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Interpolation methods such as the nudged elastic band and string methods are widely used for
calculating minimum energy pathways and transition states for chemical reactions. Both methods
require an initial guess for the reaction pathway. A poorly chosen initial guess can cause slow
convergence, convergence to an incorrect pathway, or even failed electronic structure force
calculations along the guessed pathway. This paper presents a growing string method that can find
minimum energy pathways and transition states without the requirement of an initial guess for the
pathway. The growing string begins as two string fragments, one associated with the reactants and
the other with the products. Each string fragment is grown separately until the fragments converge.
Once the two fragments join, the full string moves toward the minimum energy pathway according
to the algorithm for the string method. This paper compares the growing string method to the string
method and to the nudged elastic band method using the alanine dipeptide rearrangement as an
example. In this example, for which the linearly interpolated guess is far from the minimum energy
pathway, the growing string method finds the saddle point with significantly fewer electronic
structure force calculations than the string method or the nudged elastic band meth@904©
American Institute of Physics[DOI: 10.1063/1.1691018

INTRODUCTION bimolecular reactions and unimolecular systems with several
low frequency vibrational modes. Like more sophisticated

structure theory has been the prediction of potential energffansition _1§)ath ~ sampling methoft, interpolation
surfaces from which reaction mechanisms and rates can tgorithms™**require both the reactant and product configu-
deduced. Calculations of rates usually employ harmoni¢ations. These generate a sequence of configuratimues

transition state theory in which the energy and real vibrathat interpolate between the reactant and product configura-
tional frequencies at the saddle point and at the reactarttons. Interpolating algorithms convert the search for a first
minimum determine the reaction rate constant. Locatingrder saddle point in configuration space to an optimization
saddle points orab initio potential energy surfaces can be problem in a discretized path space. When posed as a path
extremely difficult, and remains one of the major challengesptimization, bimolecular reactions and low frequency
in chemical kinetics. modes are easily handled.

poin-![-sh%rr? g;?e:]v';/igl f:nme"ris; gsr?;%zgthtr;: ;?Jrrfgggir:/gafﬁgglz The discretized path space dimensionality is larger than
gorithms and the interpolation algoriththSurface walking configuration space by a factor corresponding to the number

method&~® explore the potential energy surface using IocaIOf no.des used to represent the path. For most interpolation
gradient and Hessiafor approximate Hessiarinformation. ~ 2190rithms, the force is computed at each node of the path
Such methods only require the reactant configuration, angach time the path moves. In contrast, some surface walking
are thus able to predict which products will be formed. Un-algorithms require just one force calculation per iteration.
fortunately, surface walking algorithms often work poorly for Because of this disparity in computational cost per iteration,
practical applications often use an interpolation scheme only

dAuthor to whom correspondence should be addressed. Electronic mair‘.0 generz_ite_ a good.guess for the Saddl_e pErmh'S guess Is
arup@uclink.berkeley.edu then optimized using a surface walking method such as

One of the most important contributions of electronic
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Newton—RaphsofNR), a quasi-NR schente’ or the Dimer o (s) is determined from a parameterization density, and is

method® normalized so thatp(0) is the reactant configuration, and
Nudged-elastic-ban@dNEB) (Refs. 12, 13 is a widely  ¢(1) is the product configuration. Each iteration of the string

used interpolation algorithm that converges to the minimummethod consists of two steps, an evolution step that guides

energy pathway(MEP). A number of applications have the string toward the MEP, and a reparameterization step that

shown that NEB is a robust method for calculating reactiorenforces the prescribed parameterization den3ity.

pathways-*~*" However, NEB is not without disadvantages.

The algorithm requires Hooke constants for springs that keep

the nodes uniformly spaced along the path. If the spring conEVOLUTION STEP

stants are chosen to be too large, the condition number of the The evolution step guides the string toward the MEP, a

optimization problem can become very largegiving slow path joining reactant and product configurations that is par-
convergence to the MEP. If the spring constants are chose . . A .
lel to the gradient at each point along the patht(¥) is

to be too small, the node spacing becomes erratic leading @e unit tangent vector along the stringet), andV is the

a poor description of some sections of the path. : ,
P Ren et allg have recently proposed thep“zero ternpera_potentlal, then the normal force on the stringcaican be
: defined as

ture string method” for finding the MEP. In the zero tempera-
ture string method, the discretized string moves in the direc- (¢ (g))=-VV(¢(a))+(1(0)"VV(e(a)t(a). (1)
tion of the normal force at each node on the string. Instead of o L )
including tangential spring forces to maintain node spacing! "¢ MEP by definition satisfie§ (oyep) =0 so the MEP is

the nodes are redistributed along the string after each mov&. 910bal minimum of the functional

