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Interpolation methods such as the nudged elastic band and string methods are widely used for
calculating minimum energy pathways and transition states for chemical reactions. Both methods
require an initial guess for the reaction pathway. A poorly chosen initial guess can cause slow
convergence, convergence to an incorrect pathway, or even failed electronic structure force
calculations along the guessed pathway. This paper presents a growing string method that can find
minimum energy pathways and transition states without the requirement of an initial guess for the
pathway. The growing string begins as two string fragments, one associated with the reactants and
the other with the products. Each string fragment is grown separately until the fragments converge.
Once the two fragments join, the full string moves toward the minimum energy pathway according
to the algorithm for the string method. This paper compares the growing string method to the string
method and to the nudged elastic band method using the alanine dipeptide rearrangement as an
example. In this example, for which the linearly interpolated guess is far from the minimum energy
pathway, the growing string method finds the saddle point with significantly fewer electronic
structure force calculations than the string method or the nudged elastic band method. ©2004
American Institute of Physics.@DOI: 10.1063/1.1691018#

INTRODUCTION

One of the most important contributions of electronic
structure theory has been the prediction of potential energy
surfaces from which reaction mechanisms and rates can be
deduced. Calculations of rates usually employ harmonic
transition state theory in which the energy and real vibra-
tional frequencies at the saddle point and at the reactant
minimum determine the reaction rate constant. Locating
saddle points onab initio potential energy surfaces can be
extremely difficult, and remains one of the major challenges
in chemical kinetics.

There are two families of algorithms for finding saddle
points on potential energy surfaces, the surface walking al-
gorithms and the interpolation algorithms.1 Surface walking
methods2–5 explore the potential energy surface using local
gradient and Hessian~or approximate Hessian! information.
Such methods only require the reactant configuration, and
are thus able to predict which products will be formed. Un-
fortunately, surface walking algorithms often work poorly for

bimolecular reactions and unimolecular systems with several
low frequency vibrational modes. Like more sophisticated
transition path sampling methods,6,7 interpolation
algorithms8–13 require both the reactant and product configu-
rations. These generate a sequence of configurations~nodes!
that interpolate between the reactant and product configura-
tions. Interpolating algorithms convert the search for a first
order saddle point in configuration space to an optimization
problem in a discretized path space. When posed as a path
optimization, bimolecular reactions and low frequency
modes are easily handled.

The discretized path space dimensionality is larger than
configuration space by a factor corresponding to the number
of nodes used to represent the path. For most interpolation
algorithms, the force is computed at each node of the path
each time the path moves. In contrast, some surface walking
algorithms require just one force calculation per iteration.
Because of this disparity in computational cost per iteration,
practical applications often use an interpolation scheme only
to generate a good guess for the saddle point.12 This guess is
then optimized using a surface walking method such as
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Newton–Raphson~NR!, a quasi-NR scheme,2,4 or the Dimer
method.5

Nudged-elastic-band~NEB! ~Refs. 12, 13! is a widely
used interpolation algorithm that converges to the minimum
energy pathway~MEP!. A number of applications have
shown that NEB is a robust method for calculating reaction
pathways.14–17 However, NEB is not without disadvantages.
The algorithm requires Hooke constants for springs that keep
the nodes uniformly spaced along the path. If the spring con-
stants are chosen to be too large, the condition number of the
optimization problem can become very large,18 giving slow
convergence to the MEP. If the spring constants are chosen
to be too small, the node spacing becomes erratic leading to
a poor description of some sections of the path.

Ren et al.19 have recently proposed the ‘‘zero tempera-
ture string method’’ for finding the MEP. In the zero tempera-
ture string method, the discretized string moves in the direc-
tion of the normal force at each node on the string. Instead of
including tangential spring forces to maintain node spacing,
the nodes are redistributed along the string after each move.
For brevity the zero temperature string method will be re-
ferred to as the string method~SM!, although it should be
noted that a finite temperature string method has also been
proposed.19,20

Both SM and NEB require an initial guess for the path-
way. Most implementations of NEB employ linear synchro-
nous transit1 to start the algorithm. While linear synchronous
transit is an adequate guess in many cases, for some reac-
tions it may be far from the correct path. A bad guess can
result in exceedingly slow convergence, or worse, in severely
overlapping atoms. The latter situation may cause failure of
the electronic structure calculations used to obtain the poten-
tial and forces. Choosing an appropriate set of bond lengths
and angles for interpolation can provide a good starting
path,1 but selecting appropriate coordinates requires intuition
about the reaction pathway. Intuition may be unavailable
when exploring new chemistry or screening new ideas for a
desired catalyst. It is in such applications that computational
chemistry may prove to be most useful for guiding new ex-
periments.

