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Obtaining reaction coordinates by likelihood maximization
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We present a new approach for calculating reaction coordinates in complex systems. The new
method is based on transition path sampling and likelihood maximization. It requires fewer
trajectories than a single iteration of existing procedures, and it applies to both low and high friction
dynamics. The new method screens a set of candidate collective variables for a good reaction
coordinate that depends on a few relevant variables. The Bayesian information criterion determines
whether additional variables significantly improve the reaction coordinate. Additionally, we present
an advantageous transition path sampling algorithm and an algorithm to generate the most likely
transition path in the space of collective variables. The method is demonstrated on two systems: a
bistable model potential energy surface and nucleation in the Ising model. For the Ising model of
nucleation, we quantify for the first time the role of nuclei surface area in the nucleation reaction
coordinate. Surprisingly, increased surface area increases the stability of nuclei in two dimensions
but decreases nuclei stability in three dimensions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2234477�
INTRODUCTION

The reaction coordinate is a single variable that quanti-
fies progress along a reaction pathway. Knowing the reaction
coordinate is essential for understanding how a reaction pro-
ceeds, but reaction coordinates are often extremely difficult
to find. For all but the simplest systems, the reaction coordi-
nate involves many degrees of freedom that are not easily
identified. The major challenges are to determine which de-
grees of freedom are important and how they participate in
the reaction coordinate. This paper addresses both of these
challenges.

For any reaction, the exact reaction coordinate is the
committor probability,1–3 the fraction of trajectories initiated
with Boltzmann distributed momenta from an atomic con-
figuration x that commit to the product basin �B�.4–6 If the
committor probability is denoted pB�x�, then transition states
are configurations for which pB�x�=1/2, reactant configura-
tions have pB�x��1/2, and product configurations have
pB�x��1/2.4–6 Unfortunately, pB�x� is costly to compute,
and it provides no insight into the physical characteristics
that distinguish reactants, products, and transition states.

For complex systems, a simple approximation to pB�x�
in terms of collective variables is more useful and more fea-
sible than the actual function pB�x�. Collective variables are
functions of the configuration that compress many atomistic
details into physically important variables. Examples include
the fraction of native protein contacts,2 coordination
numbers,7 coordination geometries,8 and nucleus size.9 The
key challenge is to learn which collective variables are im-
portant and how they are involved in the reaction coordinate.

Committor probabilities, reaction coordinates, transition
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states, and collective variables are important concepts used
throughout this paper. Collective variables are denoted q�x�,
where x is the full configuration of the system. q�x� denotes
a vector of several collective variables. Reaction coordinates
are denoted r�q� or r�x�, both of which are abbreviations for
r�q�x��. Where the reaction coordinate is written as r without
an explicit dependence on q or x, the meaning is “a particu-
lar value of r�x�.” The symbol r† indicates the value of r�x�
corresponding to the transition state surface. Note that r�x� is
also used to indicate a trial reaction coordinate.

Because the committor probability is the exact reaction
coordinate, isosurfaces of a good reaction coordinate, r�x�
=r, must closely approximate isocommittor surfaces, pB�x�
=const. The usual test for matching isosurfaces is to sample
configurations from the Boltzmann distribution on an isosur-
face of the trial reaction coordinate. These configurations are
then used to construct a histogram of estimated pB�x�
values.5,6 For brevity, a histogram of estimated pB values will
be called a pB histogram for the remainder of this paper. If
r�x� is a good reaction coordinate, the pB histogram will be
sharply peaked around a pB value corresponding to the value
of r.5,6 Having a sharply peaked pB histogram around pB

=1/2 for the putative transition state surface is particularly
important.

In committor analysis, trial reaction coordinates are it-
eratively tested and improved based on pB histograms. Each
estimated pB value in a histogram requires on the order of
100 trajectories, and good statistics require hundreds of esti-
mates per pB histogram. Figure 1 shows that a single pB

histogram can require tens of thousands of trajectories, each
half as long as a reactive trajectory.

The difficulties and computational cost of committor
analyses have motivated recent attempts to systematize the
search for reaction coordinates.1–3,10 Recent methods im-

prove upon the trial and error aspects but continue to use
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expensive histogram calculations. Ma and Dinner developed
a neural network scheme that iteratively proposes and im-
proves trial reaction coordinates based on committor
analysis.1 Their procedure requires millions of trajectories to
train the neural network and to evaluate the network’s
guesses.1

Hummer reformulated committor analysis in terms of
the probability that trajectories initiated from x are transition
paths, p�TP �x�.11 For diffusive barrier crossings, p�TP �x�
=2pB�x��1− pB�x��,11 so p�TP �x� attains a maximal value of
1 /2 for pB�x�=1/2, the transition state surface.11 Projection
of p�TP �x� onto a good reaction coordinate r�x� gives a
function p�TP �r� with the peak at r‡ corresponding to the
transition state surface, r�x�=r‡.11 Best and Hummer varia-
tionally maximized the peak in p�TP �r� to obtain a good
reaction coordinate at the transition state surface.2 Their
method requires a histogram of estimated p�TP �r� values for
each iterative improvement of r�x�.2

Maragliano et al.10 developed a string method for collec-
tive variables to obtain a family of approximate isocommit-
tor surfaces. To our knowledge, theirs is the only other ap-
proach that does not rely on costly histograms. However,
their method presumes a priori knowledge of the relevant
variables, and it requires many iterations of mean force and
variable entanglement calculations. It is unclear how the
method of Maragliano et al.10 will compare to existing
strategies.