For brevity the zero temperature string method will be re- 1

ferred to as the string metha@®M), although it should be F[‘P]Zfo dof"(¢(0)) Tt (¢(a)) 2
noted that a finite temperature string method has also been

proposed?2° over all paths connecting(0) to ¢(1). In practice the string

Both SM and NEB require an initial guess for the path-is represented by a series of discrete configurations, uni-
way. Most implementations of NEB employ linear synchro-formly spaced in the variable,, so the objective function
nous transitto start the algorithm. While linear synchronous becomes
transit is an adequate guess in many cases, for some reac- n
tions it may be far from the correct path. A bad guess can  F(g(ag),¢(a4),....0(0n)= > |F(@(ay)|2 3
result in exceedingly slow convergence, or worse, in severely k=0

overlapping atoms. The latter situation may cause failure of A nymber of schemes can be used to obtain the path
the electronic structure calculations used to obtain the poteRangent. The centered-difference scheme is the most intui-
tial and forces. Choosing an appropriate set of bond lengthgye However, to prevent the string from growing kinks, the

and langles for interpolation can provide a good startinghode spacingR, must satisfyR>|VV-{|/20?, wherew? is
path, but selectmg appropriate coqr_dmates requires '”t!““o"me smallest eigenvalue of the Hessian in the hyperplane per-
about the rgactlon pathwgy. Intuition may be u_navallabl endicular to the patt? The upwind difference scheme for
when exploring new chemistry or screening new ideas for gofining the path tangent at each node stabilizes the string

dﬁswgdtcatalyst. Itis '? S;Ch ap;sllcat:co?? that .c(:quputatmn gainst kink growth for all node spacintfsTangents from
chemistry may prove to be most useiul for guiding New ex-,q upwind scheme work well when the node spacings are

perl_lrr_ﬁnts. t . f the stri thod . approximately uniform. However, tangents from both finite
_NIS paper presents a version of thé striing Method yigerance schemes can unrealistically point toward a distant
which the parameterization density evolves so that the string - 4e if the node spacing varies significantly. Figure 1 shows

grows from each end of t_he pathyvay towards t_he tran3|t|0r(1m example of this situation, which is particularly relevant to
state as each of the growing sections of the string converge, o growing string method described below

The growing string method thus finds the MEP without re- Using cubic splines to fit the curve(s) gives realistic

quinng an |n!t|al guess fqr the pathway. For systems ok ar‘?angents and interpolated geometries even for nodes adjacent
poorly described by the linear synchronous transit guess, t a large gap in the interpolated pathway. The cubic spline

gro_wing string met_hodGS) obtains a realistic saddlel point ith free ends provides natural path tangents at the end-
estimate more r_apldly than. NEB and SM. The remqmder .oﬁ/oints,cp(O) and¢(1). These tangents are useful for evolving
the paper describes the string method and the growing string

. the endpoints of the string in bimolecular reactions where the
method. Two examples compare the convergence properties

: %dpoints are not necessarily potential energy minima. There
of NE.B’ SMZ anpl GS. An Appendlx augments the methOOIOI'is no easily derived stability criterion for the minimum node
ogy discussion in the main text.

spacing because the splines depend on the position of every
node. However, kink growth instabilities due to small node
spacings have not been encountered. The appendix derives a

The string is a pathg(o), connecting the reactant and “dekinking force” that arises naturally from the gradient of
product configurations. The parameterization variableis  F[ ¢]. If a kinking instability arises, the normal force can be
some monotonic function of the normalized arclength, augmented with the dekinking force to stabilize the string
measured from one end of the string. The actual functiormethod and the growing string method.

THE STRING METHOD
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FIG. 2. An iteration of the string method showing the initial string, the
evolved string, and the evolved string after reparametrization.