This paper presents a version of the string method in
which the parameterization density evolves so that the string
grows from each end of the pathway towards the transition
state as each of the growing sections of the string converge.
The growing string method thus finds the MEP without re-
quiring an initial guess for the pathway. For systems that are
poorly described by the linear synchronous transit guess, the
growing string method~GS! obtains a realistic saddle point
estimate more rapidly than NEB and SM. The remainder of
the paper describes the string method and the growing string
method. Two examples compare the convergence properties
of NEB, SM, and GS. An Appendix augments the methodol-
ogy discussion in the main text.

THE STRING METHOD

The string is a path,w~s!, connecting the reactant and
product configurations. The parameterization variable,s, is
some monotonic function of the normalized arclength,s,
measured from one end of the string. The actual function

s(s) is determined from a parameterization density, and is
normalized so thatw~0! is the reactant configuration, and
w~1! is the product configuration. Each iteration of the string
method consists of two steps, an evolution step that guides
the string toward the MEP, and a reparameterization step that
enforces the prescribed parameterization density.19

EVOLUTION STEP

The evolution step guides the string toward the MEP, a
path joining reactant and product configurations that is par-
allel to the gradient at each point along the path. Ift̂(s) is
the unit tangent vector along the string atw~s!, andV is the
potential, then the normal force on the string ats can be
defined as

f'~w~s!!52¹V~w~s!!1~ t̂~s!T¹V~w~s!!! t̂~s!. ~1!

The MEP by definition satisfiesf'(wMEP)50 so the MEP is
a global minimum of the functional

F@w#5E
0

1

dsf'~w~s!!Tf'~w~s!! ~2!

over all paths connectingw~0! to w~1!. In practice the string
is represented by a series of discrete configurations, uni-
formly spaced in the variables, so the objective function
becomes

F~w~s0!,w~s1!,...,w~sn!!5 (
k50

n

uf'~w~sk!!u2. ~3!

A number of schemes can be used to obtain the path
tangent. The centered-difference scheme is the most intui-
tive. However, to prevent the string from growing kinks, the
node spacing,R, must satisfyR.u¹V• t̂u/2v2, wherev2 is
the smallest eigenvalue of the Hessian in the hyperplane per-
pendicular to the path.12 The upwind difference scheme for
defining the path tangent at each node stabilizes the string
against kink growth for all node spacings.12 Tangents from
the upwind scheme work well when the node spacings are
approximately uniform. However, tangents from both finite
difference schemes can unrealistically point toward a distant
node if the node spacing varies significantly. Figure 1 shows
an example of this situation, which is particularly relevant to
the growing string method described below.

Using cubic splines to fit the curvew(s) gives realistic
tangents and interpolated geometries even for nodes adjacent
to a large gap in the interpolated pathway. The cubic spline
with free ends provides natural path tangents at the end-
points,w~0! andw~1!. These tangents are useful for evolving
the endpoints of the string in bimolecular reactions where the
endpoints are not necessarily potential energy minima. There
is no easily derived stability criterion for the minimum node
spacing because the splines depend on the position of every
node. However, kink growth instabilities due to small node
spacings have not been encountered. The appendix derives a
‘‘dekinking force’’ that arises naturally from the gradient of
F@w#. If a kinking instability arises, the normal force can be
augmented with the dekinking force to stabilize the string
method and the growing string method.
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There are a number of numerical methods for minimiz-
ing functions likeF@w#. The Appendix presents an analysis
of the steepest descent, Newton–Raphson, and perpendicular
force directions for minimizingF@w#. Ren et al. employ
Broyden’s method,18 which converges much faster than the
steepest descent method and the method used in NEB, but
requires an accurate initial guess for the pathway.19 If an
accurate initial guess is available, an estimated saddle point
can be interpolated from the initial string. Then a pseudo-
Newton–Raphson method~or the Dimer method! can be
used to find the exact saddle point.1,12 If an accurate MEP is
needed, it can be determined from the converged saddle
point by following the gradient down to the neighboring
minima.21–23 Thus in practical applications, converging the
string to the MEP with extremely high accuracy is unneces-
sary.

