interface but the crossover point between the second
and fourth quadrant events is still located around z+ = 12. Above the crossover point,
first and third quadrant events are larger in the FDI case (not clearly noticeable), which
explains why the drag reduction is not significant.

6.2. Turbulence Characteristics

In order to study the flow structure without explicitly employing an identification crite-
rion other than the shear stress, the nondimensional shear rate parameter S̃ introduced
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Figure 21. Profiles of the nondimensional shear–rate parameter. Lines and symbols are used
to identify FDI and OCH, respectively.

by Lam & Banerjee (1992) was employed. It is defined by

S̃ =
dU

dz

|uw|
ε

=
P
ε

(6.1)

and represents the ratio of the rate of production of turbulent kinetic energy P to its rate
of dissipation ε. This parameter is therefore intimately related to the streaky structure of
the velocity field, as discussed in Section 4.2. If S̃ > 1 the shear is high enough for streaks
to form, indicating that the generation of turbulence is more dominant than dissipation.
Figure 21 shows a comparison of the time-averaged nondimensional shear rate parameter,
S̃, obtained from the DNS of both FDI and OCH flows. In both flow configurations, the
formation of the streaks is seen to take place at the same distance from the interface/wall,
at z+ ≈ 8. Figures 22(a) and (b) compare two snapshots of the streaky structure (note
that, for sake of clarity, the amplitude of the surface elevation has been amplified by a
factor of 5). It can be observed that the streaky structure in the channel flow appears to
be more regular than on top of the deformable interface. The clear alternation between
high and low speed regions is also more visible, while overall the streaky pattern looks
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Figure 22. Three–dimensional view of the streaky structure in (a) FDI and (b) OCH cases.
Light green and dark green colors indicate low and high speed streaks respectively.

less organized. However, the streamwise elongation of the streaks does not seem to be
affected by the deformation of the interface.

The analysis of the ratio P/ε via local conditions rather than global parameters char-
acterizing the boundary layer, can be further detailed in terms of the same shear rate
parameter,

S̃ =
P
ε

= S
|uw|

ε
=

S q2

ε

|uw|
q2

= S∗
|uw|
q2

(6.2)

where S = dU/dz and q2 = 2k. With this definition the two contributions to P/ε,
namely the structure parameter |uw|/q2 and S∗ = τT /τS , the ratio of the turbulent
time scale τT = lT /uT , to the time scale characterizing the mechanical deformation,
τS = (dU/dz)−1, can be separated. In the latter definition, lT = q3/ε stands for the
turbulent length scale, and uT = q for the corresponding velocity scale. The structure
parameter is the ratio of shear to the trace of the turbulent stress tensor, representing the
degree of turbulence anisotropy. The previous discussion of the Reynolds stress budget
has revealed that the main role of interface motion is to act on the viscous and transport
mechanisms, in particular on the pressure–rate-of-strain tensor, promoting the isotropy
of near–interface turbulence. Further evidence of this result is provided in the context
of figure 23(a), where the peak value of the anisotropy parameter in FDI appears to
be lower than in the OCH case. The two time scales defining S∗ are plotted against
z+ in figure 23(b) both for the FDI and the OCH cases. It can be observed that while
τS is overall of the same magnitude, τT does not vanish near the interface as it does
near the wall, implying that the smallest scales of turbulence remain active approaching
the interface whereas they vanish as the wall is approached. Therefore, the role of the
interfacial motion also consists in accelerating the turbulent transfer processes.