.4-'—'-"-‘-'_
FIG. 1. When the node separation is not uniform, both centered diﬁerencz‘eNlth the boundary conditions,
and upwind difference schemes can give tangents that are unrealistically s(0)=0and s(1)=1. (4b)
influenced by a distant node. The heavy black line illustrates an erroneous
tangent for a node adjacent to a large gap between nodes. Integrating Eq.(4a) twice effectively normalizes the
chosen parameterization density,

There are a number of numerical methods for minimiz- . _ J'lp(S)dS (5)

ing functions likeF[ ¢]. The Appendix presents an analysis 0

of the steepest descent, Newton—Raphson, and perpendicular Integrating the density until the integral reaches a frac-

force directions for minimizingF[ ¢]. Ren et al. employ . ~ . .
) 8 - tion o,=k/n of c gives the new normalized arclengt
Broyden’s method® which converges much faster than the — ; .
s(oy) along the previously evolved string,

steepest descent method and the method used in NEB, but

requires an accurate initial guess for the pathwalf. an Sk

accurate initial guess is available, an estimated saddle point fo p(s)ds=coy. ®)
can be interpolated from the initial string. Then a pseudo- ] N .
Newton—Raphson methotbr the Dimer method can be The reparameterized positiop= ¢(sy) is then deter-

used to find the exact saddle potrfIf an accurate MEP is Mined by following along the evolved string to an arclength
needed, it can be determined from the converged saddfS where S is the true un-normalized arclength of the
point by following the gradient down to the neighboring String- The computational cost associated with the reparam-
minima2-23 Thus in practical applications, converging the eterization procedure is negligible compared to the calcula-

string to the MEP with extremely high accuracy is unneces{ion of normal forces using ab initio methods, so it can be
sary. done between each step. The evolution and reparameteriza-

tion steps are illustrated in Fig. 2.

REPARAMETERIZATION STEP
GROWING STRING METHOD

The reparameterization step redistributes the nodes along ) L i .

the string after each evolution step. Although reparameteriza- 1 N€ reparameterized string in Fig. 2 depicts the disper-
tion effectively plays a role similar to that of the springs in Sion of nodes along the string that results from a uniform
NEB, the freedom to choose a parameterization densitparameterlzatlon density(s). As an alternr_sltlve, the density
based on intrinsic properties of the string imparts additionaf2n b€ chosen as a non-negative function of curvature or
flexibility to the string method. The general mechanics ofPotential along the st'rlng to focu§ nodes near the transition
reparameterization will be discussed first, followed by theState or near curves in the reaction pathway. Generally, the
scheme for evolving the parameterization density so that th&/Nction p(s) need not be continuous and it can change be-

string grows inward from the endpoints to the transition statdWeen iterations. Additionally, the number of nodes on the
as the growing ends converge. string, n, can change between iterations. These properties

The functiono(s) disperses nodes along the string at@llow a systematic evolution of the parameterization density
uniform intervals ino. i.e.. ato=01h.2/n..... and 1 for a SO that the string grows from its endpoints as it evolves until

string with n+1 nodes, such that the density of nodes as £ventually the two ends join into one continuous string. By
function of the normalized arclength, is consistent with a 2daptively growing separate ends of the string toward the
chosen parameterization densitys). The inverse function unknown interior of a reaction pathway, the string can avoid

s(o) is determined by solving the differential equafidn excessively rugged regions of the potential energy surface

where electronic structure calculations may fail.
da = ds As the string ends grow into the unknown interior of the
do \ P do pathway, the nodes adjacent to the vacant interior play a

>=0 (4a)
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FIG. 3. (a)—(d) Four snapshots of a growing string on the Muller—Brown potential energy surface. Panéi$, (c), and(d) show iterations 0, 4, 8, and 12,
respectively. The nodes are shown as black dots, and the splined string is shown between the nodes as a gray curve. The parametrizgSpmsdersin

in the lower left of each panel. The gray dot on each string is the interpolated point of maximum éaesimws the two saddle points on the potential
energy surface as small open circles. The gray outline around the highest energy saddle point is its Newton—Raphson basin of attraction. Teel large sha
circle has radius 0.25 and approximately covers the basin of attraction.

critical role in the process of advancing each end into thestring between the normalized arclenge) and af® . If

interior. For convenience these nodes will be referred to adS is the desired arclength between nodes on the string, the

the left and right frontiers, op; and ¢,;, respectively. The normalized arclength spacing iss,=AS/S,, whereS;, is

normal force at a frontier point can be used as an indicator othe total arclength of the string at tkéh iteration. Beginning

whether it is safe to advance the growing end further into theat k=0 with ny=2, a{®’=0"*, anda{®=1-0*, rules for

interior of the reaction pathway. adaptively evolving the parameterization density and the
To implement the growing stringGS) scheme, define number of nodes on the string,, can be written as

the indicator function as KD (0 |
a =a; +Asi(f ,
1 if |f*|<tolerance ! ! d ()