REPARAMETERIZATION STEP

The reparameterization step redistributes the nodes along
the string after each evolution step. Although reparameteriza-
tion effectively plays a role similar to that of the springs in
NEB, the freedom to choose a parameterization density
based on intrinsic properties of the string imparts additional
flexibility to the string method. The general mechanics of
reparameterization will be discussed first, followed by the
scheme for evolving the parameterization density so that the
string grows inward from the endpoints to the transition state
as the growing ends converge.

The functions(s) disperses nodes along the string at
uniform intervals ins, i.e., ats50,1/n,2/n,..., and 1 for a
string with n11 nodes, such that the density of nodes as a
function of the normalized arclength,s, is consistent with a
chosen parameterization density,r(s). The inverse function
s(s) is determined by solving the differential equation19

d

ds S r~s!
ds

ds D50 ~4a!

with the boundary conditions,

s~0!50and s~1!51. ~4b!

Integrating Eq. ~4a! twice effectively normalizes the
chosen parameterization density,

c5E
0

1

r~s!ds. ~5!

Integrating the density until the integral reaches a frac-
tion sk5k/n of c gives the new normalized arclengthsk

5s(sk) along the previously evolved string,

E
0

sk
r~s!ds5csk . ~6!

The reparameterized positionwk5w(sk) is then deter-
mined by following along the evolved string to an arclength
skS, where S is the true un-normalized arclength of the
string. The computational cost associated with the reparam-
eterization procedure is negligible compared to the calcula-
tion of normal forces using ab initio methods, so it can be
done between each step. The evolution and reparameteriza-
tion steps are illustrated in Fig. 2.

GROWING STRING METHOD

The reparameterized string in Fig. 2 depicts the disper-
sion of nodes along the string that results from a uniform
parameterization density,r(s). As an alternative, the density
can be chosen as a non-negative function of curvature or
potential along the string to focus nodes near the transition
state or near curves in the reaction pathway. Generally, the
function r(s) need not be continuous and it can change be-
tween iterations. Additionally, the number of nodes on the
string, n, can change between iterations. These properties
allow a systematic evolution of the parameterization density
so that the string grows from its endpoints as it evolves until
eventually the two ends join into one continuous string. By
adaptively growing separate ends of the string toward the
unknown interior of a reaction pathway, the string can avoid
excessively rugged regions of the potential energy surface
where electronic structure calculations may fail.

As the string ends grow into the unknown interior of the
pathway, the nodes adjacent to the vacant interior play a

FIG. 1. When the node separation is not uniform, both centered difference
and upwind difference schemes can give tangents that are unrealistically
influenced by a distant node. The heavy black line illustrates an erroneous
tangent for a node adjacent to a large gap between nodes.

FIG. 2. An iteration of the string method showing the initial string, the
evolved string, and the evolved string after reparametrization.
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critical role in the process of advancing each end into the
interior. For convenience these nodes will be referred to as
the left and right frontiers, orw lf andw rf , respectively. The
normal force at a frontier point can be used as an indicator of
whether it is safe to advance the growing end further into the
interior of the reaction pathway.

To implement the growing string~GS! scheme, define
the indicator function as

i ~ f'!5H 1 if uf'u<tolerance

0 if uf'u.tolerance,
~7!

where the tolerance is an adjustable parameter that can be
fixed or adaptively changed like a trust radius. Letrk(s) be
the parameterization density for thekth iteration. Ifnk is the
number of nodes on the string, andrk(s) is of the form

rk~s!5H 1 if sP@0,a1
~k!#

0 if sP~a1
~k! ,a2

~k!!

1 if sP@a2
~k!,1#,

~8!

where 0,a1
(k),a2

(k),1, then reparameterization will uni-
formly disperse the nodes outside of a vacant section of the

string between the normalized arclengthsa1
(k) and a2

(k) . If
DS is the desired arclength between nodes on the string, the
normalized arclength spacing isDsk5DS/Sk , whereSk is
the total arclength of the string at thekth iteration. Beginning
at k50 with n052, a1

(0)501, and a2
(0)51201, rules for

adaptively evolving the parameterization density and the
number of nodes on the string,nk , can be written as

a1
~k11!5a1

~k!1Dski ~ f'~w lf !!,

a2
~k11!5a2

~k!2D~ski ~ f'~w lf !!, ~9!

nk115nk1 i ~ f'~w lf !!1 i ~ f'~w rf!!.