Transition path sampling5,6,12,13 �TPS� is a powerful im-
portance sampling scheme for simulating reactive trajecto-
ries in complex systems. TPS efficiently calculates rates and
reactive trajectories by focusing on rare reactive trajectories.
In contrast, trajectories from a straightforward simulation
spend the vast majority of time in the reactant or product
basins. TPS and related path sampling algorithms14–16 have
been used to study ice nucleation,17,18 DNA transcription,19

DNA hybridization,20 Grotthus proton transfer,21 protein
folding,22–24 methionine oxidation,25 transfer of molecules
across lipid bilayers,26 the phage-� switch,16 and heteroge-
neous catalysis.27

Each shooting point from TPS provides information
about the reaction coordinate: where the trajectory was initi-
ated and whether each end committed to the product state.
However, points along the ensemble of transition paths are
distributed as p�x �TP�.11 Points from the equilibrium distri-
bution, �eq�x�, are distributed differently.3,11 If r�x� is
an arbitrary trial reaction coordinate, then p�x �r ,TP�

3,11

FIG. 1. This pB histogram for a putative definition of critical nuclei in the
Ising model required 32 000 trajectories, each half as long as a reactive
trajectory.
��eq�x �r�. Thus, methods that rely on histograms of
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pB�x� or p�TP �x� for a trial reaction coordinate isosurface
cannot use the information from TPS.11 However, E et al.3

showed that good reaction coordinates satisfy p�x �r ,TP�
=�eq�x �r�.

The observation of E et al. provides the central justifi-
cation for the method proposed here. If the candidate vari-
ables permit a complete description of the true reaction co-
ordinate and if the reaction coordinate is optimized using
TPS shooting points from the full range of pB values, then
the reaction coordinate based on the transition path ensemble
is also a good reaction coordinate in the equilibrium en-
semble. The method is described below, including a new TPS
algorithm that is specially designed for calculating reaction
coordinates but simultaneously applicable to calculating rate
constants. The final sections present applications of the new
method to a model potential energy surface and to an Ising
model of nucleation.

OVERVIEW OF METHOD

The approach presented here is very different from pre-
vious approaches. The typical approach is to propose a trial
reaction coordinate, sample points on the corresponding con-
straint surfaces, and then test each ensemble of samples. Our
approach samples points independent of the reaction coordi-
nates to be tested, and then tests all reaction coordinate can-
didates for the best coordinate given the sample.

The new method begins by harvesting an ensemble of
shooting points from a modified version of TPS. Each shoot-
ing point is saved with information on whether the trajectory
was accepted or rejected and whether its end points commit-
ted to the reactant or product basin. Then specify a set of
coordinates to be tested. For example, let q�x�
= �q1�x� , . . . ,qm�x�� be a set of m collective variables that are
potentially important in the reaction coordinate. The collec-
tive variables need not have the same units, nor be differen-
tiable. The collective variables are evaluated at each shooting
point. This information, a sample of collective variables
evaluated at shooting points and the corresponding trajectory
fates, allows likelihood maximization to find the best reac-
tion coordinate from each combination of collective vari-
ables. The combinations of variables are screened starting
from single variables as model reaction coordinates and go-
ing to combinations of two, then three variables, etc. The
search stops when the improvement is no longer significant
according to the Bayesian information criterion.

“AIMLESS SHOOTING” ALGORITHM

Aimless shooting is version of transition path sampling
where momenta are drawn fresh from the Boltzmann distri-
bution for each trial trajectory. Each trajectory shot from x
with freshly sampled momenta is an independent realization
of p�TP �x�. In contrast, successive trajectory outcomes are
correlated when momenta are slightly perturbed from previ-
ous momenta.6,12 Aimless shooting generates new reactive
trajectories only when the shooting point is near the pB

=1/2 surface. Thus, aimless shooting must also be designed
to generate most shooting points near the unknown pB=1/2

surface.
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Let �t be much shorter than the duration of a reactive
trajectory, t. The value of �t has some effect on efficiency,
but a wide range of values is acceptable. Define x−t/2

�o� as the
point at which the previously accepted trajectory began and
xt/2

�o� as the point at which the previously accepted trajectory
ended. The superscript �o� denotes “old” and the superscript
�n� denotes “new.” Select a shooting point on the old trajec-
tory from x−�t

�o� , x0
�o�, and x�t

�o� with equal probability for each
position. Also shift the time t0 at the shooting point along the
new trajectory to −�t, 0, or �t. Denote the time-shifted
shooting point on the new trajectory as xt0

�n�, and draw new
momenta from the Boltzmann distribution. Dynamically
propagate the system to ±t /2. Finally, accept the new trajec-
tory if it joins the reactant and product states A and B. Figure
2 shows how aimless shooting produces new trajectories
from old trajectories. Figure 3 shows why the shooting
points from aimless shooting stay in regions with large
p�TP �x�.