0 if |f|>tolerance, ™ af P=a - A(sd(f(¢p)), 9

v_vhere the tole_zrance is an ac_ijustable parameter that can be s 1= Nt (FE (o)) 1 (F-(
fixed or adaptively changed like a trust radius. jgfs) be
the parameterization density for tkéh iteration. Ifn, is the The separate ends of the string merge when the fraction
number of nodes on the string, apg(s) is of the form of vacant arclengtla, — a; reaches zero. Once the string has
. K merged, the number of nodes remains fixed, and the param-
1 i se[0ay7] eterization density remains uniform. Figure 3 shows four
pu(s)=1{ 0 if se(a,a)) (8)  snapshots of a growing string with 18 nodes on the Muller—
1 if se[a¥ 1] Brown potential.(See the sectlon. on examples for a discus-
2 sion of the Muller—Brown potentigl.
where 0<a{¥<al<1, then reparameterization will uni- The disjoint portions of the string in the growing string
formly disperse the nodes outside of a vacant section of thenethod (GS) are evolved separately until they unite. The

i(fH)=

@)
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entire string is used to determine a spline that gives string gradients

tangents on the left and right ends, but the functidrp] is 10 100 1000

split into two piecesF e ¢] andFign{ ¢] that are used to 13 — ———rrr

separately determine the stepsize for each of the two portions ] "

of string. R WW
To decrease the number of electronic structure calcula- R —— G 0\ " 18 Nodes

tions, nodes that contribute a negligible fractiorF{ap] can £ 014 L 'S

be fixed so that the stored gradient remains valid until the = ] SM th %"

rest of the string has evolved sufficiently that the fixed node | o NEBk=t ¥y %

contributes a significant fraction [ ¢]. In the examples ° NEBk=10 % &,

discussed in the next section, the fixed nodes scheme was 001~ o NeBk=100 ©

used for NEB, SM, and GS calculations. FIG. 4. Error in the saddle point estimaig, as the distance from the true

saddle pointxg,, vs gradients computed. Results are shown at 18 nodes for
EXAMPLES the growing string methodGS), the string methodSM), and the nudged
elastic bandNEB). GS reaches the circle of Fig. 4 with a third as many

The following examples compare NEB, SM and GS. Ingradients as NEB. SM performs very poorly with 18 nodes.
principle the only difference between SM and NEB is that
the string is reparameterized after each evolution while NEB  An estimated saddle poink,s, can be obtained from

augments the normal forces that guide the string with a tangach string by interpolating the point of maximum energy
gential spring force. The only other difference in our imple- 51ong the string. If the estimated saddle lies within the circle,
mentation is that NEB uses upwind scheme tangent vectofige exact saddle is easily found using the eigenvector follow-
while SM and GS use cubic spline tangents. The most critiing algorithm?# The initial HessianK , for eigenvector fol-
cal factors in the convergence rate of all three methods aRwing was constructed with the estimated path tangegt,

the search directions and stepsizes used to minimize the rgs an eigenvector with the estimated second directional de-
sidual gradients along the path. For a fair comparison, thgyative of the energy-— w% as its eigenvalue

same method was used to choose the stepsize along the force 5 T S
direction for GS, SM, and NEB. The search direction used K= ona{l —testes) — @itestest- (11
for SM and GSygy, is the concatenated normal force vec-  \when started within the circle on this two dimensional

tor. The NEB search directioniyeg, is the concatenated gyiface, the number of eigenvector following steps required
normal force vector augmented by the tangential spring, converge on the saddle point,, was always less than

forces, six—much fewer than the number required to generate an
veu=(f5 F ... f5), (109  estimatexes, within the circle. Thus, GS, SM,.and NEB can

be compared based on the number of gradients required to

Vnes= (fg . f1 oo f) + (0, F1 .. f). (10b)  generate an estimate within the basin of attraction of the

At each iteration, a quadratic polynomial for the function saddle point. F|gure 4 shows the convergence of j[he e.St"
F in distance along these vectors is generated using thré@ated saddle point to the true saddle point for a string with

. N 18 nodes.

points along the search direction vector. The stfimgband . .