The separate ends of the string merge when the fraction
of vacant arclengtha22a1 reaches zero. Once the string has
merged, the number of nodes remains fixed, and the param-
eterization density remains uniform. Figure 3 shows four
snapshots of a growing string with 18 nodes on the Muller–
Brown potential.~See the section on examples for a discus-
sion of the Muller–Brown potential.!

The disjoint portions of the string in the growing string
method ~GS! are evolved separately until they unite. The

FIG. 3. ~a!–~d! Four snapshots of a growing string on the Muller–Brown potential energy surface. Panels~a!, ~b!, ~c!, and~d! show iterations 0, 4, 8, and 12,
respectively. The nodes are shown as black dots, and the splined string is shown between the nodes as a gray curve. The parametrization densityr(s) is shown
in the lower left of each panel. The gray dot on each string is the interpolated point of maximum energy.~a! shows the two saddle points on the potential
energy surface as small open circles. The gray outline around the highest energy saddle point is its Newton–Raphson basin of attraction. The large shaded
circle has radius 0.25 and approximately covers the basin of attraction.
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entire string is used to determine a spline that gives string
tangents on the left and right ends, but the functionF@w# is
split into two piecesF left@w# and F right@w# that are used to
separately determine the stepsize for each of the two portions
of string.

To decrease the number of electronic structure calcula-
tions, nodes that contribute a negligible fraction toF@w# can
be fixed so that the stored gradient remains valid until the
rest of the string has evolved sufficiently that the fixed node
contributes a significant fraction toF@w#. In the examples
discussed in the next section, the fixed nodes scheme was
used for NEB, SM, and GS calculations.

EXAMPLES

The following examples compare NEB, SM, and GS. In
principle the only difference between SM and NEB is that
the string is reparameterized after each evolution while NEB
augments the normal forces that guide the string with a tan-
gential spring force. The only other difference in our imple-
mentation is that NEB uses upwind scheme tangent vectors
while SM and GS use cubic spline tangents. The most criti-
cal factors in the convergence rate of all three methods are
the search directions and stepsizes used to minimize the re-
sidual gradients along the path. For a fair comparison, the
same method was used to choose the stepsize along the force
direction for GS, SM, and NEB. The search direction used
for SM and GS,vSM, is the concatenated normal force vec-
tor. The NEB search direction,vNEB, is the concatenated
normal force vector augmented by the tangential spring
forces,

vSM5~ f0
' ,f1

' ,...,fn
'!, ~10a!

vNEB5~ f0
' ,f1

' ,...,fn
'!1~ f0

i ,f1
i ,...,fn

i
!. ~10b!

At each iteration, a quadratic polynomial for the function
F in distance along these vectors is generated using three
points along the search direction vector. The string~or band!
w is moved along the directionvSM ~or vNEB) to the mini-
mum of the quadratic polynomial. If the minimum does not
exist, or if the distance to the minimum exceeds a maximum
allowed displacement, the maximum allowed step is taken.

When using NEB, SM, or GS with anab initio potential
energy surface, gradient calculations constitute nearly all of
the computational cost. Thus, we compare methods based on
the number of gradients required to reach the saddle point or
the Newton–Raphson basin of attraction for the saddle point.

THE MULLER–BROWN POTENTIAL

The Muller–Brown potential24 has a number of interest-
ing features that make it a good test surface. The MEP passes
through two saddle points and deviates significantly from the
linearly interpolated path. Moreover, a linearly interpolated
chain must slide down a dividing surface on which the po-
tential function is not convex. A contour plot of the surface
was shown in Fig. 3~a! with the Newton–Raphson basin of
attraction around the highest energy saddle point,xsp. The
shaded circle,ux2xspu<0.25, approximately covers the basin
of attraction.