ACCEPTANCE RULE FOR AIMLESS SHOOTING

If the initial velocities are vt0
, then the probability of

generating a new trajectory �x±t/2
�n� � from the old trajectory is

pgen
o→n =

1

9
�eq�vt0

�p��x±t/2
�n� ��vt0

,xt0
�n�,t0� . �1�

The probability p��x±T/2
�n� � �v0 ,xt0

�n� , t0� depends on the equa-
tions of motion, and �eq is the Boltzmann distribution. The
factor of 1 /9 originates from choosing the shooting point
from x−�t

�o� , x0
�o�, and x�t

�o� and choosing the temporal position
of the shooting point on the new trajectory xt0

�n� with t0

FIG. 2. Aimless shooting creates a sequence of interconnected trajectories.
The three points on each trajectory are separated by a short time �t.

FIG. 3. Of the points x−�t
�o� , x0

�o�, and x�t
�o� on the old trajectory, the one with

the largest p�TP �x� is most likely to yield a new reactive trajectory. Thus,
the aimless shooting algorithm has a statistical “restoring force” that keeps

shooting points near the maximum of p�TP �x�.
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=−�t, 0, or �t. If the equations of motion conserve the equi-
librium distribution, then5,28

�eq�x−t/2,v−t/2�p��x±t/2��v−t/2,x−t/2,− t/2�

= �eq�xt0
,vt0

�p��x±t/2��vt0
,xt0

,t0� . �2�

The ratio of generation probabilities is

pgen
o→n

pgen
n→o =

�eq�vt0
�n��

�eq�vt0
�o��

p��x±t/2
�n� ��x,vt0

�n�,t0
�n��

p��x±t/2
�o� ��x,vt0

�o�,t0
�o��

, �3�

and the statistical weight6,12 of a trajectory �x±t/2� is

S��x±t/2�� = hA�x−t/2�hB�xt/2��eq�x−t/2,y−t/2�

�p��x±t/2��x−t/2,v−t/2,− t/2� . �4�

The function hA�x� returns 1 if x is in A and 0 otherwise.
Similarly, hB�x� returns 1 if x is in B and 0 otherwise. Using
Eq. �2�, the ratio of statistical weights for the new and old
paths is

S��x±t/2
�n� ��

S��x±t/2
�o� ��

= hA�x−t/2
�n� �hB�xt/2

�n��
�eq�vt0

�n��

�eq�vt0
�o��

p��x±t/2
�n� ��x,vt0

�n�,t0
�n��

p��x±t/2
�o� ��x,vt0

�o�,t0
�o��

.

�5�

hA and hB at the ends of the old path are unity, or else that
path would not have been accepted. The equilibrium prob-
ability of the common shooting point x cancels leaving the
probabilities of the old and new shooting velocities. Equa-
tions �5� and �3� show that detailed balance29 in the transition
path ensemble is obtained by accepting each new trajectory
that goes from state A to state B.

pacc,TPS
o→n = hA�x−t/2

�n� �hB�xt/2
�n�� . �6�

Forward and backward reactions can be included in the tran-
sition path ensemble by accepting trajectories with probabil-
ity hA�x−t/2

�n� �hB�xt/2
�n��+hA�xt/2

�n��hB�x−t/2
�n� �.

SHOOTING POINT DENSITY FROM AIMLESS
SHOOTING

As the trajectories generated by aimless shooting evolve
in trajectory space, the shooting points from aimless shooting
evolve in configuration space. Each time a trajectory is ac-
cepted, the previous shooting points, x−�t

�o� , x0
�o�, and x�t

�o�, are
replaced by three new points, x−�t

�n� , x0
�n�, and x�t

�n�. One of the
three new points is the old point that generated the new tra-
jectory. Suppose x=x0

�n� is the point that generated the new
trajectory. The probability of observing the two new points is

p�x−�t
�n� ,x�t

�n��x0
�n�,TP� =

p�x−�t
�n� ,x0

�n�,x�t
�n��TP�

p�x0
�n��TP�

. �7�

The probability that the next new trajectory will be ob-
tained by shooting at x is p�TP �x� /3pacc

�o� , where x is one of
the points x−�t

�o� , x0
�o�, and x�t

�o� and

3pacc
�o� = p�TP�x−�t

�o� � + p�TP�x0
�o�� + p�TP�x�t

�o�� . �8�

The transition probability from x−�t
�o� , x0

�o�, and x�t
�o� to x−�t

�n� ,
�n� �n�
x0 , and x�t is
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po→n =
p�TP�x�

3pacc
�n�

p�x−�t
�n� ,x0

�n�,x�t
�n��TP�

p�x�TP�
. �9�

Similarly, the probability of generating the old points from
the new points is

pn→o =
p�TP�x�

3pacc
�n�

p�x−�t
�o� ,x0

�o�,x�t
�o��TP�

p�x�TP�
. �10�

The shooting point x is the same in both cases, so the ratio of
transition probabilities is

po→n

pn→o =
pacc

�n�

pacc
�o�

p�x−�t
�n� ,x0

�n�,x�t
�n��TP�

p�x−�t
�o� ,x0

�o�,x�t
�o��TP�

. �11�

Equation �11� shows that the distribution of shooting
points is a “fuzzy” approximation to p�TP �x�p�x �TP�. For
two states connected by a single pathway without any stable
intermediates, p�TP �x�p�x �TP� is peaked near transition
states along the reaction coordinate. In directions orthogonal
to the reaction coordinate, p�x �TP� is peaked at the center of
the transition pathway.10 Thus, aimless shooting distributes
shooting points near probable transition states without a pri-
ori knowledge of their locations. An important exception oc-
curs when a stable intermediate exists along the pathway.
Suggestions for detecting and correcting this problem are
given in a later section. Another advantage of aimless shoot-
ing is that �t is the only adjustable parameter. Other TPS
algorithms have shooting-shifting ratios and momentum per-
turbation parameters that must be chosen based on the sys-
tem of interest.