The degree of turbulence anisotropy can best be obtained by an analysis of the
anisotropy tensor, defined as

bij =
uiuj

q2
− 1

3
δij (6.3)

In contrast to equation (6.2) that compares the magnitude of the shear stress to that of
the turbulent kinetic energy, the above relation indicates the magnitude of each stress
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Figure 23. (a) Profiles of the structure parameter |uw|/q2. Lines and symbols are used to
identify FDI and OCH, respectively. (b) Time scales. ( ) and (�), τS ; (−−−) and (◦), τT .
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Figure 24. Profiles of the components of the anisotropy tensor. Lines and symbols are used to
identify FDI and OCH, respectively. ( ) and (�), b11; (−−−) and (4), b13; (−·−) and (◦),
b22; (−· ·−) and (+), b33.

component to the turbulent kinetic energy. The distribution of the non–zero bij compo-
nents are compared in figure 24. Deviations in the profiles near the interface/wall are
visible only for b11 and b33; the other two components show no such deviations. In fact,
the absolute values of b11 and b33 at the wall are greater than at the deformable interface,
which, as discussed above, is expected due to the imposed near–interface/wall boundary
conditions. This, again, confirms that the interfacial motion yields a global dampening
of the turbulent fluctuating field in the vicinity of the interface which, in turn, explains
why the near–interface turbulence appears less anisotropic than the near–wall one.

7. Coherent Structure Identification
Hussain (1983) defines a coherent structure as a connected, large–scale turbulent fluid

mass with a phase–correlated vorticity throughout its spatial extent. The separation
between coherent and non–coherent motion is of crucial importance to obtain a better



22 M. Fulgosi, D. Lakehal, S. Banerjee and V. De Angelis

understanding of the transfer processes. In fact, in a turbulent boundary layer, streamwise
coherent structures have been linked to ejections and sweeps, which are responsible for
draining slow–moving fluid into the outer region and high momentum fluid into the
wall region, respectively. These events generate the major part of the drag and are well
correlated with heat and mass transfer fluxes (Banerjee 1992). The key issue is to define
a suitable criterion that identifies boundaries, topology, and dynamics in the spatial and
temporal extent of these vortices.

According to Hussain’s definition the high vorticity modulus |ω| is a possible candi-
date for vortex identification in free–shear flow. However, in the presence of a boundary
(interface/wall) this criterion fails because the mean–shear creates a residual vorticity,
which is uncorrelated with the vorticity caused by the coherent motion. Three different
vortex identification criteria have therefore been employed here. The first criterion used
is the so–called Q–factor proposed by Hunt et al. (1988), which has already been intro-
duced in Section 4.2. Q can be thought of as the balance between the rate-of-rotation
and the rate-of-strain within the superimposed non–coherent field. Positive values of Q
indicate regions where the strength of rotation overcomes the strain. The second criterion
employed is the second largest eigenvalue (λ2) of the tensor sikskj + rikrkj , defined by
Jeong et al. (1997). With this criterion coherent vortices are well represented by con-
nected regions where the local value of λ2 becomes negative. The λ2 < 0 and Q > 0
criteria should present very similar types of behaviour, unless the vortices are subjected
to high stretching and/or compression. The last identifier used is the streamline rotation
vector, proposed by Perry & Chong (1987). The definition of this identifier is based on
the classification of complex flow fields by the identification of their three–dimensional
critical points. It is defined by

−→Ω = −λi

−→ea

|−→ea|
−→ea · (−→r ×−→c )
|−→ea · (−→r ×−→c )|

(7.1)

where λi is the imaginary part of the pair of complex eigenvalues of the velocity gradient
tensor, −→r is the real part of the conjugate complex eigenvectors corresponding to the
complex eigenvalues, −→c is the imaginary part of the conjugate complex eigenvectors and
−→ea is the eigenvector corresponding to the real eigenvalue.