¢ is moved along the directiongy, (or vygg) to the mini- GS rapidly CONverges _to th? true _saddle point, .and
mum of the quadratic polynomial. If the minimum does notreac.hes the basin of attraction with a thlrd of the gradients
exist, or if the distance to the minimum exceeds a maximunj€quired for NEB. At 18 nodes SM requires more than 1000

allowed displacement, the maximum allowed step is taken gradients to find the basin of attraction of the saddle point.
When using NEB,’SM, or GS with aab initio potential ‘The relative performances of GS, SM, and NEB depend on

energy surface, gradient calculations constitute nearly all of
the computational cost. Thus, we compare methods based on 1000 -

the number of gradients required to reach the saddle pointor 4
the Newton—Raphson basin of attraction for the saddle point. %

g . ®
THE MULLER-BROWN POTENTIAL 9] 100 A 8

ye) 17 - TTTm== -

The Muller—Brown potentidf has a number of interest- ® ]

ing features that make it a good test surface. The MEP passes & ——.GS SM
through two saddle points and deviates significantly from the 8 o NEB k=1 o NEBk=10
linearly interpolated path. Moreover, a linearly interpolated = 10 O NEB k=100

chain must slide down a dividing surface on which the po- 4 5 8 10 12 14 1

tential function is not convex. A contour plot of the surface nodes 6 18

was shown in Fig. @ with the Newton—Raphson basin of . ¢ rosul i §
; ; ; FIG. 5. A summary of results comparing convergence of the growing ends

attraction around the hlghESt energy saddle pOdgH., The string method (GS), the string method(SM), and nudged-elastic-band

shaded c_ircle|,x—x5p| <0.25, approximately covers the basin (ye) for the Muller—Brown potential energy surface. The relative perfor-
of attraction. mance of the methods depends on the number of nodes.
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FIG. 6. The alanine dipeptide rearranges via simultaneous rotations about
the dihedral angleg and .

0000
ozozx

O

3] .
midpoint saddle ©

FIG. 8. The interpolated midpoint and saddle point configurations for the
alanine dipeptide internal rotation pathway.

the number of nodes. Figure 5 compares the number of gra- .
dient calculations required for each method to reach the baqlangs perpendlcglar t(.) the_tangent. As a second example we
sin of attraction as a function of the number of nodes. consider the alanine dipeptide rearrangement.
For a four-node string SM and GS perform slightly bet-

ter than NEB, presumably because tangent vectors obtaingtdL ANINE DIPEPTIDE REARRANGEMENT

from cubic splines are more accurate than the NEB tangents
for widely separated nodes. Note that GS and SM are iden-
tical when the maximum number of nodes is four, becaus

the first two interior nodes are automatically grown, making ¢ Cartesi tomi dinates. the alanine dipentid
the string complete at four nodes. SM performed well withSPace ot Lartesian atomic coordinates, the alanine dipeptide

fewer than 10 nodes, but performed poorly as the number Ortearrangement provides an excellent example of t_h_e difficul-
nodes increased. If instability caused the slow convergenctées t_hat can occur when linear s_ynchron_ous tran_sn Is used to
of SM, the number of gradients would grow disproportion—optam an |n|t|_al path. The reaction consists of sl|mu.ltaneous
ately with increasing numbers of nodes, i.e., with decreasinf;i'he_(lf‘fr]aI rotatlohns about tthe ?nglgsanddz// s?ovyn_m Fig. 6d' i
node spacing. A 50 node string required approxima¢g/ . € gas-pnase reactant and product minima as deter-
18) times as many gradients as the 18 node string. Thus, [Elned using B3LYP/6-31G calculations are shown in Fig. 7.

does not appear that instability caused the poor performanchhe relative orientations of the moleculgs were adquted o
of SM. ave the same center of mass and rotational orientations that

minimize the distance between the structures in unmass-

The alanine dipeptide rearrangement has been studied
xtensively®~?°and is often used to test theoretical methods
or studying reactive systeni$-*® In the 66-dimensional

NEB performed well at all node numbers. NEB with a . . :
spring constant ok=10 consistently reached the basin of we|gr_1ted Cartesian coord!nates. : .
attraction within 210 gradients. GS reached the basin of at- Figure 8 shows the _Imearly interpolated midpoint be-
traction within 185 gradients at all node numbers. An im_tween the structures of Fig. 7. Figure 8 also shows the saddle

pressive feature of GS is that, beyond a threshold number (Hoint on the pathway between these structures. Note that the

nodes, the number of gradients required to obtain an accuraﬁf.'?‘rbonyI groups and the NH moieties are severely crowded

saddle estimate is only weakly dependent on the number dﬂ the mte_rpol_ated strlljctur_e. In mass-vye|ghted coordinates,
nodes. the crowding in the midpoint structure is even more severe