REACTION COORDINATE FROM SHOOTING HISTORY

For a good reaction coordinate r�x� , p�TP �x� depends
only on the reaction coordinate. Thus, we seek the function
p�TP �r�x�� that is most likely to explain the realizations of
p�TP �x� that were obtained from aimless shooting. Likeli-
hood maximization is a powerful framework for learning
models to explain probabilistic data.30 Here, the data are the
rejected and accepted shooting points from TPS, and the
models are trial functions r�x� and p�TP �r�.

The model function for p�TP �r� must have a peak cor-
responding to the transition state value of r and decay to zero
on both sides of the peak. One possible model is

p�TP�r� = p0�1 − tanh�r�2� , �12�

where p0 is an adjustable parameter. Equation �12� is sym-
metric with a peak at r=0, so transition states should be on
the isosurface r�x�=0. For two limiting cases, p0 can be
identified a priori. In transition state theory, a transition state
x satisfies p�TP �x�=1, so for systems that obey transition
state theory, p0=1. For systems with diffusive barrier cross-
ing dynamics, transition states satisfy p�TP �x�=1/2.11 Since
transition states are on the surface r�x�=0 and p�TP �x�
=2pB�x��1− pB�x��,11 p0=1/2 and pB�r�= �1+tanh�r�� /2.
Figure 4 shows pB�r� and p�TP �r� from Eq. �12� applied to a
system with diffusive barrier crossings.

The model function for p�TP �r� has only one adjustable
parameter, so the model reaction coordinate should be very

flexible. Suppose that the model reaction coordinate depends
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on a few collective variables, q=q1 ,q2 , . . . ,qm. A later sec-
tion extends this treatment to large sets of candidate vari-
ables. The simplest model of the reaction coordinate is the
linear combination

r�q� = �
k=1

m

�kqk − �0, �13�

where �1 , . . . ,�m and �0 are free parameters. The coeffi-
cients �1 , . . . ,�m in the reaction coordinate absorb the units
from the collective variables, so the reaction coordinate is
dimensionless. The parameter �0 allows the reaction coordi-
nate to shift so that transition states are at r�q�=0.

The symmetry in Eq. �12� and interactions between col-
lective variables may require additional flexibility in Eq.
�13�. The symmetry in p�TP �r� can be accommodated by
including power law parameters �fixed or adjustable� in the
reaction coordinate model, i.e., r=�k�kqk

mk−�0. Interactions
can be included by adding a quadratic form to Eq. �13�, i.e.,
r=�k�kqk+qTAq−�0, where A is a matrix of adjustable pa-
rameters. Another way to include interactions is to include
them explicitly among the q variables, for example, q3

=q1q2.
The models for p�TP �r� and r�x� are used to calculate

the likelihood of the model given the shooting data. The
likelihood depends on the model and the free parameters,30

L��,p0� = 	
k

Nacc

p�TP�r�qacc
�k� ��	

k

Nrej

�1 − p�TP�r�qrej
�k���� , �14�

where qrej
�k� and qacc

�k� are the collective variables at the kth
rejected and accepted shooting points. Nacc and Nrej are
the numbers of accepted and rejected shooting moves,
respectively.

For diffusive dynamics each shooting point constitutes
two independent realizations of pB�x�, so the likelihood can
be written in terms of r�q�x�� and pB�r�= �1+tanh�r�� /2,

L��� = 	
k=1

B

pB�r�q�k���	
k=1

�B

�1 − pB�r�q�k���� , �15�

where B is the number of trajectory end points in B, �B is
the number of trajectory end points in A, and the q�k� are the
collective variables at the shooting points. Equation �15� dis-
tinguishes rejected trajectories with both end points in B
from rejected trajectories with both end points in A. The
likelihood in Eq. �14� does not distinguish between these

FIG. 4. p�TP �r� �gray� and pB�r� �black� as functions of r for a system with
diffusive barrier crossings.
types of rejected trajectories. Thus, Eq. �15� uses more of the
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available information but applies only for diffusive dynamics
where p�TP �x�=2pB�x��1− pB�x��.11

The log likelihood30,31 ����=ln L��� is easily maxi-
mized to obtain the optimal parameters �,

� = arg max
��

����� . �16�

Equation �16� does not include p0 in the optimization. This is
appropriate for the two limits where p0 is known. Otherwise,
Eq. �14� should be used and p0 should be optimized along
with �.