An estimated saddle point,xest, can be obtained from
each string by interpolating the point of maximum energy
along the string. If the estimated saddle lies within the circle,
the exact saddle is easily found using the eigenvector follow-
ing algorithm.3,4 The initial Hessian,K , for eigenvector fol-
lowing was constructed with the estimated path tangent,test,
as an eigenvector with the estimated second directional de-
rivative of the energy,2vF

2, as its eigenvalue,

K5vmax
2 ~ I2testtest

T !2vF
2 testtest

T . ~11!

When started within the circle on this two dimensional
surface, the number of eigenvector following steps required
to converge on the saddle point,xsp, was always less than
six—much fewer than the number required to generate an
estimate,xest, within the circle. Thus, GS, SM, and NEB can
be compared based on the number of gradients required to
generate an estimate within the basin of attraction of the
saddle point. Figure 4 shows the convergence of the esti-
mated saddle point to the true saddle point for a string with
18 nodes.

GS rapidly converges to the true saddle point, and
reaches the basin of attraction with a third of the gradients
required for NEB. At 18 nodes SM requires more than 1000
gradients to find the basin of attraction of the saddle point.
The relative performances of GS, SM, and NEB depend on

FIG. 5. A summary of results comparing convergence of the growing ends
string method ~GS!, the string method~SM!, and nudged-elastic-band
~NEB! for the Muller–Brown potential energy surface. The relative perfor-
mance of the methods depends on the number of nodes.

FIG. 4. Error in the saddle point estimate,xest, as the distance from the true
saddle point,xsp, vs gradients computed. Results are shown at 18 nodes for
the growing string method~GS!, the string method~SM!, and the nudged
elastic band~NEB!. GS reaches the circle of Fig. 4 with a third as many
gradients as NEB. SM performs very poorly with 18 nodes.
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the number of nodes. Figure 5 compares the number of gra-
dient calculations required for each method to reach the ba-
sin of attraction as a function of the number of nodes.

For a four-node string SM and GS perform slightly bet-
ter than NEB, presumably because tangent vectors obtained
from cubic splines are more accurate than the NEB tangents
for widely separated nodes. Note that GS and SM are iden-
tical when the maximum number of nodes is four, because
the first two interior nodes are automatically grown, making
the string complete at four nodes. SM performed well with
fewer than 10 nodes, but performed poorly as the number of
nodes increased. If instability caused the slow convergence
of SM, the number of gradients would grow disproportion-
ately with increasing numbers of nodes, i.e., with decreasing
node spacing. A 50 node string required approximately~50/
18! times as many gradients as the 18 node string. Thus, it
does not appear that instability caused the poor performance
of SM.

NEB performed well at all node numbers. NEB with a
spring constant ofk510 consistently reached the basin of
attraction within 210 gradients. GS reached the basin of at-
traction within 185 gradients at all node numbers. An im-
pressive feature of GS is that, beyond a threshold number of
nodes, the number of gradients required to obtain an accurate
saddle estimate is only weakly dependent on the number of
nodes.

Clear advantages of GS over SM and NEB are not
readily apparent from this example. On a two-dimensional
potential energy surface the string tangents are entirely de-
termined by the normal force directions. Small changes in
the tangent directions can thus cause differences in the effi-
ciency of the algorithm for minimizingF@w#. For higher
dimensional problems, differences are averaged out by suc-
cessive minimization steps on the high dimensional hyper-

planes perpendicular to the tangent. As a second example we
consider the alanine dipeptide rearrangement.

ALANINE DIPEPTIDE REARRANGEMENT

The alanine dipeptide rearrangement has been studied
extensively25–29and is often used to test theoretical methods
for studying reactive systems.30–35 In the 66-dimensional
space of Cartesian atomic coordinates, the alanine dipeptide
rearrangement provides an excellent example of the difficul-
ties that can occur when linear synchronous transit is used to
obtain an initial path. The reaction consists of simultaneous
dihedral rotations about the anglesf andc shown in Fig. 6.

The gas-phase reactant and product minima as deter-
mined using B3LYP/6-31G calculations are shown in Fig. 7.
The relative orientations of the molecules were adjusted to
have the same center of mass and rotational orientations that
minimize the distance between the structures in unmass-
weighted Cartesian coordinates.

Figure 8 shows the linearly interpolated midpoint be-
tween the structures of Fig. 7. Figure 8 also shows the saddle
point on the pathway between these structures. Note that the
carbonyl groups and the NH moieties are severely crowded
in the interpolated structure. In mass-weighted coordinates,
the crowding in the midpoint structure is even more severe
than in unmass-weighted coordinates.