The purpose of this section is to employ the above mentioned eduction techniques to
qualitatively characterize the quasi–streamwise vortices in the turbulent flow over the
freely deformable interface, and test their sensitivity to the change in boundary condi-
tions. To compare the results of the different identifiers, isosurface values high enough
to capture the strong vortices were selected. For this purpose, the probability density
functions (PDF ) of the three identifiers were determined and, to make the comparison
consistent, isosurface values of PDF = 0.1 were selected, meaning that each identifier
carries the same amount of information. The selected isosurface values are identified in
figure 25 with A for the Q-factor, B for the −λ2 criterion and C for the streamline ro-
tation vector, respectively. Figures 26(a), 26(b), and 26(c) display one realization of the
instantaneous distributions of the vortical structures in the FDI case by using isosur-
faces of Q, −λ2, and the streamline rotation vector, respectively. As it can be seen, the
three different criteria provide virtually the same details of the quasi–streamwise vortices
developing over the interface. The comparison between several flow snapshots of OCH
and FDI, using isosurfaces of the streamline rotation vector (result not included here),
has not revealed perceptible differences between the wall–bounded and the air–water
flow. This leads to the conclusion that the turbulence structure is not sensitive to small
waveslope ripples. However, a detailed quantitative description of the structures could
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Figure 25. PDF distribution of the three different identification criteria.

be better inferred from the data using the method of conditional averaging described in
Jeong et al. (1997).

8. Conclusions
Direct numerical simulation of turbulence in a counter–current air–water flow con-

figuration separated by a deformable interface has been performed. Attention has been
focused on the gas side of the interface because of its similarity to wall–bounded flows.
A systematic analysis of the near–interface turbulence has been provided. Turbulence
intensities for the flow over an interface free to deform were found to be similar to those
of wall–turbulence. The RMS values of the off-diagonal components of the fluctuating
rate-of-strain tensor are found to be reduced by the interfacial motion, implying a general
dampening of the turbulent fluctuating field near the interface. This effect is manifested
by a significant reduction in the magnitude of the off-diagonal components in the dissi-
pation tensor. This result was further corroborated by the increased value of the RMS
of the fluctuating pressure. Analysis of the auto–correlation function of the trace of the
fluctuating rate-of-strain and rate-of-rotation tensors has shown that the interfacial de-
formation determines the cross-over point where the rotation overcomes the strain and
affects the flow field more deeply into the boundary layer. The differences in the turbu-
lent kinetic energy and Reynolds stress budgets are localized in the dissipation, viscous
diffusion and turbulent transport terms in the direction normal to the interface. These
terms are seen to be slightly smaller than in wall turbulence, whereas the production
contributions remain unchanged. A study of the pressure–strain correlation reveals that
although the streamwise component remains the only source of energy, the spanwise and
normal components are smaller in absolute value, suggesting that the near–interface tur-
bulence is less anisotropic than that near the wall. This conclusion is further confirmed
by examining the anisotropy parameter and anisotropy tensor. However, quadrant anal-
ysis applied to the shear stress does not reveal important differences in the fractional
contributions of individual events compared to wall–turbulence. A detailed study of the
nondimensional shear rate parameter shows that the turbulent kinetic energy at the in-
terface does not vanish, suggesting that the turbulent transfer mechanisms are enhanced
by the interfacial motion. The streaky structure of the flow over the deformable interface
was seen to be somewhat less organized than at the wall. Three well–known eduction
techniques, namely isosurfaces of Q, −λ2, and the streamline rotation vector, are used to
identify the structure of the turbulent flow. A simple qualitative comparison leads to the
conclusion that the quasi–streamwise vortices are not significantly modified by the pres-
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Figure 26. Three–dimensional distribution of vortical structures in the FDI case identified by
using isosurfaces of (a) Q, (b) −λ2, and (c) streamline rotation vector. Values of the isosurfaces
were selected with the criterion that PDF = 0.1.

ence of the freely deformable boundary. The small differences found between near–wall
and near–interface turbulence might be due to the relatively small value of the Reynolds
number, and to the fact that the numerical algorithm is not able to handle strong de-
formation of the interface. However, these findings provide the starting point for further
investigations that use Large Eddy Simulation coupled with Level Set methods, which
are capable of exploring large Reynolds number situations featuring wave breaking.
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