Because the likelihood uses information from the full
range of pB values, the reaction coordinate applies at every
pB along the transition pathway. Likelihood maximization
constructs the best possible reaction coordinate from a few
collective variables. A few variables are often sufficient, but
a major challenge is to learn which variables are important.
The algorithm below compares the best reaction coordinates
from combinations of many collective variables.

ALGORITHM TO SCREEN MANY CANDIDATE
VARIABLES

Consider a large set of M collective variables as possible
components of the reaction coordinate. The likelihood will
increase each time a new parameter is added to the model,31

but simple reaction coordinates are better for gaining insight.
Our strategy is to search the set of M collective variables

starting from models of the reaction coordinate with just one
variable. The best single variable reaction coordinate is then
compared to the best reaction coordinate from all pairs of
collective variables and that to the best coordinate from all
combinations of three variables, etc. The Bayesian informa-
tion criterion32 determines when the benefit of additional
model complexity is no longer significant. If NR is the num-
ber of realizations in the likelihood function, an additional
parameter �or an additional variable� gives a significant im-
provement if the likelihood increases by �1/2�ln NR.30,32

�1� Perform aimless shooting to harvest NR independent re-
alizations of p�TP �x� or pB�x� as appropriate for the
dynamics of the system. This step never has to be re-
peated.

�2� Propose M candidate collective variables, q1 , . . . ,qM.
Choose forms for r�q� and p�TP �r� such as Eqs. �12�
and �13�. Set m=1.

�3� For each of the C�m ,M�=M ! / ��M −m� !m ! � combina-
tions of m variables, maximize the log likelihood � as
in Eq. �16�.

�4� Let �m be the maximum log likelihood among combi-
nations of m variables from step �3�.

�5� If �m−�m−1�
1
2 ln NR or if m=M, stop. If �m−�m−1

�
1
2 ln NR or if m=1, set m=m+1 and repeat �3�–�5�.

This algorithm finds the best reaction coordinate as a
function of the candidate variables that are significantly in-
volved in the reaction coordinate. If no combination from the
candidate variables gives a satisfactory reaction coordinate,
additional variables should be tested. Suggestions for detect-

ing and correcting such problems are given below.
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DIAGNOSING AND CORRECTING PROBLEMS

The optimal reaction coordinate should be tested with a
pB histogram to ensure that the set of candidate variables is
adequate. Two types of problems can occur and each has a
distinct signature in the histogram. A pB histogram that is too
broad but centered at the correct value of pB indicates that
additional candidate variables are needed. The data from the
initial TPS simulation can be reused to screen the additional
candidates. The additional variables are needed only at the
saved shooting points. Trajectories and collective variables at
their end points need not be recomputed. Optimal reaction
coordinates involving the new variables should be compared
to the best models without the new variable.

The second problem arises because the shooting points
from TPS are distributed only in the transition pathway,
where p�x �TP��0. Estimated isocommittor surfaces may
cut the transition pathway correctly but also pass through
nonreactive low energy regions that were not sampled in
TPS. This problem is unlikely because the reaction coordi-
nate is based on information from the full range of pB values.
However, if it occurs, the pB histogram for the predicted
pB=1/2 surface will be peaked at 0 or 1 or will have double
peaks at 1

2 and 0 or 1
2 and 1. To correct this problem, add

model complexity with power laws or variable interactions
to “bend” isosurfaces away from the stable basins while re-
taining the characteristics of the original simple model in the
transition pathway. Before reoptimization, the original shoot-
ing point data should be augmented with the low energy
points sampled in computing the diagnostic pB histogram.
The points from off-pathway regions should be entered as
points that generated nontransition paths in the likelihood
function. It may be possible to prevent reaction coordinates
from cutting through stable off-pathway regions by including
points from the stable basins as points that generate nontran-
sition paths in the likelihood function.

Problems can also occur in the sampling of shooting
points. “Inconclusive” trajectories are paths for which one
end fails to reach a basin. Inconclusive trajectories are a
problem because they cannot be classified in the likelihood
function. During the TPS simulation, inconclusive trajecto-
ries can be counted by monitoring hA�x−t/2�+hB�x−t/2� and
hA�xt/2�+hB�xt/2�. If either of these is zero, the trajectory is
inconclusive. If both sums are 1, the trajectory is a transition
path or a nontransition path. If either of these sums is 2, the
A and B basins overlap. Note that it is sufficient to monitor
the product �hA�x−t/2

�n� �+hB�x−t/2
�n� ���hA�xt/2

�n��+hB�xt/2
�n���. One rea-

son for inconclusive trajectories is that the transition paths
are not of long enough duration. This can be fixed by in-
creasing the transition path time t.6

Stable intermediates can also hamper the harvesting of
shooting points by aimless shooting. Stable intermediates
could result in many inconclusive trajectories. If the fraction
of inconclusive trajectories does not decrease upon increas-
ing t, then a stable intermediate may be trapping the trajec-
tories. On a diagram such as that shown in Fig. 11, the stable
intermediate will appear as a highly concentrated region in

the swarm of inconclusive trajectories. Figures such as Fig.
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11 can thus help identify stable intermediates. Stable inter-
mediates can then be treated as separate states or included in
definitions of the reactant or product states.