Clear advantages of GS over SM and NEB are nolman_l_mblunlm";‘]SS'W?AQht'EOI cgordln:tgi. dral les f
readily apparent from this example. On a two-dimensional . able | shows the energies and dihedral angles foCine

potential energy surface the string tangents are entirely de- wm_um,Can m:nlmubT,_ang bsatlidleé)glr;tgconf]gulra(;m(;]s.
termined by the normal force directions. Small changes i nergies and angles obtained by Fer -~ areinclude

the tangent directions can thus cause differences in the efffo"r comparson.

ciency of the algorithm for minimizindg-[ ¢]. For higher

d|me_n3|on§1|.prloblgms, differences ar-e a"?rageo,' out by Suc\F_ABLE |. Dihedral angles and energies at stationary points along the ala-
cessive minimization steps on the high dimensional hyperpine dipeptide rearrangement pathway.

@ W \Y
B3LYP/6-31G

Cs -161.2 165.1 0.0
saddle 107.3 -139.7 7.6
Coax 71.7 -58.2 0.9

B3LYP/3-21@

Cs -172.8 1745 0.0
saddle 97.7 —150.9 8.3
Coax 71.3 -57.8 -0.5

¢: (C-N-G,—C) . N-C,—C—N

angles in deg, energy in kcal/mol
FIG. 7. C5 and C;px minima for the internal rearrangement of alanine

dipeptide. The structures have been rotated and translated to minimize théifhis work.
relative displacements. PReference 29.
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3.0 - - -GS SM 14 imaginary frequencies at Xqq
' - k=001 o k=0.10
= o k=1.00 O k=100 12 --GS
<2.5 b N 10 - ——SM
— ~ -
= 8 - ~ o O NEB k=0.1
2.0 5 RN
;?. ~
x 4
154 (a)
5 nodes 2 4 7 nodes
0 T T T — 1
10 15 20 25 30

iterations

FIG. 10. The number of imaginary frequencies at the interpolated saddle
point estimate as a function of the number of iterations. Extraneous imagi-
nary frequencies are rapidly eliminated from the growing string saddle es-
timate. Note that while the string is growing, GS also requires fewer gradi-
ents per iteration than SM and NEB.

then reoptimized using a pseudo Newton—Raphson scheme
such as eigenvector following. For reactions like the alanine
dipeptide rearrangement, for which the linearly interpolated
——— e guess is far from the MEP, the growing string method can
10 100 1000 facilitate the process of quickly obtaining a good saddle

gradients point estimate. On the two dimensional Muller—Brown sur-
face, the distance from the true saddle point is a sufficient
3.0 - 9 nodes measure of the quality of the saddle point estimate. For the

3 (©) 66-dimensional alanine dipeptide, finding the true saddle
25 1 point from the estimated saddle point depends on more than
= the distance between the two geometries. Most estimates of
>15,2-0 the saddle point have more than one imaginary frequency. In
= fact, the most unstable mode at the saddle estimate often

does not even correspond to the path tangent.
An important factor that influences whether the path tan-
s gent can be followed to a transition state using an eigenvec-
10 100 1000 tor following scheme is the number of imaginary frequencies
gradients - . . . .
at the starting geometry. If the reaction coordinate direction
FIG. 9. (8—(c) Error in the saddle point estimate plotted vs the number ofiS Known, a few extraneous imaginary frequencies can usu-
gradients computed in each of the chain of states sche@esb), and(c)  ally be eliminated by mode following, but a large number of
show results fo.r strings with 5 7, and 9 nodes, respectively. NEB results aeraginary frequencies can be problematic. Figure 10 shows
labeled according to the spring constapt gsed. With a spring constdnt of the number of imaginary frequencies at the estimated saddle
=0.1 Ha/Bohf, the NEB results are similar to the string meth(@M) ’
results. The growing string methd@$) rapidly obtains accurate approxi- POINt geometry from GS, SM, and NEB for the case of seven
mations in all cases. Note the logarithmic scale for number of gradients. nodes.
Symmetric-rank-ongSR1) update$' with a maximum
stepsize of 0.075 Bohrs were used for the Hessian during the
Figure 9 shows the error in the saddle point estimatepseudo-Newton—Raphson searches for the saddle point.
IXes—Xsg, in angstroms as a function of the number of gra-When the initial Hessian of E¢11) was updated, but not
dients computed in each of the interpolation schemes. periodically reset to the exact Hessian, all saddle point
At seven and nine nodes, the error in the saddle poinsearches required more than 800 gradients or failed, except
estimate occasionally increases sharply with additional grafor three successful searches begun from GS estimates of the
dients. These perturbations are not related to the addition cfaddle point, which required between 200 and 300 total gra-
nodes to the growing string because they occur for GS, SMjients. The pseudo-Newton—Raphson searches were more
and NEB. The perturbations occur when the estimated saddieniformly successful when started with an exact initial Hes-
point shifts tangentially along the string. This phenomenorsian. The most reliable procedure was to periodically reset
occurs each time a node far from the saddle temporarily bethe Hessian to the exact Hessian during the eigenvector fol-
comes the highest energy point on the string. lowing procedure. The Hessian was reset to the exact Hes-
Figure 9 shows that the various methods behave simisian every 20 iterations with SR1 updates used for the inter-
larly in the limit of many iterations. The advantages of themediate iterations. Resetting the Hessian periodically also
growing string method are most apparent in the early stagesllowed a larger maximum stepsize of 0.10 Bohrs.
of the string optimization. In practical applications, NEB and Figure 11 shows the total number of gradients required
SM generate a good estimate of the transition state which i converge to a transition state as a function of the number
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600 was within 2 kcal/mol of the correct barrier. This indicates
7 nodes .