Table I shows the energies and dihedral angles for theC5

minimum, C7AX minimum, and saddle point configurations.
Energies and angles obtained by Perczelet al.29 are included
for comparison.

FIG. 6. The alanine dipeptide rearranges via simultaneous rotations about
the dihedral anglesf andc.

FIG. 7. C5 and C7AX minima for the internal rearrangement of alanine
dipeptide. The structures have been rotated and translated to minimize their
relative displacements.

FIG. 8. The interpolated midpoint and saddle point configurations for the
alanine dipeptide internal rotation pathway.

TABLE I. Dihedral angles and energies at stationary points along the ala-
nine dipeptide rearrangement pathway.

f c V

B3LYP/6-31Ga

C5 2161.2 165.1 0.0
saddle 107.3 2139.7 7.6
C7AX 71.7 258.2 0.9

B3LYP/3-21Gb

C5 2172.8 174.5 0.0
saddle 97.7 2150.9 8.3
C7AX 71.3 257.8 20.5

f: (C–N–Ca – C) c: N–Ca – C–N
angles in deg, energy in kcal/mol

aThis work.
bReference 29.
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Figure 9 shows the error in the saddle point estimate,
uxest2xspu, in angstroms as a function of the number of gra-
dients computed in each of the interpolation schemes.

At seven and nine nodes, the error in the saddle point
estimate occasionally increases sharply with additional gra-
dients. These perturbations are not related to the addition of
nodes to the growing string because they occur for GS, SM,
and NEB. The perturbations occur when the estimated saddle
point shifts tangentially along the string. This phenomenon
occurs each time a node far from the saddle temporarily be-
comes the highest energy point on the string.

Figure 9 shows that the various methods behave simi-
larly in the limit of many iterations. The advantages of the
growing string method are most apparent in the early stages
of the string optimization. In practical applications, NEB and
SM generate a good estimate of the transition state which is

then reoptimized using a pseudo Newton–Raphson scheme
such as eigenvector following. For reactions like the alanine
dipeptide rearrangement, for which the linearly interpolated
guess is far from the MEP, the growing string method can
facilitate the process of quickly obtaining a good saddle
point estimate. On the two dimensional Muller–Brown sur-
face, the distance from the true saddle point is a sufficient
measure of the quality of the saddle point estimate. For the
66-dimensional alanine dipeptide, finding the true saddle
point from the estimated saddle point depends on more than
the distance between the two geometries. Most estimates of
the saddle point have more than one imaginary frequency. In
fact, the most unstable mode at the saddle estimate often
does not even correspond to the path tangent.

An important factor that influences whether the path tan-
gent can be followed to a transition state using an eigenvec-
tor following scheme is the number of imaginary frequencies
at the starting geometry. If the reaction coordinate direction
is known, a few extraneous imaginary frequencies can usu-
ally be eliminated by mode following, but a large number of
imaginary frequencies can be problematic. Figure 10 shows
the number of imaginary frequencies at the estimated saddle
point geometry from GS, SM, and NEB for the case of seven
nodes.

Symmetric-rank-one~SR1! updates11 with a maximum
stepsize of 0.075 Bohrs were used for the Hessian during the
pseudo-Newton–Raphson searches for the saddle point.
When the initial Hessian of Eq.~11! was updated, but not
periodically reset to the exact Hessian, all saddle point
searches required more than 800 gradients or failed, except
for three successful searches begun from GS estimates of the
saddle point, which required between 200 and 300 total gra-
dients. The pseudo-Newton–Raphson searches were more
uniformly successful when started with an exact initial Hes-
sian. The most reliable procedure was to periodically reset
the Hessian to the exact Hessian during the eigenvector fol-
lowing procedure. The Hessian was reset to the exact Hes-
sian every 20 iterations with SR1 updates used for the inter-
mediate iterations. Resetting the Hessian periodically also
allowed a larger maximum stepsize of 0.10 Bohrs.