EXAMPLE 1: LANGEVIN DYNAMICS ON A MODEL
POTENTIAL ENERGY SURFACE

Here we apply the new method to a system evolving via
Langevin dynamics on a model two-dimensional potential
energy surface. The model surface33 provides a convenient
illustration because reactants, products, and transition states
are visually identifiable. The Langevin equation34 adds fric-
tion and random forces to Newtonian dynamics to simulate
the effects of bath degrees of freedom,

− �V − �q̇ + f�t� = q̈ . �17�

Here � is the friction coefficient, V�q� is a potential energy, q
is a vector of two collective variables, and f�t� is a Gaussian
random force with zero mean.34 The variance of the random
force is related to the friction coefficient by 
f�t� · f�t���
=4kBT�	�t− t��.34

Figure 5 shows rejected and accepted aimless shooting
points on the model potential energy surface.33 The energy
contour spacing is 4kBT and the friction coefficient was set to
125. Figure 6 shows p�TP �r�q�� from log-likelihood optimi-

FIG. 5. Accepted �black� and rejected �gray� shooting points from the shoot-
ing algorithm. The shooting points are clustered near low energy transition
states.

FIG. 6. p�TP �r�q�� from the shooting points in Fig. 5. The shading at q is

proportional to p�TP �r�q��. The white line is the estimated pB=1/2 surface.
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zation based on the aimless shooting points in Fig. 5. We
stress that all results in Figs. 5 and 6 are from aimless shoot-
ing. The energy contours are shown only to illustrate that the
method identifies the correct dividing surface.

Figure 7 shows how friction affects the parameter p0

= p�TP �0�. For the exact reaction coordinate, p0→1 at low
friction and p0→1/2 at high friction. The actual value of p0

is smaller than expected at both high and low friction be-
cause the true dividing surface is not exactly linear. The lin-
ear approximation to the dividing surface includes as transi-
tion states some points with low p�TP �x� values.

EXAMPLE 2: NUCLEATION IN THE ISING MODEL

Nucleation is an activated process that initiates a transi-
tion from a metastable phase to a stable phase.35 The process
begins with a fluctuation in the metastable phase that forms
an embryo, or nucleus, of the stable phase. Nucleation is
activated because an interface must be created between the
nucleus and the surrounding metastable phase.35 Most nuclei
are too small to overcome the interfacial energy barrier, so
the nuclei vanish back into the metastable phase. Critical
nuclei have equal probability of vanishing into the meta-
stable phase and growing to a macroscopic domain of the
stable phase.

Classical nucleation theory �CNT� assumes that the nu-
clei are small spheres with the free energy density of the
macroscopic stable phase.35 CNT also assumes that the inter-
facial energy is the nucleus area times the surface tension
between the macroscopic phases.35 These assumptions imply
that the free energy to form a nucleus is entirely determined
by the nucleus diameter d, �G=
�d2−��
d3 /6, where ��
is the free energy difference between the two phases and � is
the surface tension. The size of the critical nucleus in CNT
maximizes the free energy barrier, d‡=4� /��.35

In nucleation, the metastable phase is the reactant, criti-
cal nuclei are transition states, and the variable that deter-
mines the probability of nucleation is the reaction coordinate.
Classical nucleation theory assumes that nucleus size is the
reaction coordinate. Size is an important variable for
nucleation,35 but other variables such as surface area and
internal order of nuclei may also be important.9,36 The role of
these variables in the reaction coordinate for nucleation has
not been quantified.

The Ising model37 has been used in several studies of
nucleation.9,38,39 For the Ising model, the energy is a function
of the spins on a lattice.37 Each spin takes values of ±1. To

FIG. 7. p0 as a function of the friction coefficient � for the model free
energy surface.
model nucleation, each spin indicates which phase is present
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at a particular volume element, the coupling between spins is
the interfacial energy between the phases, and the field
strength is the difference in chemical potential between the
perfect phases.9 Thus, the energy as a function of the spins is

E�s� =
1

2
���

i

si +
1

2
��


i,j�
sisj , �18�

where the sl are particular spins and 
i , j� indicates a sum
over all nearest neighbors.9,37 Each attempted change in spin
configuration consists of selecting a single random spin. �t
for aimless shooting is the number of spins in the lattice.
Nucleation was studied on a square 32�32 periodic lattice
and a cubic 32�32�32 periodic lattice. The simulations
were repeated on 24�24 and 24�24�24 lattices to ensure
that finite size effects are negligible. For the two-dimensional
�2D� lattice, the temperature is kBT=0.7� and the chemical
potential is ��=0.2�. For the three-dimensional �3D� lattice,
the temperature is kBT=1.35� and the chemical potential is
��=0.55�. The 3D conditions and parameters were selected
to enable a comparison with the results of Pan and Chandler.9

Equation �15� can be used for the likelihood function
because the dynamics clearly satisfy p�TP �x�=2pB�x��1
− pB�x��.9 In the Ising model we expect three nucleation
regimes.39 At very low temperatures the nuclei are perfect
squares �or cubes�.39 Above the roughening temperature the
nuclei become rounded.39 Near the critical point, the nuclei
will have nonconvex branched shapes.35 To examine the role
of cluster size N and surface area S, we define two param-
eters qN and qS,