that only GS converges to the correct pathway in mass-
weighted coordinates.

CONCLUSIONS

Iterative interpolation schemes for finding the minimum
energy pathway are powerful methods for locating transition
states. The principle disadvantage of interpolation methods
such as nudged elastic band and the string method is that
they require an initial guess for the reaction pathway. In the
absence of intuition about the reaction pathway, one usually
FIG. 11. Gradientgadjusted for periodic Hessian calculatipmequired to ~ US€S a linearly interpolated initial pathway. This paper dem-
converge to the saddle point with a gradient norm of 0.0003 Ha/Bohr. Theynstrates that the speed, and even the viability of these meth-
eigenvector foIIowmg(I'EF).contrlputlon to the total qumber of gradients ods, can depend strongly on the quality of the initial guess
generally decreases with increasing number of growing string metasd . . .
iterations. for the pathway. The growing string method avoids the need

for an initial guess. The interpolated pathway grows inward

from the product and reactant state toward the transition state
of GS iterations used in generating the saddle point estimates the growing ends converge. Eventually the separate ends
The number of gradients in the eigenvector followi#f)  join, and the growing string method iterations become iden-
portion of the transition state search was scaled by 1.5 t@cal to those of the string method.
account for the Hessian calculations which for this system  Our results for the two-dimensional Muller—Brown sur-
take approximately 10 times as long as a gradient calculaace do not clearly favor the growing string method over the
tion, and therefore constitute one third of the CPU time.  nudged elastic band and string methods. However, for the

The analysis of Fig. 11 was repeated to determine thalanine dipeptide, a clear hierarchy of methods emerges. The
minimum number of gradients required to find the saddlestring method and the nudged elastic band method perform
point for each method at 5, 6, 7, 8, and 9 nodes. Based on thgmilarly when a spring constant of 0.1 Ha/Bbis used for
saddle point estimates in Fig. 9, a uniform NEB spring connudged elastic band. The growing string method consistently
stant ofk=0.1 Ha/Bohf was used for this comparison. Fig- outperforms both the string method and nudged elastic band.
ure 12 summarizes the performance of the methods. The gra- The advantages of the growing string method are most
dient count reported in Fig. 12 was adjusted to account foapparent in the early stages of string optimization. In practi-
the Hessian calculations as described above. Generally, th@l applications, methods like nudged elastic band and the
GS method performed the best. SM and NEB performedstring method generate a good estimate of the saddle point
similarly when the NEB spring constant was 0.1 Ha/Bohr which is then reoptimized using a pseudo-Newton—Raphson

The difference in performance is much more pronouncedgcheme. For reactions such as alanine dipeptide rearrange-
in mass-weighted coordinates where the atomic overlapnent where the linearly interpolated guess is far from the
along the linearly interpolated guess is more severe. AfteMEP, the growing string method generates a suitable saddle
100 iterations with a spring constant of 1.0 Ha/Bw@mu,  point estimate much more quickly than nudged elastic band
NEB calculations with 5, 6, and 8 nodes still had at least oneyr the string method.
node with a potential of 380 kcal/mol above the reactant When mass-weighted coordinates were used to describe
configuration. The string method with a uniform parameter-alanine dipeptide, the string method and the nudged elastic
ization density failed in a similar fashion. In contrast, at 100band method both failed to find the correct rearrangement
iterations the maximum potential along the growing stringpathway. In contrast, the growing string method rapidly con-
verged to a realistic saddle point estimate. This clear differ-
ence in outcomes emphasizes the advantage of using the