Figure 11 shows the total number of gradients required
to converge to a transition state as a function of the number

FIG. 9. ~a!–~c! Error in the saddle point estimate plotted vs the number of
gradients computed in each of the chain of states schemes.~a!, ~b!, and~c!
show results for strings with 5, 7, and 9 nodes, respectively. NEB results are
labeled according to the spring constant used. With a spring constant ofk
50.1 Ha/Bohr2, the NEB results are similar to the string method~SM!
results. The growing string method~GS! rapidly obtains accurate approxi-
mations in all cases. Note the logarithmic scale for number of gradients.

FIG. 10. The number of imaginary frequencies at the interpolated saddle
point estimate as a function of the number of iterations. Extraneous imagi-
nary frequencies are rapidly eliminated from the growing string saddle es-
timate. Note that while the string is growing, GS also requires fewer gradi-
ents per iteration than SM and NEB.
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of GS iterations used in generating the saddle point estimate.
The number of gradients in the eigenvector following~EF!
portion of the transition state search was scaled by 1.5 to
account for the Hessian calculations which for this system
take approximately 10 times as long as a gradient calcula-
tion, and therefore constitute one third of the CPU time.

The analysis of Fig. 11 was repeated to determine the
minimum number of gradients required to find the saddle
point for each method at 5, 6, 7, 8, and 9 nodes. Based on the
saddle point estimates in Fig. 9, a uniform NEB spring con-
stant ofk50.1 Ha/Bohr2 was used for this comparison. Fig-
ure 12 summarizes the performance of the methods. The gra-
dient count reported in Fig. 12 was adjusted to account for
the Hessian calculations as described above. Generally, the
GS method performed the best. SM and NEB performed
similarly when the NEB spring constant was 0.1 Ha/Bohr2.

The difference in performance is much more pronounced
in mass-weighted coordinates where the atomic overlap
along the linearly interpolated guess is more severe. After
100 iterations with a spring constant of 1.0 Ha/Bohr2 amu,
NEB calculations with 5, 6, and 8 nodes still had at least one
node with a potential of 380 kcal/mol above the reactant
configuration. The string method with a uniform parameter-
ization density failed in a similar fashion. In contrast, at 100
iterations the maximum potential along the growing string

was within 2 kcal/mol of the correct barrier. This indicates
that only GS converges to the correct pathway in mass-
weighted coordinates.

CONCLUSIONS

Iterative interpolation schemes for finding the minimum
energy pathway are powerful methods for locating transition
states. The principle disadvantage of interpolation methods
such as nudged elastic band and the string method is that
they require an initial guess for the reaction pathway. In the
absence of intuition about the reaction pathway, one usually
uses a linearly interpolated initial pathway. This paper dem-
onstrates that the speed, and even the viability of these meth-
ods, can depend strongly on the quality of the initial guess
for the pathway. The growing string method avoids the need
for an initial guess. The interpolated pathway grows inward
from the product and reactant state toward the transition state
as the growing ends converge. Eventually the separate ends
join, and the growing string method iterations become iden-
tical to those of the string method.

Our results for the two-dimensional Muller–Brown sur-
face do not clearly favor the growing string method over the
nudged elastic band and string methods. However, for the
alanine dipeptide, a clear hierarchy of methods emerges. The
string method and the nudged elastic band method perform
similarly when a spring constant of 0.1 Ha/Bohr2 is used for
nudged elastic band. The growing string method consistently
outperforms both the string method and nudged elastic band.

The advantages of the growing string method are most
apparent in the early stages of string optimization. In practi-
cal applications, methods like nudged elastic band and the
string method generate a good estimate of the saddle point
which is then reoptimized using a pseudo-Newton–Raphson
scheme. For reactions such as alanine dipeptide rearrange-
ment where the linearly interpolated guess is far from the
MEP, the growing string method generates a suitable saddle
point estimate much more quickly than nudged elastic band
or the string method.

When mass-weighted coordinates were used to describe
alanine dipeptide, the string method and the nudged elastic
band method both failed to find the correct rearrangement
pathway. In contrast, the growing string method rapidly con-
verged to a realistic saddle point estimate. This clear differ-
ence in outcomes emphasizes the advantage of using the
growing string method to eliminate the need for an initial
guess. We hope it will prove to be useful for chemical appli-
cations.

APPENDIX: MINIMIZING F†w‡

The MEP minimizes the function

F~w0 ,w1 ,...,wN!5(
k

ufk
'u2. ~A1!