2D�qN = 
N ,

qS = S/4,
� 3D�qN = 
3 N ,

qS = 
S/6.
� �19�

These are the lengths of a nucleus based on N and S assum-
ing minimal surface area as in CNT. �On a lattice, squares
and cubes have minimal surface area to volume ratio.� In two
dimensions, S is the perimeter and N is the area. If the nuclei
are perfect squares, qS /qN=1 in both 2D and 3D. For
rounded nuclei, qS /qN=2/
1/2 in 2D and qS /qN= �6/
�1/3 in
3D. As the nuclei become elongated or nonconvex, the qS /qN

ratios grow above the rounded values.
Figure 8 shows points from typical transition paths pro-

FIG. 8. Points from typical transition paths projected into collective vari-
ables qN and qs for the 2D Ising model. The white line is a least squares fit,
qs=1.33qN. The slope indicates that nuclei are irregularly shaped throughout
the transformation.
jected into qN and qS coordinates for the 2D Ising model. The
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linear relation between qN and qS shows that S scales as N1/2

in agreement with classical nucleation theory. However, the
slope �1.33� is larger than 2/
1/2 ��1.13�, so the nuclei are
irregularly shaped. Similarly, in the 3D system, S scales as
N2/3, but the slope is 1.31. A slope of �6/
�1/3 ��1.25� is
expected for nearly spherical nuclei.

Figure 9 shows the fraction of trajectories that commit to
B from the shooting points projected into qN and qS coordi-
nates. Figure 9 also shows pB contours for optimal reaction
coordinates of the form

r�qN,qS� = �NqN + �SqS − �0. �20�

Table I shows maximum likelihood parameters and scores
for reaction coordinate models that depend on qS, qN, or both
variables.

If surface area is omitted from the reaction coordinate,
likelihood maximization gives the same transition state sur-

FIG. 9. �2D and 3D� The shading shows the fraction of trajectories that
committed to B from each shooting point at �qN ,qS�. White corresponds to
0% and black to 100% with a gray scale in between. Only outlined boxes
were sampled. The diagonal lines are the predicted pB�q� isocommittors
from likelihood maximization. The isocommittor values are labeled above
each graph.

TABLE I. Maximum likelihood parameters and scores for three models of
the reaction coordinate. The threshold of significant likelihood increase from
the Bayesian information criterion is given as BIC. The predicated transition
state surfaces are also for each model. For the full models, tangents to the
curve of transition states are given. The actual curves can be obtained by
solving r�N , S�=0.

r ���max r=0 surface

2D: BIC= �1/2�ln NR=4.8
1.226qS−7.260 −6723.8 S‡=35.1
0.681qN−4.637 −6273.5 N‡=46.3

0.623qN+0.042qS−4.617 −6268.5 S‡=37.1−4.4�N‡−46�

3D: BIC= �1/2�ln NR=4.9
1.106qS−7.103 −7400.2 S‡=247.3
1.953qN−9.504 −6656.9 N‡=115.3

2.559qN−0.409qS−9.826 −6596.5 S‡=246.5+6.8�N‡−115�
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face that Pan and Chandler9 obtained by computing the free
energy as a function of N, N‡=115. Table I confirms that N is
an important variable in the reaction coordinate,9 but Table I
also shows that the reaction coordinate involving both N and
S is significantly better. The transition state ensemble in-
cludes both small compact nuclei and large distorted nuclei.
Increasing the surface area at constant nucleus size decreases
the probability that the nucleus will grow. The reaction co-
ordinate from likelihood maximization quantifies the effect
of added surface area on the stability of nuclei. Each unit
increase in the size of a nucleus must be accompanied by a
seven unit increase in surface area to maintain the same
probability of nucleus growth or dissolution.

Surface area �perimeter� is also a significant factor in
two dimensions. Interestingly, Fig. 9 �2D� shows that in two
dimensions, increasing the surface area at constant nucleus
size actually increases the probability that the nucleus will
grow. Differences between the 2D and 3D results can be
explained in terms of the probability that a single protruding
spin from a smooth nucleus face will disappear or grow.
Protrusions from an otherwise flat face on the two-
dimensional nuclei tend to grow a new layer on the face. For
the three-dimensional system, such protrusions tend to dis-
appear. This can be verified with a simple calculation involv-
ing ��, �, kBT, and the number of spins neighboring a
protrusion.40,41

Figure 10 shows the pB histogram for reaction coordi-
nates from the three-dimensional Ising model. The pB histo-
gram for S‡=247.3 is shown in Fig. 1. The transition state
surface for the best reaction coordinate is labeled r�N ,S�=0.
�The same window, �r��0.0275, was sampled for each reac-
tion coordinate.� Figure 10 also shows the binomial distribu-
tion that would result if every configuration sampled was a
true transition state. Likelihood maximization correctly ranks
the reaction coordinates, and the pB histogram for the best
reaction coordinate closely reproduces the binomial distribu-
tion. Table II summarizes the pB-histogram results.