EF

0 T T T T 1

10 15 20 25 30 35
growing string iterations

600 7 minimum number of gradients growing string method to eliminate the need for an initial
@ 500 - to reach saddle point guess. We hope it will prove to be useful for chemical appli-
g cations.
5 400 -
g
'? 300 1 APPENDIX: MINIMIZIN
B : G Flel
(2] 4
= 200 The MEP minimizes the function
®1004 __Gs —SM O NEB
1
0 T T T T T 1 F(‘PO’QDI!""@N):; |fk|2' (Al)
4 5 6 7 8 9 10 . )
nodes The gradient of- is
FIG. 12. The minimum number of gradients required to converge to the . (9{
saddle point(interpolating scheme plus eigenvector following schefoe — = —K.ft+ E (VVi-t) 7k ft . (A2)
strings with 5, 6, 7, 8, and 9 nodes. IP; g I@;
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The last term describes hdwincreases as kinks grow on the

string. Note the coefficient of the kinking term is the magni- \ >
tude of the tangential force. This coefficient also appears in ‘
the stability criterion of Henkelman and Jonsg8iThe ten- ‘
sor[&fk/ago]-] is the derivative of the tangent at théh node
with respect to the position of thigh node. It can be deter-
mined numerically by finite differencing the tangents with Vsp Vsum
respect to small changes in the positions of each node on the
string FIG. 13. Three search directiongp, Vgy, andvyg on a hyperplane per-
' pendicular to the MEP. The ellipses represent energy contours on the hyper-
&f éf 7 plane. As the smaller Hessian eigenvalue on this surface tends to zero, the
k1 k3N Vgp search direction no longer points downward on the eigenvector corre-
~ t9QDj1 (9(,01-1 sponding to the zero mode. Note that the NEB search direction would ap-
4 : . : pear identical to the SM search direction if projected onto this hyperplane,
¢9_(p- = : . : . (A3) because the spring force is perpendicular to the hyperplane.
i A -
gy dlan
L IPjan IPjan
If stability becomes a problem the kinking terms can be in- . o
cluded. The approximate Newton—Raphson search direction re-
If the nodes are far apart the kinking terms can be neSembles minimization of the potential on each hyperplane
glected, giving normal to the path. The NEB force direction interpolates
between the steepest descent and Newton—Raphson direc-
£~—K-f* (Ad) tions for F[ ¢]. It has the desirable property that it is not
ey me susceptible to getting trapped in local minimaFdfe]. If we

F[¢] can have local minima where an eigenvaluekobe- also assume negligible third derivatives of the potential en-

comes zero, but the perpendicular force along the correS'Y
sponding mode is nonzero. This situation is analogous to the
pathologies in square gradient minimization to find saddle
points® The approximate steepest descent direction may lead

to these local minima
(1= t,tTK so the second derivative matrix fBris approximately block
Tt diagonal with blocks given by EqA6). Each block of the
Vsp= T | (A5)  second derivative matrix is singular, but we can invert the
LI = ttn IK,f, matrix in the subspace of the hyperplanes to obtain

doF
Ik

maijk[l_fkfI]Kk, (A6)

[1=tyt] IK 3 [ 1 —tyt]]

[“_F}lw s A7)
Ko et IR 2 — 7] '

Thus, an approximate Newton—Raphson search direction for L

Fis vem=| |- (A9)
fa
This direction has the desirable property that it does not get
: . (A8) trapped in local minima of[ ¢]. Note however, that there
[1—toth 1K M may be multiple paths that globally minimize[¢], and
these paths may have very different barrier sizes.
Figure 13 shows theyg, Vsy, andvgp search directions
The Newton—Raphson search direction is approximately then a hyperplane perpendicular to the minimum energy path-
direction for minimization on each independent hyperplanewvay. This figure suggests thagz may be a better direction
normal to the path. thanvgy. In the limit of negligible kinking terms and small
The perpendicular force direction used in NEB and SMthird derivatives, the/yg search direction could be approxi-
interpolates between the steepest descent and Newtonmated with a BFGS or Broyden’s. Method scheme to provide
Raphson directions fdf[ ¢]. The normal forces in NEB and a superlinear version of the string method while still using
SM give the search direction only gradients.

[1-tat] K7 '

VNR™
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