The gradient ofF is

]F

]w j
52K j f j

'1(
k

~¹Vk• t̂k!F ] t̂k

]w j
G fk

' . ~A2!

FIG. 11. Gradients~adjusted for periodic Hessian calculations! required to
converge to the saddle point with a gradient norm of 0.0003 Ha/Bohr. The
eigenvector following~EF! contribution to the total number of gradients
generally decreases with increasing number of growing string method~GS!
iterations.

FIG. 12. The minimum number of gradients required to converge to the
saddle point~interpolating scheme plus eigenvector following scheme! for
strings with 5, 6, 7, 8, and 9 nodes.
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The last term describes howF increases as kinks grow on the
string. Note the coefficient of the kinking term is the magni-
tude of the tangential force. This coefficient also appears in
the stability criterion of Henkelman and Jonsson.12 The ten-
sor @] t̂k /]wj # is the derivative of the tangent at thekth node
with respect to the position of thej th node. It can be deter-
mined numerically by finite differencing the tangents with
respect to small changes in the positions of each node on the
string,

F ] t̂k

]w j
G5F ] t̂k1

]w j 1

¯

] t̂k3N

]w j 1

] � ]

] t̂k1

]w j 3N

¯

] t̂k3N

]w j 3N

G . ~A3!

If stability becomes a problem the kinking terms can be in-
cluded.

If the nodes are far apart the kinking terms can be ne-
glected, giving

]F

]w j
'2K j f j

' . ~A4!

F@w# can have local minima where an eigenvalue ofK be-
comes zero, but the perpendicular force along the corre-
sponding mode is nonzero. This situation is analogous to the
pathologies in square gradient minimization to find saddle
points.1 The approximate steepest descent direction may lead
to these local minima

vSD5F @ I2t1t1
T#K1f1

'

]

@ I2tntn
T#Knfn

'
G . ~A5!

The approximate Newton–Raphson search direction re-
sembles minimization of the potential on each hyperplane
normal to the path. The NEB force direction interpolates
between the steepest descent and Newton–Raphson direc-
tions for F@w#. It has the desirable property that it is not
susceptible to getting trapped in local minima ofF@w#. If we
also assume negligible third derivatives of the potential en-
ergy

F ]2F

]wk]w j
G'd jkK k@ I2 t̂kt̂k

T#K k , ~A6!

so the second derivative matrix forF is approximately block
diagonal with blocks given by Eq.~A6!. Each block of the
second derivative matrix is singular, but we can invert the
matrix in the subspace of the hyperplanes to obtain

F ]2F

]$wk%]$wk%
G21

'F @ I2t1t1
T#K1

22@ I2t1t1
T#

�

@ I 2tntn
T#Kn

22@ I 2tntn
T#
G . ~A7!

Thus, an approximate Newton–Raphson search direction for
F is

vNR5F @ I2t1t1
T#K1

21f l
'

]

@ I2tntn
T#Kn

21fn
'
G . ~A8!

The Newton–Raphson search direction is approximately the
direction for minimization on each independent hyperplane
normal to the path.

The perpendicular force direction used in NEB and SM
interpolates between the steepest descent and Newton–
Raphson directions forF@w#. The normal forces in NEB and
SM give the search direction

vSM5F f l
'

]

fn
'
G . ~A9!

This direction has the desirable property that it does not get
trapped in local minima ofF@w#. Note however, that there
may be multiple paths that globally minimizeF@w#, and
these paths may have very different barrier sizes.

Figure 13 shows thevNR, vSM, andvSD search directions
on a hyperplane perpendicular to the minimum energy path-
way. This figure suggests thatvNR may be a better direction
thanvSM. In the limit of negligible kinking terms and small
third derivatives, thevNR search direction could be approxi-
mated with a BFGS or Broyden’s. Method scheme to provide
a superlinear version of the string method while still using
only gradients.

FIG. 13. Three search directions,vSD, vSM , andvNR on a hyperplane per-
pendicular to the MEP. The ellipses represent energy contours on the hyper-
plane. As the smaller Hessian eigenvalue on this surface tends to zero, the
vSD search direction no longer points downward on the eigenvector corre-
sponding to the zero mode. Note that the NEB search direction would ap-
pear identical to the SM search direction if projected onto this hyperplane,
because the spring force is perpendicular to the hyperplane.
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