From the examples in this paper, the efficiency of aim-
less shooting appears to be near 25%. Efficiencies of 40%
are typical for conventional shooting and shifting.6,13 How-
ever, all successive aimless shooting trajectories are indepen-

FIG. 10. pB histograms for N‡=115 and r�N ,S�=0 surfaces in the 3D Ising
model. Individual pB values are estimated from 100 trajectories. The histo-
grams include estimates at 1000 points obtained by umbrella sampling. The
bin width is 0.02. The binomial distribution that would result from sampling
on the exact pB=1/2 surface is also shown.
dent realizations of p�TP �x�. Conventional shooting and
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shifting with slightly altered momenta may generate corre-
lated p�TP �x� realizations for successive trajectories. The
ability to use every trajectory in the likelihood makes aimless
shooting preferable to conventional shooting and shifting for
calculating reaction coordinates. A more detailed study of
sampling efficiency is needed to determine which algorithm
is more efficient for the calculation of rate constants by
TPS.13

CONCLUSIONS

This paper presented a powerful new method, based on
likelihood maximization, to obtain a reaction coordinate
from a list of candidate collective variables. The model re-
action coordinates are constructed from candidate variables,
and simple single variable models are tested first. The Baye-
sian information criterion30 indicates when the benefit of in-
creasing model complexity is no longer significant.

Unlike existing approaches, additional variables can be
tested without sampling new trajectories or configurations on
a constraint surface. The new variable is simply calculated at
each of the saved shooting points. Optimal models involving
the new variable are then compared to optimal models with-
out the new variable.

Existing methods require iterative calculations of costly
pB histograms. The new method is approximately an order of
magnitude less costly than the calculation of a single histo-
gram. Additionally, the new method does not involve sam-
pling on a constraint surface. In principle, sampling with a
constraint is simple, but in practice, the constrained variables
must be differentiable or the system must be amenable to
Monte Carlo sampling. In truly complex systems, relevant
variables may be discontinuous or nondifferentiable, and
Monte Carlo moves that efficiently sample configuration
space may be extremely complex.

The new method was applied to find reaction coordinates
and transition states in two example problems. The example
of Langevin dynamics on a bistable potential energy surface
shows that the method is applicable for both high and low
friction dynamics. The example of nucleation in the Ising
model provides a new understanding of nucleation in the
Ising model. These simple examples illustrate the power and
efficiency of the new method. It should be very useful for
understanding reactions in complex systems.
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TABLE II. Mean and standard deviation �SD� of PB histograms for pre-
dicted transition state surfaces. The exact transition state surface gives a
binomial distribution.

Surface Mean SD

S=247.3 0.540 0.211
N=115.3 0.494 0.076
r�N ,S�=0 0.495 0.065
Exact 0.500 0.050
ment.
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APPENDIX: MOST LIKELY TRANSITION PATH

Each trajectory in the transition path ensemble is differ-
ent, but the paths share some common features. If the collec-
tive variables in the reaction coordinate have been identified
and used to compute a free energy surface, the transition
paths should lie in a valley, or reaction pathway, that joins
two minima on the free energy surface. The reaction pathway
describes which degrees of freedom are changing at each
point during the reaction. For reaction between small mol-
ecules, Miller et al.42 described the reaction pathway as a
harmonic valley centered on the steepest descent pathway
downward from the saddle point to the neighboring minima
on a potential energy surface.

For complex systems, Maragliano et al.10 developed an
equation for the analogous pathway on a free energy land-
scape as a function of collective variables. We refer to the
pathway of Maragliano et al. as the most likely transition
pathway �MLTP�. The MLTP in collective variables q fol-
lows

q̇ = − M�q��qF�q� �A1�

from the saddle point on the free energy surface F�q� down
to the neighboring minima.10 The matrix M�q� accounts for
interdependencies within the set of order parameters q�x�,10

Mij�q� = 
	�q�x� − q���xqi · �xqj�� . �A2�

The MLTP, like the steepest descent pathway of Miller
et al.,42 is not a dynamic path.10 Maragliano et al.10 compute
M�q� and F�q� and use these in a collective variables version
of the string method.43

In addition to the approach of Maragliano et al., we pro-
pose that the MLTP can be approximated using trajectories
from the transition path ensemble. Let the average of the
collective variables in the reactant basin �A� be denoted

q�A= �
q1�A , . . . , 
qm�A� and define 
q�B similarly for the
product basin. The MLTP can be approximated by a curve
from 
q�A to 
q�B that follows the path of maximum density
through p�x �TP�, and p�x �TP� can be approximated from
points on the ensemble of transition paths. If qMLTP�s� is a

FIG. 11. The MLTP �black� follows the path of maximum density through
p�x �TP�, approximated by points from 100 trajectories in the TPE �gray�.
The MLTP connects the two minima. Contours of the free energy surface are
shown only for visual reference.
parametrization of the MLTP, then qMLTP�s� satisfies
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��
	�qMLTP�s� − q��TPE�� = 0, �A3�

where the gradient is with respect to collective variables q,
the subscript TPE indicates an average over p�x �TP�, and the
subscript � indicates components perpendicular to the
MLTP tangent. For details on calculating such paths, see ex-
isting algorithms such as the string method43,44 or the nudged
elastic band.45 To find the MLTP, substitute projected gradi-
ents of p�x �TP� for the projected forces that are used in those
algorithms.43–45 Figure 11 shows the MLTP on the model
free energy surface of example 1 with 100 trajectories from
the TPE.
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